N
P University of

Central Lancashire
UCLan

Central Lancashire Online Knowledge (CLoK)

Title Sex differences in ACL loading and strain during typical athletic
movements: a musculoskeletal simulation analysis

Type Article

URL https://clok.uclan.ac.uk/id/eprint/25589/

DOI https://doi.org/10.1007/s00421-018-04062-w

Date 2019

Citation | Sinclair, Jonathan Kenneth, Brooks, Darrell and Stainton, Philip (2019) Sex
differences in ACL loading and strain during typical athletic movements: a
musculoskeletal simulation analysis. European Journal of Applied
Physiology, 119 (3). pp. 713-721. ISSN 1439-6319

Creators | Sinclair, Jonathan Kenneth, Brooks, Darrell and Stainton, Philip

It is advisable to refer to the publisher’s version if you intend to cite from the work.
https://doi.org/10.1007/s00421-018-04062-w

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the
http://clok.uclan.ac.uk/policies/



http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Sex differences in ACL loading and strain during typical athletic movements: a

musculoskeletal simulation analysis.

Abstract

Purpose: Female athletes experience anterior cruciate ligament (ACL) injuries at a much
greater rate than males, yet the mechanisms responsible for this are not well understood. The
current investigation aimed using a musculoskeletal simulation based approach, to examine

sex differences in ACL loading parameters during cut and hop movements.

Methods: Fifteen male and fifteen female participants completed 45° cut and maximal one
legged hop movements. Three-dimensional motion capture and ground reaction force data
during the stance phase of the cut movement and landing phase of the one legged hop were
obtained. Lower extremity muscle forces, ACL forces and ACL strains were extracted via a
simulation based approach using a musculoskeletal model, with an ACL insertion into the

femur and tibia.

Results: During the hop movement females were associated with significantly greater peak
ACL forces (male = 15.01 N/kg & female = 15.70 N/kg) and strains (male = 6.87 % &
female = 10.74 %). In addition, for both the cut (male = 4.45 & female = 1.45) and hop (male
= 2.04 & female = 1.46) movements the soleus/ gastrocnemius ratio was significantly larger

in males.

Conclusions: The current investigation provides new information regarding sex differences
during athletic movements that provide further insight regarding the increased incidence of

ACL injuries in females.

Introduction
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Although engagement in regular physical activity and sport is associated with a variety of
physiological and psychological benefits (Warburton et al., 2006), participation in athletic
activity is allied to a high risk from musculoskeletal injury (Finch et al., 2001). The knee is
the most commonly injured musculoskeletal site (John et al., 2016), and the anterior cruciate
ligament (ACL) is the most frequently disrupted knee ligament (Evans et al., 2014). The ACL
is essential for the provision and maintenance of knee stability during dynamic activities
(Ellison et al., 1985). With its functional properties and complex anatomy, the ACL is acutely
competent in limiting both excessive anterior tibial translation and coronal/ transverse plane

knee movements (Dargel et al., 2007).

ACL injuries are predominantly, non-contact in nature, in that the structural integrity of the
ligament becomes compromised without physical contact between athletes (Boden et al.,
2010). Mechanically, ACL injuries occur when the ligament experiences excessive tensile
forces and strains (Smith et al., 2012). Aetiological analyses have shown that the ACL is
most vulnerable in the period following foot contact with the ground, in tasks involving

sudden decelerations, landings and cutting manoeuvres (Olsen et al., 2004). Athletes with

is'ashigh'as'30% i the'ipsilateral knee (Di'Stasi'efall 2018)| ACL injuries frequently lead

to chronic knee pain, and athletes who experience an ACL pathology are as many as 10 times

more susceptible to early-onset degenerative knee osteoarthritis in (QJiestad et al., 2009),
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leading not only to a decline in athletic participation but also enduring disability in later life
(Ajuied et al., 2014). Radiographic knee osteoarthritis significantly reduces health-related
quality of life, and degenerative joint disease secondary to ACL injury imposes a significant

economic burden (Mather et al., 2013).

Importantly, epidemiologic analyses have shown that female athletes have a 2-8 fold
increased risk of ACL pathology in relation to age-matched males of similar athletic ability
(Arendt et al., 1999). Increased ACL injury risk allied to enhanced participation in athletic
activities in females has fuelled a range of comparative and interventional biomechanical
investigations aimed at identifying modifiable risk factors. However, the precise aetiology of
ACL injury is currently disputed within clinical/ biomechanical literature, with some
advocating a predominantly sagittal plane ACL injury mechanism (Yu & Garrett, 2007), and
others supporting the notion that lower extremity coronal and transverse plane loads and
movements are also associated with ACL injury risk (Wascher et al., 1993; Markolf et al.,
1995; Krosshaug et al., 2007; Boden et al., 2009). Females have been proposed to exhibit
riskier landing mechanics during dynamic activities that are linked with ACL injury
(Voskanian, 2013). Indeed, three-dimensional kinetic and kinematic analyses have shown
that females exhibit reduced hip, knee and ankle flexion angles, enhanced knee valgus angles,
larger ground reaction forces (GRF), greater tibia anterior shear forces, larger knee extension
and valgus moments, greater hip internal rotation, hip adduction and knee rotation during
deceleration or landing manoeuvres (Decker et al., 2003; Malinzak et al., 2001; Chappell et

al., 2002; Lephart et al., 2002; Ford et al., 2003; Lin et al., 2012; Sinclair et al., 2012).
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During single limb landing and deceleration activities, anterior tibial translation is primarily
restrained by the ACL, therefore the knee joint must be stabilized and protected from
excessive loads on the joint's soft tissue and ligaments (Quatman & Hewett, 2009). Muscle
recruitment patterns play a key role, and appropriate muscular preference, recruitment and
timing, are essential for the maintenance of knee joint stability (Li et al., 1999). As they span
the knee joint, the hamstring and quadriceps muscle groups are considered crucial in
moderating ACL loading (Shimokochi & Shultz, 2008). Indeed, numerous analyses have
revealed that the quadriceps serve to produce anterior tibial translation and thus increase ACL
loading, whereas the hamstring muscle group are act to oppose tibial translation and thus
attenuate ACL loads (Baratta et al., 1988; Solomonow et al., 1987; Draganich & Vahey,
1990; Durselen et al., 1995; Li et al., 1999; Markolf et al., 2004). Importantly, previous
analyses have shown that females exhibit quadriceps dominance during landing, and take
longer to generate maximum hamstring torque than their male counterparts (Hewett et al.,
1996; Huston et al., 1996). Several electromyographical analyses have confirmed this notion
using the hamstring/ quadriceps ratio. Females are habitually associated with lower values
than males, indicating greater relative involvement of the quadriceps in relation to the
hamstrings (Ebben et al., 2010; Landry et al., 2007; Nagano et al., 2007). This is also
considered a key mechanism that predisposes female athletes to ACL injury (Ruan et al.,
2017). In addition, recent analyses have also shown that muscles may not need to cross the
knee joint in order to contribute to ACL loading. Indeed, both Mokhtarzadeh et al., (2013)
and Adouni et al., (2016) have demonstrated the agonistic function of the soleus muscle in
ACL loading. However, there has yet to be any investigation to examine sex differences in

soleus muscle function during typical athletic movements.
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Numerous prevention programmes have been devised in order to address mechanisms linked
to the aetiology of injury, which have had some success in attenuating the rate of ACL
injuries (Caraffa et al., 1996; Hewett et al., 1999; Myklebust et al., 2003; Mandelbaum et al.,
2005; LaBella et al., 2011). However, the efficacy of any intervention is dependent on a
sound comprehension of the underlying causative mechanisms of the associated condition,
and the aetiology for this gender discrepancy is not completely understood (Dai et al., 2014).
To date there has yet to be any investigation, which has examined sex differences in ACL
loading and strain parameters during athletic movements, principally due to the inability to
non-invasively quantify ACL loads and strain during high-risk athletic movements (Kar &
Quesada, 2012). Furthermore, there has also yet to be any investigation which has
concurrently examined sex differences in GRF’s, three-dimensional knee kinematics and
muscle forces during athletic movements. However, advances in musculoskeletal simulation
software and enhancements in algorithmic complexity have led to the development of a
bespoke model with a six degrees of freedom at the knee joint and the inclusion of a passive
ACL inserted into the femur and tibial segments (Kar & Quesada, 2012). To date however,
this more advanced model has not yet been utilized to explore sex differences in ACL loading

and strain during high-risk athletic movements.

The aim of the current investigation was to examine sex differences in ACL loading, GRF’s,
three-dimensional knee kinematics and muscle forces during cut and hop movements using a
musculoskeletal simulation based approach. In light of the increased incidence of ACL
pathologies in female athletes, the high likelihood of re-injury and the chronic reductions in
both musculoskeletal health and athletic functionality, it can be concluded that further insight

into the biomechanical differences between males and female athletes would be of both
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practical and clinical significance. The current investigation tests the hypothesis that females

will be associated with greater ACL loading parameters during both cut and hop movements.

Methods

Participants

Fifteen male (age 30.1 £ 5.2 years, height 1.75 = 0.1 m and body mass 77.1 = 10.8 kg) and
fifteen female (age 29.6 + 5.6 years, height 1.66 £ 0.1 m and body mass 65.8 + 9.9 kg)
recreational athletes volunteered to take part in the current investigation. All participants
were free from lower extremity musculoskeletal pathology at the time of data collection and
had not undergone surgical intervention of the knee joint. All provided written informed
consent and ethical approval was obtained from the University of Central Lancashire, in

accordance with the principles documented in the declaration of Helsinki.

Procedure

Participants completed five repeats of two sport specific movements; one legged hop and 45°
cut. To control for any order effects the order in which participants performed in each
movement condition were counterbalanced. Kinematic information was obtained using an
eight camera motion capture system (Qualisys Medical AB, Goteburg, Sweden) using a
capture frequency of 250 Hz. To measure kinetic information an embedded piezoelectric
force platform (Kistler National Instruments, Model 9281CA) operating at 1000 Hz was
utilized. The kinetic and kinematic information were synchronously obtained and interfaced

using Qualisys track manager.
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To define the anatomical frames of the thorax, pelvis, thighs, shanks and feet retroreflective
markers were placed at the C7, T12 and xiphoid process landmarks and also positioned
bilaterally onto the acromion process, iliac crest, anterior superior iliac spine (ASIS),
posterior super iliac spine (PSIS), medial and lateral malleoli, medial and lateral femoral
epicondyles, greater trochanter, calcaneus, first metatarsal and fifth metatarsal. Carbon-fibre
tracking clusters comprising of four non-linear retroreflective markers were positioned onto
the thigh and shank segments. In addition to these the foot segments were tracked via the
calcaneus, first metatarsal and fifth metatarsal, the pelvic segment was tracked using the PSIS
and ASIS markers and the thorax segment was tracked using the T12, C7 and xiphoid
markers. Static calibration trials were obtained with the participant in the anatomical position
in order for the positions of the anatomical markers to be referenced in relation to the tracking

clusters/markers, following which those not required for dynamic data were removed.

Data were collected during the cut and hop movements according to below procedures:

Cut

Participants completed 45° sideways cut movements using an approach velocity of 4.0 m.s
+5% striking the force platform with their right (dominant) limb. Cut angles were measured
from the centre of the force plate and the corresponding line of movement was delineated
using masking tape so that it was clearly evident to participants. The stance phase of the cut-
movement was defined as the duration over > 20 N of vertical force was applied to the force

platform.

Hop
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Participants began standing by on their dominant limb; they were then requested to hop
forward maximally, landing on the force platform with same leg without losing balance. The
arms were held across the chest to remove arm-swing contribution. The hop movement was

defined as the duration from foot contact (defined as > 20 N of vertical force applied to the

force platform) to maximum knee flexion. The hop distance for each participant was

Processing

Dynamic trials were digitized using Qualisys Track Manager in order to identify anatomical
and tracking markers then exported as C3D files to Visual 3D (C-Motion, Germantown, MD,
USA). Data during the appropriate phases of each movement were exported from Visual 3D
into OpenSim 3.3 software (Simtk.org) using a custom pipeline that allowed the inverse
kinematics to be exported in order to match the degrees of freedom associated with the
experimental model in OpenSim. A previously utilized musculoskeletal model with 54
muscle-tendon units in 12 segments was adopted (Kar & Quesada, 2012). This model differs
from the traditional gait2354 approach in that a 6 degrees of freedom knee joint was included
alongside ACL ligament bundles which were modelled as non-linearly elastic passive soft

tissues with their proximal and distal ends inserted into the femur and tibia.

Firstly, using data from anatomical landmarks collected during the static calibration trials, the
model was scaled for each participant within OpenSim (Lerner et al., 2015). In accordance

with Kar & Quesada, (2012), muscle, tendon and ligament dimensions were scaled in the
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same manner as body segments, from the static trial marker positions. Following this, we
performed a residual reduction algorithm (RRA) within OpenSim to reduce the residual
forces and moments in accordance with the recommendations of Lund & Hicks, (2013).
Following the RRA, the computed muscle control (CMC) procedure was then employed to
estimate a set of muscle force patterns allowing the model to replicate the required

kinematics.

From the above processing, the peak ACL force during the phases of each movement was
extracted and normalized by dividing the net values by body mass (N/kg) (Kar & Quesada,
2012). Further to this, the time taken from the instance of footstrike to peak ACL force (ms)
was also extracted for statistical analysis. In addition, the maximum ACL strain (%) was
calculated by dividing the maximum ligament bundle length during the dynamic trials by the
resting length, which was obtained during the static calibration trials (Kar & Quesada, 2012;
Taylor et al., 2013). Finally, forces of the rectus femoris, vastus intermedius, biceps femoris
long head (LH), biceps femoris short head (SH), gastrocnemius, sartorius, gracillis, tensor
fascia lata (TFL), tibialis anterior, tibialis posterior and soleus muscle groups were quantified

at the instance of peak ACL force following normalization to body mass (N/kg).
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In addition to the aforementioned muscle analyses, three dimensional knee joint angular
kinematic measures were also examined. Knee joint kinematic parameters that were extracted
for statistical analysis were 1) angle at foot contact, 2) peak angle and 3) angular range of
motion (ROM) from foot contact to peak angle. Furthermore, the hip flexion angle at the
instance of foot contact was also extracted for further analysis. Finally, vertical and anterior-
posterior GRF’s were quantified at the instance of peak ACL force following normalization

to body mass (N/kg).

Analyses

Descriptive statistics of means and standard deviations (SD) were obtained for each outcome
measurement. Shapiro-Wilk tests were used to screen the data for normality. For the cut
movement, sex differences in ACL loading and muscle force parameters were examined
using univariate ANOVA’s. In addition, as hop distance was statistically larger in male
athletes (1.66 + 0.11 m) compared to females (1.32 = 0.17 m), sex differences in ACL and
muscle forces were examined using a univariate ANCOVA with hop distance as the

covariate. This was undertaken due to the increased vertical and anterior-posterior GRF’s
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associated with greater landing distances (Barker et al., 2017). Statistical significance
throughout was accepted at the P<0.05 level, and effect sizes were calculated using partial
Eta? (pn?). All statistical actions were conducted using SPSS v24.0 (SPSS Inc, Chicago,

USA).

Results
Cut movement

The soleus/ gastrocnemius ratio at the instance of peak ACL force was significantly larger in
males (Table 1). In addition, knee peak valgus, internal rotation and internal rotation ROM

were shown to be significantly larger in females (Table 2).

@@@TABLE 1 NERE HERE@Q@@

@@@TABLE 2 NERE HERE@Q@@

Hop movement

For the hop movement, females were associated with significantly increased peak ACL
forces and peak ACL strains (Table 3). In addition, the soleus/ gastrocnemius ratio at the
instance of peak ACL force was significantly larger in males (Table 3). Finally, knee peak

valgus and internal rotation were shown to be significantly larger in females (Table 4).

@@@TABLE 3NERE HERE@Q@@

@@@TABLE 4 NERE HERE@Q@@
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Discussion

The aim of the current investigation was to examine sex differences in ACL loading
parameters during cut and hop movements. To the authors’ knowledge, this represents the
first investigation to quantify ACL forces and strains in male and female athletes using a
musculoskeletal simulation based approach. Given the debilitating nature of ACL
pathologies, the high incidence of re-injury and the increased susceptibility to degenerative
joint disease secondary to ACL injury, a study of this nature may provide important

information to inform future prevention and rehabilitation programmes.

For the cut movement, the current investigation provided scant support for the hypothesis in
that although very small increases in ACL loading parameters were noted in female athletes,
ther differences did not reach statistical “Significance; For the more dynamically and

functionally challenging hop movement however, the findings support our hypotheses as both
peak ACL force and ACL strain were shown to be statistically larger in females when
adjusted for the influence of hop length through covariate analyses. This concurs with the
observations of Schilaty et al., (2018), who showed using cadaveric impacts that female
ligaments experience greater strain than males during a simulated landing task. Mechanically,
ACL injuries occur when the ligament experiences excessive tensile forces and strains.
Therefore, given the statistical differences between sexes during the hop movement and with
the ACL strain being larger in female athletes, this finding may provide biomechanical

insight regarding the aetiology of injury in females.
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Female athletes are believed to exhibit riskier biomechanics and increased quadriceps
dominance during landing (Voskanian, 2013). The kinematic observations from the current
investigation support the aforementioned notion, as females were associated with statistically
greater coronal and transverse plane knee joint kinematics during both movements. Increases
in knee valgus have been reported previously (Ford et al., 2003; Russell et al., 2006;
Kernozek et al., 2005), and may be pertinent in relation to the increased incidence of ACL
injury in females. Prospective analyses show that athletes experiencing ACL injury exhibited
knee valgus angles >8° than those who remained uninjured (Hewett et al., 2005).
Furthermore, following ACL rupture, lateral epicondyle bone bruises are evident in 80% of
cases, further implicating the valgus position of knee joint in relation to the aetiology of ACL
pathologies (Viskontas et al, 2008). In addition, increased knee internal rotation in female
athletes agrees with previous analyses (Kiriyama et al., 2008; Sinclair et al., 2012), and given
recent observations may be clinically meaningfully regarding the increased likelihood of
ACL injuries in females. Based on video analyses of ACL ruptures post injury, it was initially
proposed that external rotation was the transverse plane knee mechanism responsible for
ACL injuries (Ebstrup & Bojsen-Molle, 2000). However, Koga et al., (2010) and Koga et al.,
(2011) have shown that the knee exhibits internal rotation until ligament failure, following
which the direction of knee rotation reverses. Therefore, prophylactically attenuating knee
valgus and internal rotation measures in female athletes either using movement re-training or
via external supports should remain a key objective for trainers and physical therapy

professionals alike.

Furthermore, in addition to riskier biomechanics females are purported to exhibit increased
quadriceps dominance during landing (Voskanian, 2013). Previous electromyographical

analyses have revealed a diminished hamstring/ quadriceps ratio in females (Nagano et al.,
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2007). The current investigation is the first to explore potential quadriceps dominance in
females using muscle forces provided by musculoskeletal simulation. However, the findings
from the current study do not appear to support the aforementioned concept of quadriceps
dominance in female athletes. Firstly, there were no statistical sex differences in quadriceps
muscle forces and secondly none of the sex differences in any of the quadriceps muscle force

ratio’s reached statistical significance.

Importantly, the musculoskeletal model utilized in this investigation also quantified both
soleus and gastrocnemius forces. The kinetics of these two muscles are typically ignored in
analyses concerning the loads experienced by the ACL owing of the supposition that they
have limited influence due to the muscles lines of action being close to the long axis of the
tibia (Mokhtarzadeh et al., 2013). However, previous modelling analyses by Mokhtarzadeh et
al., (2013) and Adouni et al., (2016) have shown that the soleus protects the ACL during
landing manoeuvres by exerting a posterior force on the tibia and that the gastrocnemius acts
as an ACL antagonist. The current investigation showed that the muscle force ratio between
the soleus and gastrocnemius muscles was statistically larger in male athletes, indicating a
more favourable ratio in terms of protection from ACL injuries during high intensity athletic

movements.

A potential limitation to the current investigation is the mechanism by which the simulation
analyses were conducted. Although a powerful tool that has been utilized in previous
analyses to simulate ACL mechanics (Kar & Quesada, 2013), the CMC processes is
insensitive to variations in muscle activation and limited in its ability to quantify muscle

coordination during dynamic tasks (Zajac et al., 2002). As both of these parameters have



333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

been shown previously to exhibit both sex and movement differences (Nagano et al., 2007),
this may represent a methodological drawback to the current study. In addition, the lack of
sex specificity in regards to the anatomy and scaling of the ACL may serve as a limitation to
this investigation. As the ACL contributes significantly to knee joint load bearing and

stability, incorporation of a sex specific scaling mechanism may improve the efficacy of

musculoskeletal simulation analyses concerning the knee joint. That ACL strain was

In conclusion, the current investigation adds to the current literature by exploring sex
differences in ACL loading, GRF’s, three-dimensional knee kinematics and muscle forces
using a musculoskeletal simulation based approach. Importantly, the findings from this study
showed that during the hop movement, females were associated with significantly greater
peak ACL forces and strains. In addition, for both movements the soleus/ gastrocnemius ratio
at the instance of peak ACL force was significantly larger in male athletes. Therefore, the
current investigation provides new information regarding sex differences during athletic
movements that provide further insight regarding the increased incidence of ACL injuries in

females.
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