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Abstract

Recently, the survival signature has been presented as a summary of the structure
function which is sufficient for computation of common reliability metrics and has
the crucial advantage that it can be applied to systems with components whose
failure times are not exchangeable. The survival signature provides a huge reduc-
tion in required information, e.g. for its storage, compared to the full structure
function, its implementation to larger systems is still difficult in a purely analyt-
ical manner and simulations may be required to derive the reliability metrics of
interest. Hence, the main question addressed in this paper is whether or not the
survival signature provides sufficient information for efficient simulation to derive
the system’s failure time distribution. We answer this question in the affirmative
by presenting two algorithms for survival signature-based simulation. In addition,
we present a third simulation algorithm that can be used in case of repairable com-
ponents. It turns out that these algorithms are very efficient, beyond the initial
advantage of requiring only the survival signature to be available, instead of the

full structure function.

Keywords: Reliability Analysis; Survival Signature; Monte Carlo Method;

Complex Systems; Multi state components.

1. Introduction

The study of the reliability of complex systems, particularly systems with a
structure that cannot be sequentially reduced by considering alternative series

and parallel subsystems, is a topic subject which has attracted much attention in
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the literature and which is of obvious importance in many application areas [1].
Traditionally, the reliability analysis of systems is performed adopting different
well-known tools such as reliability block diagrams, fault tree and success tree
methods, failure mode and effect analysis, and master logic diagrams [2]. The main
limitation of these traditional approaches for applicability to large complex systems
is due to the complex and tedious calculations for finding minimal path sets and
cut sets. For instance, for a system with m components 2™ combinations of
component states must be specified, which is impossible for most practical systems
and networks. Instead, if the systems components can be divided into groups with
exchangeable failure times, the survival signature is sufficient to derive the systems
failure time distribution given the components failure time distributions.

In addition, when the information about the system is not perfect, for example
leading to imprecise probabilities being required to quantify the uncertainties, it
is even more difficult to apply those methods.

In recent years, the system signature has been recognized as a useful tool to
quantify the reliability of systems consisting of independent and identically dis-
tributed (éid) or exchangeable components with respect to their random failure
times [3, 4], we say that such systems only have ‘components of one type’. The
system signature enables full separation of the system structure from the compo-
nent probabilistic failure time distribution when deriving the system failure time
distribution. However, attempting to generalize the system signature to systems
with more than one component type is not really possible as it requires the compu-
tation of the probabilities of different orderings of order statistics of the different
failure time distributions involved [5], which tends to be intractable.

In order to overcome the limitations of the system signature, Coolen and
Coolen-Maturi [5, 6] presented the survival signature, which has the same merits
as the system signature for systems consisting of a single type of components, but
it is also an effective tool for analysing complex systems consisting of multiple
component types. Therefore, the survival signature is a useful tool for reliability
quantification for complex systems and networks because it only needs to be calcu-
lated once providing a massive reduction of the computational cost required by the
analysis. Recently, Coolen et al. [7] presented non-parametric predictive inference
for system reliability using the survival signature, and Aslett et al. [8] did similarly
within the Bayesian framework of statistics. Feng et al. [9] developed an analytical
method to calculate the survival function of systems with uncertainty about pa-
rameters of assumed component failure time distributions. These methods are all
useful, but may become less practical for larger complex systems. System survival

signature can also be derived from subsystems’ survival signatures, if these are in
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series-parallel configurations [7]. Recently, Reed presented and efficient computa-
tional approach for computing exact system and survival signatures of large and
complex systems [10]. The survival signature together with the provided simula-
tion algorithms provides a generalized tool for realistic quantification of system
reliability.

Parameter uncertainties and imprecisions are generally epistemic in nature due
to the lack of knowledge or data, or the unknown relationship between components
(e.g., poor understanding of accident initiating events or coupled physics phenom-
ena, lack of data to characterise experiment processes, random errors in measuring
and analytic devices), all of them make it difficult to characterize probabilistically
the failure time of components. Since the reliability and performance of systems
are directly affected by uncertainties and imprecisions, a quantitative assessment
of uncertainty is widely recognized as an important task in practical engineering
[11, 12].

Simulation approaches are used to investigate large and complex systems and
for obtaining numerical solutions where analytical solutions are not available. In
particular, simulation methods allow to consider explicitly the effect of uncertainty
and imprecision on the system under investigation providing a powerful tool for
risk analysis which allows better decision making under uncertainty. Simulation
method can be used to e.g. identify problems before implementation, evaluate
ideas and identify inefficiencies, understand why observed events occur.

The use of simulation methods for system reliability has many attractive fea-
tures. Generally, it can be used for the sensitivity analysis of multi-criteria decision
model [13], optimize models with rare events [14] and perform multi-attribute de-
cision making [15]. Most of the current simulation methods are based on Monte
Carlo simulation and structure function. By generating the state evolution of each
component, the structure function is computed to determine the state of the sys-
tem. The structure function is in a boolean format and can only be used to identify
a specific output of the system. More structure functions can be used to match
all the possible status of the system at the cost of increasing the complexity of the
analysis (see e.g. [16]). Several methods are available for the reliability analysis
of complex system based on structural function (see e.g. [17, 4, 18]). However, we
envisage a scenario, particularly for large systems, where the full system structure
information (or structure function, min paths sets etc.) is not available but only
the survival signature that represents a summary of the structure function. In
particular, for very large scale systems and networks, storing only the survival
signature and not the entire structure function is clearly advantageous.

In this paper, we will show that the survival signature is sufficient for basic
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reliability inferences (e.g. determining the system reliability function) which can be
used for further inferences and decision support. Efficient simulation approaches
are proposed to estimate the reliability of systems based on survival signature. The
method is particularly useful when the probability term of the survival function (as
shown later in the Eq. 2 representing the probability of the components working
at specific time), cannot easily be derived analytically but the failure times for the
exchangeable components can nevertheless be sampled through simulation.

The proposed simulation approaches are generally applicable to any system
configuration. In addition, it allows to consider different representation of the un-
certainties including system multi-state components (i.e. repairable components).
The numerical implementation of the proposed approaches is based on two open
source packages: the R package “ReliabilityTheory” [19, 20] adopted to calculate
the survival signature and OpenCossan [21, 22] a Matlab toolbox for uncertainty
quantification and reliability analysis used to simulate the system evolution. The
applicability and efficiency of the proposed approaches are demonstrated by solv-
ing numerical examples.

This paper is organized as follows. Section 2 presents a brief overview of the
survival signature and the related system survival function. Survival signature-
based simulation methods for system reliability are presented in Section 3. In
Section 4, the applicability and performance of the proposed approaches is shown
by analysing four numerical examples. Finally Section 5 closes the paper with
conclusions.

2. Survival Signature

Suppose there is one system consisting of m components. Let the state vector
of components be x = (z1, 22, ..., Tm) € {0,1}" with x; = 1 if the ith component
is in working state and z; = 0 if not. ¢ = ¢(z) : {0,1}™ — {0,1} defines the
system structure function, i.e., the system status based on all possible z. ¢ is 1 if
the system functions for state vector z and 0 if not.

Now consider a system with K > 2 types of M components, with my, indicating
the number of components of each type and Zszl myg = M. It is assumed that the
failure times of the components of the same type are independently and identically
distributed (7id) or exchangeable. Note that this is usually understood as implying
that the components are ‘exchangeable’, e.g. produced by the same manufacturer.
However, the assumed exchangeability of their failure times also implies a similarity
of the tasks the components of the same type perform in the system, e.g. if similar
components function at different stress levels their failure time distributions are
likely not to be the same and hence for the reliability analysis using the survival

signature such components would be considered to be of different types. The
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components of the same type can be grouped together because of the random
ordering of the components in the state vector, which leads to a state vector can be
written as z = (z',2?, ..., z), with z¥ = («},25, ..., 2k, ) representing the states
of the components of type k. Coolen and Coolen-Mature [5] introduced the survival
signature for such a system, denoted by ®(l1,1s, ...,lx), with I = 0,1, ...,my, for
k =1,2,..., K, which is defined to be the probability that the system functions
given that lj of its my components of type k work, for each k € {1,2,...,K}.
There are (’7:) state vectors z* with precisely [, components z¥ equal to 1, so
with 7% xf =1l (k=1,2,.,K), and S}, 1,.....1, denote the set of all state
vectors for the whole system.

Assume that the random failure times of components of the different types are
fully independent, and in addition the components are exchangeable within the

same component types, then the survival signature is equal to:

K -1

m

O(l, ..., i) = [H <zk> ] < Y @), (1)
k=1 k TESI g,

where Ci(t) € {0,1,...,my} is the number of k components working at time ¢. The

survival function of the system with K types of components can be expressed as
[5]:

mq mg K
P(Ts>t) =Y .. Y (.. 1) P(({Ck(t) = Ix}) (2)
l1=0 Ix=0 k=1
If one can assume that the components of the same type have a known CDF, Fj(t)
for type k, and that the failure times of different component types are independent,

then these expressions are simplified using [5]:

K K K m
PG = 1)) = T] PCl) = 1) = ( ) FL (™ [ — F(6)]
k=1 k=1 k=1 (3)

Equation (2) separates the structure of the system from the failure time distri-
bution of its components, which is the main advantage of the survival signature,
which it shares with the system signature. The survival signature only needs to
be calculated once for any system, which is similar to the system signature for
systems with only single type of components. The survival signature is closely
related with system signature. For a special case of a system with only one type
(K = 1) of components, the survival signature and the system signature [3] are

directly linked to each other through a simple equation, however, the latter cannot
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be easily generalized for systems with multiple types (K > 2) of components [5].

This implies that all attractive properties of the system signature also hold
for the method using the survival signature. The survival signature is easy to
apply for systems with multiple types of components, and one could argue it
is much easier to interpret than the system signature. In addition, the quite
simple survival signature (in particular for large systems with only relatively few
different component types) and its monotonicity for coherent systems provide clear
advantages to work towards approximations of the system reliability metrics. This
does not limit the applicability of the survival signature to non-coherent systems
(for example, electric distribution network or part of the electronic equipment
of safety features). In such cases, the analysis of system with imprecision in the
component failure time requires a full “double loop” approach as detailed in Section
3.4.

3. Simulation Methods

Exact analytical solution can be obtained from Eq. 2 and Eq. 3. However,
analytical solutions are restricted to particular cases (e.g. system with component
failure time following exponential distribution and not repairable components).
Instead, simulation methods can be applied to study and analyse any systems
without introducing simplifications or unjustified assumptions.

The survival signature presented in the previous section can be adopted in a
Monte Carlo based simulation method to estimate the system reliability in a simple
and efficient way. A possible system evolution is simulated by generating random
events (i.e. the random transition such as failure times of the system components)
and then estimating the status of the system based on the survival signature
(Equation 3). Then, counting the occurrence number of a specific condition (e.g.
counting how many times the system is in working status), it is possible to estimate
the reliability of the system. In this section, three Monte Carlo simulation methods
adopting the survival signature are presented. The Algorithms 1 and 2 are used to
estimate the reliability of non-repairable systems while Algorithm 3 can be applied
for repairable systems and multi-state components as well.

3.1. Algorithm 1

The first simulation method is based on the realizations of failure events of the
system’s components. For each failure event the status of the system is generated
based on the probability that the system is working knowing that a specific number
of components are working. Such probability is given by the survival signature
as defined in Equation (1). The survival signature is computed only once before
starting the Monte Carlo simulation for instance using the approach presented in

[10]. Suppose there is a system with C' components, K component types and my
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components of type k. Hence, C' = Zszl my. We assume that components of type
k have the same failure time distribution and that there is no repair opportunity
for the components. The reliability of the system can be estimated adopting the

following procedure:

Step 0. Initialise variables and counters (i.e. Vr);

Step 1. Sample the failure times for each component, f;, for i = 1,2,...,C. The
failure time of a component of type k is obtained by sampling from the
corresponding CDF Fy;

Step 2. Order the sequence of failure times t; < t;,11 fori =1,2,..., M. Hence, t;
represents the first failure of a system component, t; represents the second
failure and so on;

Step 3. At each failure time, it is easy to calculate the number of components
working for each component type: C(t;);

Step 4. Evaluate the survival signature which applies immediately after the cor-
responding failure indicated as ®;, = ®(Cy(¢;), Ca(ts), ..., Cr(t:));

Step 5. Drawn from a Bernoulli distribution with probability 1 — ®,, the system
status X at time tq, if X; = 1 the system fails;

Step 6. If the system does not fail at t;, then consider t5. The probability that
the system functions at time t5 is Py, /P;, = g2, given that it has survived
at time ¢;. So the system failure at time t5, X5, is drawn from a Bernoulli
distribution with the probability 1 — ¢o;

Step 7. Repeat Step 6 to process other failure times: Set i =4+ 1 .

Step 8. Store the status of the system over the time, as follows: Vr(j) = Vr(j) +
1 Vj:j-dt <ty where ty is the system failure time and dt represents
the discretisation time.

The above procedure is repeated for N samples and the estimate of the survival
function is obtained by averaging the vector collecting the status of the system
over the number samples: P(Ts > t) = VTT(”

This method simulates one system failure time in each run (Steps 1-7). It
should be noted that with the assumption that the system fails if no component
functions, this implies that there is an i*, less than or equal to C, such that ¢;« = 0.
Hence the system fails certainly at this ¢;« if it has not failed before.

A pseudo-algorithms of the simulation method is shown in Algorithm 1.

3.2. Algorithm 2

It is possible to estimate the system reliability without the necessity to sample

the system status at each component failure time. The idea is to interpret the

survival signature as a normalised “production capability” of the system defined
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by the Equation (1). For instance, if all the components are working, the system
output is 1. If all components are in failure status, the system output is 0. Hence,
instead of sampling the system state at each failure time, the survival signature is
evaluated to collect the “production level of the system”, i.e. the survival signature
is evaluated immediately after each sampled component failure time and collected
in proper counters. This can be obtained adopting the Algorithm 2 derived from
the approach proposed by one of the authors used to estimated the production
availability of an offshore installation requiring the derivation of the complete
status of the system (based on the structural function and cut-sets) [16]. Here,
a novel algorithm is proposed to estimate the reliability adopting the survival
signature and hence avoiding the tedious calculation of all the system status.

The reliability of the system can be estimated modifying the Steps 5-7 of the
Algorithm 1 as follows:

Step 5’. Compute the production level of the system by evaluating the survival
signature at each time of interest ®;,. The probability that the system
survives time t; is @y, ;

Step 6’. Collect the value of the survival signature in the vector Vr representing
the survival function as follows: Vr(j) = Vr(j) + P, Vj :j-dt <,
where dt represents the discretization time.

The above procedure is repeated for N samples and the reliability of the system is
computed by averaging the values of the survival signature: P(T > t) ~ %Vr(t).
The uses of the survival signature makes this approach extremely efficient since
it does not require to sample the system output at each component transition
time (i.e. component failures). For each Monte Carlo simulation, this method
generates a random grid of time points at which to evaluate the survival signature
representing the survival probability of the system at those times. Finally, the
survival function is obtained by directly averaging the survival signature over the
time.

A pseudo-algorithms of the simulation method for non-repairable components
is shown in Algorithm 2 and the flow chart of the simulation methods proposed
for estimate the reliability of non-repairable systems is shown in Figure la.

Algorithm 2 follows the productivity idea, which gives each run a possible
survival function while Algorithm 1 gives a single system failure time in each
run. Therefore, Algorithm 1 is useful for inference where one explicitly wants the
simulated system failure times, whilst Algorithm 2 is efficient for inference on the
system survival function.

It can be shown that the variance of the survival function estimator at each
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Sample system status Update

Update
Bernoulli distribution component status C,

component status Cy
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for component j: Vt(j)

System Process next time Yes
working? i=i+1

No

Collect system status
(1s from 0 to ¢;)

Yes

is t, smaller than
the mission time?

Yes  Pprocess next Yes Process next
sample sample

Compute survival function Compute the survival function

(a) Flow Chart of the Algorithms 1-2. (b) Flow Chart of the Algorithm 3.

Figure 1: Flow Chart of the proposed algorithms.

time of interest obeys to the following formula [23]:

Var[Vr(t)] ~ % (vr2(t) - vT(t)Q) (4)

where N represents the number of samples and Vr2(¢) the mean of the square
values of the survival function at time ¢ and Vr(t)" the square of the mean values
of the survival function at time ¢. Also, in Equation (4) it is common to substi-
tute N — 1 in place of IV although the correction is negligible because N > 1.
The Algorithm 2 tends to lead to better estimates of the system reliability when
compared to Algorithm 1, as detailed in Section 4.1 and shown in Figure 5.

3.3. Algorithm 3

Algorithm 2 can easily be extended to analysing systems with multi-state com-
ponents such as repairable systems. Assume that there are ji possible transitions
for the components of type k. The probability of going from state s = [ to state
s' = m in given by prim = Pr(Xy = m | X =1). Let Fiy = ), Pr(X =m |
X, =1) = Pr(- | Xx =;) represents the CDF of the component of type k to exit
from its state [, i.e. to undergo a transition leading to a state m # [.

Let assume for the moment that there is only one possible transition to exit
from the state s = [. For instance, a component in working status s = 1 can fail and
entering in the state s’ = 2; the component in the state s = 2 can only be repaired
and returning in the status s’ = 1. Hence, pgo1 = Pr(Xy =2 | X = 1) = pio
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represents the probability of failure for component k, pr12 = pg1 the probability
of repair. The Monte Carlo simulation is performed as follows.

Step 0. Initialise variables (i.e. t,;q = 0) and counters (i.e. Vi);

Step 1. Sample the transition times ¢; for ¢ = 1,2,...,C for each component
of the system from the corresponding CDF, F};, and stored in a vector
Vit ={t1,ta,...,tar}, set tog = 0;

Step 2. Identify the first transition time, i.e. min(Vt) and the corresponding
component z. Hence, t; represents the first transition of the system, ¢5
the second transition and so on;

Step 3. At each transition time ¢;, calculate the number of components in work-
ing status (i.e. C, = (C1,Ca,...,Ck)). The corresponding “production
level” ®,, is obtained by evaluating the survival signature for the number
of components in working status;

Step 4. Collect the value of the survival signature at time ¢;, ®;,, in a counter Vr
representing the survival function as follows: Vr(j) = Vr(j) + &, Vj:
torg < j-dt <min(Vt).

Step 5. Set toq = min(Vt) and sample the new status of the component z from

the probability mass function P(s =m) = Fiim i),

Fr(t:) '
Step 6. Update the vector of transition time V¢ by sampling the next transition

time ¢, of the component z of type k in status m from Fy,,. Hence:
Vi(z) =t. +t.;
Step 7. If min(Vt) < Tg (i.e. the final time), return to point 2.

The above steps are repeated for N samples and the survival function obtained by
averaging the vector Vr over the number of samples. The flow chart of the pro-
posed algorithm is shown in Figure 1b and the pseudo-code is shown in Algorithm
3.
3.4. Reliability analysis of systems with imprecision

Reliability analysis of complex systems requires the probabilistic characteri-
zation of all the possible component transitions. This usually requires a large
data-set that is not always available. In fact, it might not be possible to unequiv-
ocally characterize some component transitions due to lack of data or ambiguity.
To avoid the inclusion of subjective knowledge or experts opinions, the impre-
cision and vagueness of the data can be treated by using concepts of imprecise
probabilities.

Imprecise probability combines probabilistic and set theoretical components
in a unified construct (see e.g. [24, 25, 26]). It allows a rational treatment of
the information of possibly different forms without ignoring significant informa-

tion, and without introducing unwarranted assumptions. For instance, if only few

10
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data points are available it might be difficult to identify the parameters and the
form of a distribution [27]. An unknown value of a (deterministic) parameter is
often modelled using a uniform distribution based on the principle of maximum
entropy should be model as interval and not as distribution [28, 29]. In the analy-
sis, imprecise probabilities combine, without mixing, randomness and imprecision.
Randomness and imprecisions are considered simultaneously but viewed separately
at any time during the analysis and in the results. The probabilistic analysis is
carried out conditional on the elements from the sets, which leads eventually to
sets of probabilistic results, see e.g. [30, 31, 32, 33]).

Considering the imprecision in the component parameters will lead to bounds
of survival function of the systems and it can therefore be seen as a conservative
analysis, in the sense that it does not make any additional hypothesis with regard
to the available information. In some instances analytical methods will not be ap-
propriate means to analyse a system. Again, simulation methods based on survival
signature can be adopted to study systems considering parameter imprecision. A
naive approach consists in adopting a double loop sampling where the outer loop
is used to sample realization in the epistemic space. In other words, each real-
ization in the epistemic space defines a new probabilistic model that needs to be
solved adopting the simulation methods proposed above. Then the envelop of the
system reliability is identified. However, since almost all the systems are coherent
(system is coherent if each component is relevant, and the structure function is
non decreasing), it is only necessary to compute the system reliability twice, using
the lower and upper bounds for all the parameters, respectively. As shown in Refs.
[7] and [9] assuming the components can not be repaired or replaced, the lower

bound of the survival function can be computed as follows:

K
Sp,(t) = P(Ts > 1) = Z Z (IR Hbck =) (5

11=0 lx=0

where C(t) denotes the number of k components working at time ¢, and
D(Ci(t) = lx) = P(Ci(t) < lx) = P(Cy(t) < lp = 1). (6)

While the corresponding upper bound of the survival function is:

mq mi K
Sre(t)=P(Ts>t)=> .Y O, ..Ix) [[ D(Ci(t) = Ir) (7)
11=0 1,=0 k:l

11
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Figure 2: Bridge system with two types of components. The numbers inside the boxes indicate
the component type. The numbers above the boxes indicate the component indices.

Table 1: Survival signature of the bridge system of Figure 2

R
12, 3] 0
] 0
2 1/9
3 1/3
2
3

~
—-

l

O O

[0,1
52] [ 1

)

4/9
2/3
[0,1,2,3] 1

W= =TT O

where
D(C(t) = lx) = P(C(t) <) — P(Cr(t) <1 — 1). (8)

4. Numerical Examples

4.1. Bridge system with not repairable components

The purpose of this numerical example is to verify the proposed algorithms
since for this simple problem analytical solutions are available. The system con-
figuration is represented in Figure 2 , K = 1,2. The bridge system comprises of
six components, which belonging to two types. It has no series section or parallel
section which can enable simplification. The survival signature can easily be com-
puted either manually or using the R-package ReliabilityTheory [19]. The values of
the survival signature are reported in Table 1 where [; and [l indicate the number
of working component of type k = 1 and k = 2, respectively and ®(ly,l5) is the
survival signature of the bridge system. In this example the failure times of both
component type 1 and 2 are obeying to exponential distributions with parameters
A1 = 0.8 and Ay = 1.5, respectively, i.e. the components have a constant mean
time to fail. It is also assumed that the component once failed can not be repaired.

The survival function of the bridge system is then calculated by means of the

Algorithms 1 and 2. The resulting functions are then compared with the analytical

12



335

340

345

350

Bridge System
T T
Analytical Solution
+ Algorithm 1 8
©  Algorithm 2

o
©
T

Reliability
o o o o o o
© IS o Y N o
T T T T T T
I I I I I I

o
N
T
1

o
T
1

Time

Figure 3: Survival function of the bridge system calculated by two simulation methods and
analytical method, respectively.

solution. The survival function can be obtained from Equations (3) and (2):

P(Ts > t) = 23: 23: o(ly, 1 )<3>[1 0813k =081y
s SEAVE e e

11=01>=0

(3 - oo ®

The results of the reliability analysis are shown in Figure 3, which shows a perfect
agreement of the simulation methods with the analytical solution. The Monte
Carlo simulation has been performed using N = 5000 samples and a discretisation
time dt = 0.0015. The discretization time is only required to collect the numerical
results (i.e. survival function) although the simulation of the system is continuous
with respect to the time. Figure 4 shows an example of system evolution as a
function of time with associate number of working component Cj. In order to
show the efficiency of the proposed algorithm, the evolution of the variance of
the estimators as a function of number of samples has been computed and shown
in Figure 5. Algorithm 2 shows a smaller variance compared to Algorithm 1, in
particular when small sample sizes are used.

The bridge system is also analysed in presence of imprecision on the parameters
of the failure distribution time. In this case it is assumed that the parameters of
the component failure time are not known precisely. The bounds of the parameter
distributions are A\; = [0.4, 1.2] and Mg = [1.3, 2.1]. The bounds of the survival
functions are computed by means of the Algorithms 1 and 2. Since this system
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Figure 5: Variance of the estimator of the survival function.

is a coherent system, only two numerical simulations are required, i.e. the lower
bound of the survival function is computed using the lower bounds of the param-
eter distribution and the upper bound is obtained adopting the upper bounds of
the paramters A\; and As. The results are then compared to the analytical solution
adopting the method presented in [9]. The results of the simulation have been fur-
ther verified by estimating the survival function adopting a double loop approach.
The double loop sampling involves two layers of sampling: the outer loop, called
the parameter loop, samples values from the set of distribution parameters; while
the inner loop computes the survival function stating for the system knowing the
precise probability distribution functions. Then, the lower and upper bounds of
the survival function have been computed at each time of interest. The double

loop Monte Carlo analysis has been performed using N = 5000 samples for the
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Figure 6: Bounds of the survival function of the bridge system calculated by means of the Algo-
rithm 1 and 2 using bounds of the distribution parameter (Simulation Extreme) and compared
with analytical solutions and the double loop approach.

inner loop and 1000 samples for the parameter loop. The results are collected in
a counter using a discretisation time step dt = 0.0015.

The results of the simulation considering imprecision are reported in Figure 6
showing a perfect agreement with the analytical solutions.
4.2. Bridge system with repairable components

In this example the components of the bridge system shown in Figure 2 are
considered repairable. Hence, the components can be in two different states: work-
ing (s = 1) and not-working (s = 2). Two cases are analysed considering different
distributions for the repair times as shown in Table 2.  Analytical solutions are

Table 2: Parameters of repairable components in the bridge system. State 1: Working, State 2:
Not-working.

C. type (k) Transition (s)  Distribution Parameters
CASE A

1 1—2 Exponential () (0.8)

1 21 Weibull (scale,shape) (0.9, 1.2)

2 1—2 Exponential () (1.5)

2 21 Weibull (scale,shape) (1.3, 1.8)
CASE B

1 1—2 Exponential () (0.8)

1 21 Uniform (min,max) (0.2, 0.6)

2 1—2 Exponential (X) (1.5)

2 21 Uniform (min,max) (0.1, 0.2)

not available for analysing repairable systems and the system can only be analysed
by adopting simulation methods such as the Algorithm 3. The estimated survival
function P(Ts > t) is shown in Figures 8 and 10 for the CASE A and B, respec-
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tively. An example of the evolution of the system is represented in Figure 7. The
survival function reach a stationary level that depends on the ratio between the

mean failure time and mean repair time.
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Figure 7: Realization of the number of working component C} as a function of time.
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Figure 8: CASE A: Survival function of the bridge system with repairable components calculated
by means of the Algorithm 3 and a simulation method based on structure function.

It is important to notice that the proposed approach (Algorithm 3) does not
require the introduction of additional component types to analyse a system with
repairable components. In order to verify the correctness of Algorithm 3 which
is based on survival signature, the results have been compared with the solution
of simulation method based on the structural function. The minimum path sets
of the Bridge system shown in Figure 2 are [1,2,3], [1,2,5,6], [1,3,4,5] and [1,4,6].
N = 5000 samples have been used to estimate the reliability of the system and the
results shown in Figures 8 and 10 are in perfect agreement with the results obtained

using Algorithm 3. Figures 9 and 11 compare the variance of the estimator as a
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Figure 10: CASE B: Survival function of the bridge system with repairable components calculated
by means of the Algorithm 3 and a simulation method based on structure function.

function of the number of samples adopting the Algorithm 3 based on survival
signature and Monte Carlo method based on structural function.
4.3. Grey System

In order to illustrate the efficiency and the applicability of the proposed sim-
ulation approaches a complex system composed by 8 components of 5 types is
analysed. The component failure types and distribution parameters are shown in
Table 3, again affected by imprecision. In addition, it is assumed that the exact
configuration of part of the system is unknown as shown in Figure 12, i.e. it might
be composed by an additional component of type 1 or two components of type 2
connected in parallel. However, the system can still be described using the sur-
vival signature although affected by imprecision [6]. This has the advantages of

more realistic reflections of uncertainty on system functioning and the proposed
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Figure 11: CASE B: Variance of the estimator with repairable components calculated by means
of the Algorithm 3 and a simulation method based on structure function.
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Figure 12: Grey system composed by eight components of 5 types with imprecision of the exact
system configuration.

simulation methods are also directly applicable . Table B.7 shows the imprecise
structural signature. For instance, if 2 components of type 1 and 1 component of
type 3 are working the system can be either in a failing state or working with a
probability of 0.5 (if the unknown part of the system is composed by an additional
component of type 1). Since the system in Figure 12 is a coherent system, Al-
gorithm 2 is used to estimated the bounds of the survival function by collecting
the bound values (i.e. intervals) of the survival signature during the Monte Carlo
simulation. In other words, the failure times of the components are sampled using
the bounds of the failure time distribution as shown in the previous Section. In
addition, in the Step 5’ of Algorithm 2, the values of the survival signatures @y,
and ®;, are evaluated and in the Step 6’ their values collected in two counters
Vr(t) = Vr(t)+®;, and Vr(j) = Vr(j) + @4, Vj : j-dt < t;. Hence, no additional

Monte Carlo simulation are required to estimate the bounds of the survival func-

tion (the system reliability). If the component failure times are not affected by
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Table 3: Components failure types and distribution parameters for system of Fig.12

Component type  Distribution Parameters
1 Weibull (scale,shape) ([1.6, 1.8],[3.3, 3.9])
2 Exponential () ([2.1, 2.5])
3 Weibull (scale,shape)  ([3.1, 3.3],[2.3, 2.7])
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0.8 +,7X X Upper Bound |
T *x
z06 | X ]
3 ++ X
S X
&) 0.4 ++ X b
+ X
02} ++->+<-_>f.x 1
+
0 ‘ ‘ ‘ i STV
0 02 04 0.6 0.8 1 1.2
Time

Figure 13: Upper and lower bounds of survival function for the system in Fig 12.

imprecision, only one Monte Carlo simulation would have been required to analyse
the system with imprecision in the survival signature. In principle, Algorithm 1
can also be used for the estimation of the reliability bounds although it requires
some modifications in the sampling of the system status.

The upper and lower bounds of survival function for the system with impreci-
sion both in the survival signature and on the component distribution parameters
are shown in Figure 13. The simulations have been performed using 5000 sam-
ples. This example shows the flexibility and the applicability of the simulation
approaches proposed for the analysing of a systems affected by imprecision where
no analytical solutions are available.

4.4. Complex System

In order to illustrate the efficiency and the applicability of the proposed simu-
lation approaches, a complex system composed by 14 repairable components of 6
different types is analysed. The reliability block diagram of the system is shown
in Figure 14 and the parameters of the components are reported in Table 4. The
survival signature of this system can be referred in Appendix B.

First, the system is analysed without considering the repairs (i.e. transition
2 — 1 is not allowed). Hence, the reliability of the system can be estimated
adopting the proposed Algorithms 1 and 2. The results are shown in Figure 15
and Figure 16 for the case of non-repairable components with precise parameters
and with imprecise parameters, respectively.

In case of repairable components or component with more than 1 allowed tran-
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Figure 14: Reliability block diagram of the 16 component system.
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Figure 15: Survival function of the complex system calculated by Algorithms 1 and 2 and com-
pared with analytical solution

sition, Algorithm 3 needs to be used. The proposed approach is generally applica-
ble and allows to estimate the reliability of complex system based on the survival
function. Figure 17 shows the survival function for the case of repairable compo-
nents. The black line shows the results when the parameters of the failure and
repair distributions are precisely known.

When imprecisions are considered within repairable system, the bounds of the
survival function can be estimated by means of only two simulations as shown in
Figure 6. These analyses require the calculation of the cumulative distribution
function (CDF) bounds for component failure and repair, which are expressed as
[F, F] and [R, R] respectively. Then, the lower bound of the survival function
is estimated by considering the upper bound of the failure distributions and the
lower bound for the repair distributions (F, R) while the upper bound is obtained
adopting the lower bound for the failure distribution and the upper bound for the
repair distribution (F, R). The interval of the survival function can be seen in

Figure 17.
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Figure 17: Survival function of the repairable complex system with imprecise and precise param-
eters, respectively.
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Table 4: Components failure (transition 1 — 2) and repair (transition 2 — 1) data for each
component type of the complex system.

Component Transition Distribution Precise Imprecise

type (k) (s) parameters — parameters

1 1—2 Exponential  (2.3) ([2.1, 2.5])
(A)

1 2—-1 Uniform (0.4, 0.6) ([0.3,0.5], [0.5,0.7])
(min,max)

2 1—2 Exponential (1.2) ([0.9, 1.4])
()

2 251 Uniform (0.9,1.1)  ([0.8,1.0],[1.0,1.2))
(min,max)

3 12 Weibull (1.7,3.6)  ([1.6, 1.8],[3.3,3.9])
(scale,shape)

3 251 Uniform (0.6,0.8)  ([0.5,0.7],[0.7,0.9])

4 1—2 Lognormal (1.5, 2.6) ([1.3,1.8],[2.3,2.9])
(1, 0)

4 251 Uniform (1.0,1.2) (0.9, 1.1], [1.1,1.3])
(min,max)

5 152 Weibull (3.2,25)  ([3.1,3.3],[2.3,2.7)
(scale,shape)

5 251 Uniform (1.2,1.4)  ([1.1,1.3],[1.3,1.5])
(min,max)

6 12 Gamma (3.1,15)  ([2.9,3.3],[1.3,1.8])
(scale,shape)

6 251 Uniform (1.1,1.3)  ([1.0,1.2],[1.2,1.4))
(min,max)

In terms of computational effort of the analysis, the calculation of the survival
signature of the complex system using the R-package ReliabilityTheory requires
only a few seconds on a common desktop computer.

The performance for very large numbers of components is an important topic
for future research where it is important to separate computation of survival sig-
nature from the simulation of the system. The first part can already be done
for quite substantial systems using the approach proposed in [10, 34] but which
remains also a topic for research. The simulation of the system given the survival
signature is almost independent on the number of components. In fact, the only
parts of the simulation approach that scale with the number of components are
the Steps 1 and 2 of the algorithm. In these steps the failure time of components
is sampled and then sorted. However, the computational cost of this part is negli-
gible (fraction of seconds) up to million of components as shown in Figure 18. The

figure shows the computational cost of sampling the failure time of components
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Figure 18: Scalability of the simulation algorithm with respect the number of components (Steps
1 and 2 only).

from exponential distribution (Step 1 of the Algorithm) and then sorting all the
sampled times (Step 2). Steps 3-7 depend on the reliability of the components
and the time of interest (T) and scale linearly with the number of failures oc-
curring before the time of interest. Clearly the total simulation time depends on
the number of samples used. For the examples presented, the proposed simulation
methods allow to estimate the survival function in less than 20 seconds using 5000

samples on a common desktop.
5. Conclusions

The survival signature has been shown to be a practical method for performing
reliability analysis of complex systems with multiple component types. However,
analytical methods are applicable only in few cases or adopting different levels of
simplifications and assumptions.

In this paper, efficient simulation methods have been proposed for system relia-
bility analysis. The methods proposed are based on survival signature, which need
to be computed only once making the analysis very efficient. The proposed simula-
tion methods are generally applicable and they can be used to analyse realistic and
complex systems with non-repairable and repairable components. Recently, a case
has been made for allowing the structure function for system reliability to be a,
possibly imprecise, probability instead of a deterministic binary function [6]. This
has advantages of more realistic reflections of uncertainty on system functioning
and opens many interesting research questions. Such more general probabilistic

structure functions can also be used in the survival signature in a straightforward
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manner, hence the simulation methods presented in this paper can also directly
be applied.

The feasibility and effectiveness of the presented approaches have been illus-
trated with two numerical examples, the results indicate that simulation methods
based on survival signature are efficient for analysing reliability on complex sys-

tems.
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Appendix A. Algorithms

The Algorithms 1-3 of the proposed methods are shown in this appendix. In the Algorithms
the letter V is used to represent vectors while the letter M represents matrices. The symbol ~
is used represents sampling from given distribution.

Appendix B. Survival Signature

The tables in this appendix show the survival signature of the complex system of Figure 14.
The rows with survival signature values equal to either 1 or 0 have been omitted.
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Algorithm 1

Require: N: Num. of simulations; di: Discretisation time; Fj: CDF failure

times, Ve = [my, ma,...,mg]: Number of components per type; Nt number of
discretisation steps,
Set Vr(1:Nt)=0 > Initialise counter
Set C=sum(Vc) > Compute total number of components
Set & = Survival signature > Compute the survival signature
forn=1:N do > loop over number of samples
for k=1:K do > loop over number of component type
for j=1:my do > loop over number of components
Mf(j, k) ~ Fy > Sample failure time component j of type k
end for
end for
[Vit,Vi] = sort(Mf) > Reorder transition times (V)
> Return component index vector (Vi)
Do =1 > Initialize variables
for m=1:C do > loop over number of components
Ve(Vi(m)) = Ve(Vi(m))—1 > Update number working components
(bNow = @(VC)
q 4 Prow/Pora
if rand(1) < g then > system working
Porg = Prew
else
for all j:j-dt < Vi(m) do
Vr(m)=Vr(m)+1 > Update counter
end for
Break > Process next sample
end if
end for
Vr=Vr/N > Normalise counter
end for
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Algorithm 2

Require: N: Num. of simulations; dt: Discretisation time; Fj: CDF failure

times, Ve = [mq1,ma,...,mg]: Number of components per type; Nt number of
discretisation steps,
Set Vr(1:Nt)=0 > Initialise counter
Set C=sum(Vc) > Compute total number of components
Set & = Survival signature > Compute the survival signature
forn=1:N do > loop over number of samples
for k=1: K do > loop over number of component type
for j =1:my do > loop over number of components
Mf(j, k) ~ Fy > Sample failure time component j of type k
end for
end for
[Vt,Vi] = sort(Mf) > Reorder transition times (V)
> Return component index vector (V4)
z=1 > Initialize index
for m=1:C do > loop over number of components

Ve(Vi(m)) =Ve(Vi(m)) —1 > Update number working components
while z - dt < Vit(m) do

Vr(z) =Vr(z)+ ®(Vc) > Update counter
z=2z+1 > Update index
end while
end for
Vr=Vr/N > Normalise counter

end for
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Algorithm 3

Require: N: Num. of simulations; dt: Discretisation time; Fj: CDF failure

times, Ve = [my, ma,...,mg]: Number of components per type; Nt number of
discretisation steps,
Set Vr(1:Nt)=0 > Initialise counter
Set C=sum(Vc) > Compute total number of components
Set & = Survival signature > Compute the survival signature
Set Vs = Initial component Status > System initial conditions
forn=1:N do > loop over number of samples
fori=1:C do > loop over number of components
Vit(i) ~ Fx; > Sample transition time component z of type k in state I
end for
u=1 > Initialise counter
while min(Vt) < Nt *dt do
[tz, z] = min(Vt) > Identify first system transition ¢z

> and corresponding component index z
Identify component type k of the component z
while v - dt <Vj do

Vr(u) =Vr(u) + ®(VE) > Update counter
u+—u+1 > Update index
end while
if Vs(z) is working then
Ve(k) =Ve(k) —1 > Update component counter
Set V's(z) NOT working > Update component status
else
Ve(lk) =Velk)+1 > Update component counter
Set Vs(z) working > Update component status
end if
Set Vit(z) ~ Fy > Sample new transition time component z
> of type k in the state | = Vj(z)
end while
end for
Vr=Vr/N > Normalise counter
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Table B.5: Survival signature of a complex system in Figure 14; rows with ®(11,12,13,14,15,l6) =
0 and ®(l1,l2,13,14,15,l6) = 1 are omitted

o~
[

®(117 127137 l4; 157 lﬁ)

o~
w

Iy Iy ls lg

3 1 0 0.1 01 1 1/20
3 1 0 1 1 0 1/20
3 1 1 0 01 1 1/20
3 1 1 1 0 1 1/20
3 1 2 01 0 1 1/20
3 1 2 0 1 0 1/20
3 1 1 01 1 1 1/10
3 1 1 1 1 0 1/10
3 1 2 0 1 1 1/10
3 1 2 1 1 01  1/10
3 2 0 0 01 1 1/10
3 2 0 1 0 1 1/10
3 2 0 1 1 01  1/10
3 2 1 01 0 1 1/10
3 2 1 0 1 0 1/10
3 2 2 01 0 1 1/10
3 2 2 0 1 0 1/10
3 3 0 01 01 1 3/20
3 3 0 1 1 0 3/20
3 3 12 01 0 1 3/20
3 3 1 0 1 0 3/20
3 3 2 0 1 0 3/20
3 4 0 01 01 1 1/5

3 4 0 1 1 0 1/5

3 4 12 01 0 1 1/5

3 4 1 0 1 0 1/5

3 4 2 0 1 0 1/5

4 1 0 01 01 1 1/5
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Table B.6: Survival signature of a complex system in Figure 14; rows with ®(l1,12,13,14,15,1¢)

0 and ®(l1,l2,13,14,15,l6) = 1 are omitted

lg D(ly,1a,13,14,15,16)

I3 Ix

ly

L

1/5
1/5
1/5
1/5
4/15
4/15

— —
S N e e i
N )
o+ N

4/15
11/30
11/30

0
1
1

1
[0,1]
0

[0,1,2]

11/30

(0,1]

11/30
11/30
2/5
2/5
2/5

1

2/5
2/5
2/5
2/5
2/5
2/5
1/2
1/2
1/2
1/2

111111@101

- = = =
S S R S R S R S N -
NN N
NHAaN LT o o~

— MMM M

=

1/2
1/2
1/2

(0,1]

[0,1]
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Table B.7: Imprecise survival signature of the system of Fig.12, ¢(l1,12,13) = 0 and ¢(l1,12,03) =
1 for both lower and upper bounds are omitted.

l ly ls [P(l1,12,13)]
1 1 1 [1/3,1/8]
1 1 2 [1/4,1/4]
1 2 1 [1/5,1/4]
1 2 2 3/7,1/2]
1 3 1 [1/4,3/8]
1 3 2 [1/2,1/2]
1 4 1 [1/4,1/2]
1 4 2 [1/2,1/2]
2 0 1 [0,1/2]

2 0 2 [0,1]

2 1 1 [1/4,3/4]
2 1 2 [1/2,1]

2 2 1 [1/2,1]

2 3 1 3/4,1]

Table B.8: Survival signature of a complex system in Figure 14; rows with ®(11,12,13,14,15,l6) =
0 and ®(l1,l2,13,14,15,l6) = 1 are omitted

Iy Iy I3 s 5 ls O(Iy, la, I3, Iy, 15, L)
5 1 12 [01 0 1 1/2
5 1 1 0 1 0 1/2
5 1 2 0 1 0 1/2
4 4 0 01 01 1 3/5
4 4 0 1 1 0 3/5
4 4 1,2 [01 0 1 3/5
4 4 1 0 1 0 3/5
4 4 2 0 1 0 3/5
4 2 12l [01] 1 1 2/3
4 2 1 1 1 0 2/3
4 2 2 1 1 0 2/3
4 3 1,2 [01] 1 1 4/5
4 3 1 1 1 0 4/5
4 3 2 1 1 0 4/5
4 4 12l [01] 1 1 4/5
4 4 1 1 1 0 4/5
4 4 2 1 1 0 4/5
5 2 0 01 01 1 5/6
5 2 0 1 1 0 5/6
5 2 12l [01 0 1 5/6
5 2 12 0 1 0 5/6
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