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Abstract

The concept of the survival signature has recently attracted increasing attention
for performing reliability analysis on systems with multiple types of components.
It opens a new pathway for a structured approach with high computational effi-
ciency based on a complete probabilistic description of the system. In practical
applications, however, some of the parameters of the system might not be de-
fined completely due to limited data, which implies the need to take imprecisions
of component specifications into account. This paper presents a methodology
to include explicitly the imprecision, which leads to upper and lower bounds of
the survival function of the system. In addition, the approach introduces novel
and efficient component importance measures. By implementing relative impor-
tance index of each component without or with imprecision, the most critical
component in the system can be identified depending on the service time of the
system. Simulation method based on survival signature is introduced to deal
with imprecision within components, which is precise and efficient. Numerical
example is presented to show the applicability of the approach for systems.
Keywords: Imprecision; survival signature; system reliability; component

importance; sensitivity analysis.
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1. INTRODUCTION

Networked systems are a series of components interconnected by communi-
cation paths. The analysis of these systems becomes more and more important
as they are the backbone of our societies. Examples include the Internet, social
networks of individuals or businesses, transportation network, power plant sys-
tem, metabolic networks, and many others. Since the breakdown of a system
may cause catastrophic effects, it is essential to be able to assess the reliability
and availability of these systems. As an intrinsic feature, practical systems in-
volve uncertainties to a significant extent. Since the reliability and performance
of systems are directly affected by uncertainties, a quantitative assessment of
uncertainty is widely recognized as an important task in practical engineering
[1]. The obvious pathway to a realistic and powerful analysis of systems is a
probabilistic approach. In practical cases there are two specific challenges that
need to be addressed to obtain realistic results. First, the complexity of the
system needs to be reflected in the numerical model. This goes far beyond a
model based on a set of components with simple connections between them.
For instance, there may be several different types of components in the same
system. This variety together with the large size of real-life systems complicates
the propagation of the uncertainty from the various different component types
with their different performance and uncertainty characteristics to the system
performance for the prediction of the system lifetime and reliability. Second,
the available information for the quantitative specification of the uncertainties
associated with the components is often limited and appears as incomplete in-
formation, limited sampling data, ignorance, measurement errors and so forth.
The present work contributes towards a solution to these challenges.

The proposed approach is based on the survival signature, which is associ-
ated with a survival analysis [2] of systems. Survival analysis has important
applications in biology, medicine, insurance, reliability engineering, demogra-

phy, sociology, economics, etc. In engineering, survival analysis is typically
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referred to as reliability analysis, and the survival function is then called re-
liability function. This survival function or reliability function quantifies the
survival probability of a system at a certain point in time. In this context, the
concept of the system signature [3] has been recognized as an important tool
to quantify the reliability of systems that consist of exchangeable components.
The main advantage of the system signature is its capability to separate the
structure of the system from the probabilistic model used to describe the ran-
dom failure of the system components. Recent advancements using the concept
of system signature are reported in [4]. However the use of the system signature
is associated with the assumption that all components in the system are of the
same type. This is a major limitation since real systems are generally formed
by more than one component type so that those systems cannot be analysed
with the system signature [5].

In order to overcome the limitations of the system signature, Coolen and
Coolen-Maturi [5] proposed the survival signature as improved concept, which
does not rely any more on the restriction to one component type. Specifically,
the characteristics of the components do not need to be independently and
identically distributed (iid). In the case of a single component type, the survival
signature is closely related to the system signature. Recent developments have
opened up a pathway to perform a survival analysis using the concept of survival
signature even for relatively complex systems. Coolen et al. have shown how
the survival signature can be derived from the signatures of two subsystems in
both series and parallel configuration [6], and they developed a non-parametric
predictive inference scheme for system reliability using the survival signature
[5]. Aslett et al. [7] presented the use of the survival signature for systems
reliability quantification from a Bayesian perspective.

In many cases, uncertainties cannot be quantified precisely since they are
characterized by incomplete information, limited sampling data, ignorance, mea-
surement errors and so on. Thus, a thorough and realistic quantitative assess-
ment of the uncertainties is quite important. Moreover, it is essential to know

which component with uncertainties has the biggest influence degree to the
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whole system.

Component importance measure allows to quantify the importance of system
components and identify the most “critical” component. It is a useful tool to
find weaknesses in systems and to prioritize reliability improvement activities.
Birnbaum [8] proposed a measure to find the reliability importance of a compo-
nent in 1969, which is obtained by partial differentiation of the system reliability
with respect to the given component reliability. An improvement or decline in
reliability of the component with the highest importance will cause the greatest
increase or decrease in system reliability. Several other importance measures
have been introduced [9]. Improvement potential, risk achievement worth, risk
reduction worth, criticality importance and Fussell-Vesely’s measure were all
reviewed in Ref. [10] [11] [12] [13]. To conduct reliability importance of compo-
nents in a complex system, Wang et al. [14] introduced and presented failure
criticality index, restore criticality index and operational criticality index. Zio
et al. [15] [16] presented generalized importance measures based on Monte Carlo
simulation. The component importance measures can determine wiich compo-
nents are more important to the system, which may suggest the most efficient
way to prevent system fails.

Some of the importance measures can be computed through analytical meth-
ods, but limited to systems with few components. Traditional simulation meth-
ods provide no easy way to compute component importance [14]. In addition,
in case with imprecision in the component failure, the simulation approaches
become intractable.

In this paper, a novel reliability approach and component importance mea-
sure based on survival signature is proposed to analyse systems with multiple
types of components. The proposed approach allows to include explicitly im-
precision and vagueness in the characterization of the uncertainties of system
components. The imprecision characterizes indeterminacy in the specification of
the probabilistic model. That is, an entire set of plausible probabilistic models
is specified using set-values (herein, interval-valued) descriptors for the descrip-

tion of the probabilistic model. The cardinality of the set-valued descriptors
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reflects the magnitude of imprecision and, hence, the amount and quality of in-
formation that would be needed in order to specify a single probabilistic model
with a sufficient confidence. In real cases the amount and quality of informa-
tion to specify a probabilistic model can be limited to such an extent that the
associated magnitude of imprecision makes the entire analysis meaningless. In
such cases it is essential to identify those contributions to the imprecision, which
influence the results most strongly. Once these are known, targeted measures
and investments can be defined in order to reduce the imprecision to enable a
meaningful survival analysis. For this purpose, a component importance mea-
sure is implemented to identify the most “critical” component of the system
taking into account the imprecision in their characterization. Specifically, new
component importance measure is introduced as the relative importance index
(RI). Through simulation method based on survival signature, upper and lower
bounds of survival function of the system or relative importance index can be
got efficiently. On this basis, the survival function of system and the impor-
tance degree of components can be quantified. The proposed approaches of the

improved survival signature are demonstrated by some examples.

2. SURVIVAL SIGNATURE AND SURVIVAL FUNCTION

Suppose there is one system formed by m components. Let the state vector
of components be & = (x1, xa, ..., ) € {0,1}" with z; = 1 if the ith component
is in working state and x; = 0 if not. ¢ = ¢(z) : {0,1}™ — {0,1} defines the
system structure function, i.e., the system status based on all possible z. ¢ is 1
if the system functions for state vector x and 0 if not.

Now consider a system with K > 2 types of m components, with my indicat-
ing the number of components of each type and Zszl mg = m. It is assumed
that the failure times of the same component type are independently and iden-
tically distributed (éid) or exchangeable. The components of the same type can
be grouped together because of the random ordering of the components in the

state vector, which leads to a state vector can be written as x = (2!, 22, ..., 2%)
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with 2 = (2§, 2%, ..., 2%, ) representing the states of the components of type k.
Coolen et al. [6] introduced the survival signature for such a system, denoted
by ®(ly,la,...,lx), with I, = 0,1,...;my for k = 1,2, ..., K, which is defined to
be the probability that the system functions given that I of its m; components
of type k work, for each k € {1,2,..., K}. There are (TZ’“) state vectors z* with

precisely ;, components z equal to 1, so with > /"% 2F =1, (k= 1,2,..., K),
and Sy, 1,....1, denote the set of all state vectors for the whole system.

Assume that the random failure times of components of the different types
are fully independent, and in addition the components are exchangeable within

the same component types, the survival signature can be rewritten as:

K —1
@(zl,...sz)—[H(m’ﬁ Ix > ¢(z) (1)

it \ b
Cr(t) € {0,1,...,m} denotes the number of k& components working at time
t. Assume that the components of the same type have a known CDF, Fy(¢) for
type k. Moreover, the failure times of different component types are assumed

independent, then:

K K K
m
PVtew0 = 1) =TT Plewo = = IT (7 )= - m
k=1 k=1
(2)
Hence, the survival function of the system with K types of components

becomes:

P(T, > t) = Z f B(11, oo, ) P(({Ch (1) = Ui }) (3)
k=1

11=0 Ix=0

It is obvious from Equation 3 that the survival signature can separate the
structure of the system from the failure time distribution of its components,
which is the main advantage of the system signature. What is more, the survival
signature only need to be calculated once for any system, which is similar to the
system signature for systems with only single type of components. It is easily

seen that survival signature is closely related with system signature. For a



145

150

155

160

165

170

special case of a system with only one type (K = 1) of components, the survival
signature and the Samaniego’s signature [3] are directly linked to each other
through a simple equation, however, the latter cannot be easily generalized for
systems with multiple types (K > 2) of components [5].

This implies that all attractive properties of the system signature also hold
for the method using the survival signature, also the survival signature is easy
to apply for systems with multiple types of components, and one could argue it

is much easier to interpret than the system signature.

3. GENERALIZED PROBABILISTIC DESCRIPTION OF THE FAIL-

URE TIMES OF COMPONENTS

3.1. Introduction of Probability Box

As stated in the previous section, the probability of the failure of each com-
ponent is described by the CDF, Fi(t). However, it is not always possible to
fully characterize the probabilistic behaviour of components due to ignorance
or incomplete knowledge. This lack of knowledge comes from many sources:
in-adequate understanding of the underlying processes, imprecise evaluation of
the related characteristics, or incomplete knowledge of the phenomena. These
problems can be tackled by resorting to generalized probabilistic methods, such
as imprecise probabilities, see e.g. [17] [18] [19] [20]. The main problem of gen-
eralized probabilistic methods is the computational cost associated with their
evaluation. In fact, these approaches required multiple probabilistic model eval-
uations, and often use global optimization procedures [21]. Efficient numerical
methods have been developed and made available in powerful toolboxes such as
OpenCossan software [22] [23]. Recently, Coolen et al. have combined nonpara-
metric predictive inference method with survival signature to analyse system
reliability [24].

The generalized probabilistic model makes the uncertainty quantification a
rather challenging task in terms of computational cost, and the challenge comes

mainly from computing the lower and upper bounds of the quantities of interest.



175

180

185

190

Let F and F be non-decreasing functions mapping the real line ® into [0,1]
and F(z) < F(z) for all x € R. Let [F, F] denote a set of the non-decreasing
functions F on the real line such that F(z) < F(z) < F(z). When the functions
F and F circumscribe an imprecisely known probability distribution, [F, F is
called a “probability box” or “p-box” [25]. Using the framework of imprecise
probabilities in form of a p-box (see [26] [27]), the lower and upper CDF for
the failure times of components of type k are denoted by F,(t) and Fy(t),
respectively. The lower and upper CDF bounds can be obtained by calculating
the range of all distributions that have parameters within some intervals. For
some distribution families, only two CDF's need to be computed to enclose the
p-box. For most distribution families, however, four or more crossing CDFs
need to be computed to define a p-box, see [28]. As an example, Fig. 1 depicts
a free p-box whose bounds arise from a lognormal distribution with parameters

intervals o = [0.5,0.6] and 5 = [0.05,0.1].

8.2. Analytical Method to Deal with Imprecision within Components Failure

Times

Lower and upper bound of the survival function for a system consisting of
multiple types of components can be calculated analytically based on Coolens
works for nonparametric predictive inference in [24]. As Cy(t) denotes the num-
ber of £ components working at time ¢, and it is assumed that the components

can not be repaired or replaced. The lower survival function is:

mi mg K
Sp ) =P(Ts>t)=> .. Y @, ...lx) [[DCe(t) =)  (4)
L=0 1x=0 k=1
where
D(Cy(t) = ly) = P(Cy(t) < ly) = P(Cr(t) <l — 1) (5)
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Figure 1: A distributional free p-box whose bounds arise from a lognormal distribution with

parameters intervals o = [0.5,0.6] and 3 = [0.05, 0.1].

While the corresponding upper bound of the survival function is:

my mK K
Sp.()=P(Ts>t)=Y .Y Oy, ..lx) [[DCrt) =l)  (6)
11=0 =0 k=1
195 Where
D(Cy(t) = ly) = P(Cy(t) <) = P(Ci(t) <l — 1) (7)

For a system with m components in one type, C; is represented to bino-
mial distribution, with C; ~ Binomial(m,1 — F(t)). According to stochastic
dominance theory [29], C; increases as (1 — F'(t)) increases.

For parametric distribution, the CDF of components failure time can be

20 expressed by F(t | §), with § € © (e.g. parameter 6 € [0,0]). Therefore, there
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will be a § € © leading to F(t | §) = F(t) and a § € © leading to F(t | §) = F(t),
which holds for all ¢.

Here, taking an exponential distribution with parameter A € [A1, A2] as an
example. It is known that F(t) = F(t| A\) =1 —e Mt and F(t) = F(t| \2) =
1 —e~?2t. Oy increases as (1 — F(t)) increases, so P(C; < 1) = ZL:O (™M@ -
e fetym—u(g=Atyu and P(Cy < 1) = Zu o (M1 — e Mtym=u(e=Mtyu,

For a system with one type of components, the lower bound of the survival

function for the system at time ¢ becomes:

ﬁTs(t) P(Ts>t) = Z@ < ) */\ﬂ)mfl(ew\lt)l (8)

and the corresponding upper bound of the survival function becomes:

§Ts( )= TS > t) Z@ ( ) *>\2t)mfl(€f>\2t)l 9)

For a system composed of K 2 2 types of components, with parameter
e e [\, AE]) the lower bound of the survival function for the system at time ¢

is:

my mg K
Mg —“Atymg =l 1, — APty
Sy, (t) = P(Ts > t) = ZZ Z: ®(ly, ..., lg) U <lK)[1—e Fejme—tn o= ALl
1=0 =0 k=1
(10)
The corresponding upper bound of the survival function becomes:
- By i % ﬁ my k k
STS (t) = P(TS > t) = (I)(lh ZK) < )[1—6>\2t]mklk[6)\2t]lk
=0 1,=0 o1 VUK
(11)

To illustrate the method presented in this section, the lower and upper
bounds of survival function for the system in Fig. 2 are calculated. The system
has six components belong to two types. Results of survival signature of the
system can be seen in Table 1. The failure times of the two component types are
according to exponential distribution, with interval parameters A; € [0.4,1.2]

and A\g € [1.3,2.1], respectively.

10
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Table 1: Survival signature of the system in Fig.2
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Figure 2: System with two types of components.

This leads to lower and upper bounds of survival functions of the system as
seen in Fig. 3.

For other distribution types, like Weibull distribution or gamma distribution,
if the shape parameter is fixed, the upper and lower bounds of survival function
can be deduced in a similar way as shown for the exponential distribution type.
However, if shape parameter is in an interval, finding the lower bound of survival
function reduces to an optimisation problem over one variable (shape parameter)
only. Also, if all the parameters have interval values, by means of simulation

method is a replacement to get the probability bounds of the survival function.

3.8. Simulation Method to Deal with Imprecision within Components Failure
Times

Let use the system in Fig. 2 as an example to illustrate the simulation
method. The survival signature represents the probability that the system works
given that the number of components of each type that are working. The system
in Fig. 2 is equivalent to a system composed by two components that can be
in four status (status 0 to status 3) as shown in 1. Each status represents the
number of the working components.

The method used to simulate the survival function is derived from the ap-

proach proposed in [30]. The simulation approach requires the following steps:

12
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(1) Sampling the transition times of the first component type, hence a sequence
of transition time ¢;, t2 and ¢4 can be got; (2) Repeating the procedure of step
(1) for the component type 2, which will obtain 4 additional transition times;
(3) Reordering all the transition times of (t1, t2, ..., tg); (4) For each time interval
the probability that the system functions can be computed based on survival
signature; (5) Repeating the steps (1) to (4) for n system histories and averaging
the obtained results; (6) The system probability of survive over the time ¢ is
obtained by averaging the values of survival function.

The above simulation procedures are used for components without impre-
cision, if there exist imprecision within components failure times, just adding
another loop to simulate the components’ imprecise parameters. Fig. 3 shows
the lower and upper bounds of survival function obtained by simulation method
and compared with the analytical solution, and showing a perfect agreement.

The simulation method can be used for analysing any systems with gen-
eral imprecision. Suppose components failure times of type 1 and type 2 obey
Weibull distribution and gamma distribution, respectively. Their imprecise pa-

rameters can be seen in Table 2.

Table 2: Imprecise distribution parameters of components in a system

Component type Distribution type Parameters («, )
1 Weibull ([1.2,1.8], [2.3,2.9])
2 Gamma ([0.8,1.6], [1.3,2.1])

It is difficult to get the bounds of survival function by analytical method,
however, this problem can be tackled through simulation method. The results

are shown in Fig. 4.

4. IMPORTANCE MEASURE OF A SPECIFIC COMPONENT

4.1. Definition of Relative Importance Index

An important objective of a reliability and risk analysis is to identify those

components or events that are most important (critical) from a reliability /safety

13
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Figure 3: Lower and upper bounds of the survival function obtained by simulation and ana-

lytical method.

point of view. These components should be given priority with respect to im-
provements or maintenance. Importance measures are important tools to eval-
uate and rank the impact of individual components within a system [31], which
will allow one to study the relationship among components and the system.
Importance measures have many applications in probabilistic risk analysis and
there are many approaches based on various measures of influence and response
[32]. These importance measures provide a numerical rank to determine which
components are more critical to system failure or more important to system
reliability improvement.

A new importance measure is introduced herein as relative importance in-
dex indicated by RI, which is utilized to quantify the difference between the
probability that the system functions if the ith component works and the prob-

14
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Figure 4: Lower and upper bounds of survival function by simulation method.

ability that the system functions if the ith component is not working. The
measure RI;(t) expresses the importance degree of a specific component during
the survival time.

The relative importance index RI;(t) can be expressed as follows:

RI(t) = P(Ts >t |T; >t)— P(Ts > t| T, < t) (12)

Where, P(Ts >t | T; > t) represents the probability that the system func-
tions if the ith component works; P(Ts >t | T; < t) represents the probability
that the system functions knowing that the ith component has failed.

The relative importance index RI;(t) is a function of time and it reveals the
trend of the survival functions P(Tg >t | T; > t) and P(Ts >t | T; < t) of the

system. This measure quantifies the degree of the influence of imprecision in

15
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each component characterization, i. e., the bigger the value of RI;(t), the bigger
is the influence of the imprecision of the ith component on the estimation of
the system reliability at a specific time ¢, and vice versa. At each point in time
the largest RI over all components shows the most “critical” component. This
helps to allocate resources for inspection, maintenance and repair in an optimal
manner over the lifetime of a system.

Taking imprecise probabilistic characterizations of the component failure
probabilities into account, the set of all possible probability distribution func-
tions can be represented as distributional p-boxes [28] indicated with M : P €

M. The the relative importance index can be defined as:
RI(t|P)=P(Ts>t|T;, >t)— P(Ts >t | T; < t) (13)
Therefore, the lower and upper bounds of relative importance index are:

RIi(t) =y, RIi(t | P) (14)

RI(t) =32, RI(t | P) (15)

4.2. Illustrative Example

Now let calculate the relative importance index of component 4 of the system
in section 3.2. First calculate the survival signature of the system in Fig. 5 and
Fig. 6, which represents the component 4 of type 2 works and fails at time ¢
respectively.

The survival signature of the two circumstances can be expressed as o, (I1,12)
and <I?0(Z 1,12), and the results can be seen in Table 3 and Table 4 respectively.

So:

16
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Table 3: Survival signature of the system in Fig.5
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Table 4: Survival signature of the system in Fig.6
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Figure 6: Component 4 fails at time ¢.

RIL(t|P)=PTs>t|T;>t)— P(Ts >t |T; <t)

my ma—1 m1 ma—1
=3 Y @, )P ﬂ{Ck; =L} =D Y, Ty, 12)P m{Ck = lk})
11=0 l2=0 11=0 l2=0
mi mo—1
=3 > [®i(l1, 1) — Bo(hy, 12)] P ﬂ{ck =1x})
11=0 l=0

(16)

If the components failure times have precise distribution parameters, e.g.
w0 A = 0.8 and Ay = 1.6, M degenerates to a probability function P = M = {1 —

e M\ = 0.8;\y = 1.6}. Hence, the relative importance index of component

18
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4 can be calculated by using analytical method and the results can be seen in
Fig. 7.
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Figure 7: Relative importance index of Component 4 with precise distribution parameters.

Considering imprecisions within components failure times, the set of all prob-
ability distribution defines a probability p-box for each component failure time:
M ={1-e?M:04 <)\ <1213 <\ <21} Therefore, the lower and
upper bounds of relative importance index of component 4 can be calculated

through simulation method. Fig. 8 shows the results.

5. NUMERICAL EXAMPLE

In this section, a survival analysis of a real world hydro power plant based
on survival signature is conducted. The system is schematically shown in Fig. 9

and its reliability block diagram is illustrated in Fig. 10. It can be modelled as
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Figure 8: Relative importance index of Component 4 with imprecise distribution parameters.

a complex system comprising the following main twelve components: (1) control
gate (CG), which is built on the inside of the dam, the water from the reservoir
is released and controlled through the gate; (2) two butterfly valves (BV1,BV2),
which can transport and control the water flow; (3) two turbines (7'1,72), where
the flowing waters kinetic energy is transformed into mechanical energy; (4)
three circuit breakers (C'B1,CB2,C'B3), which are used to protect the hydro
power plant system; (5) two generators (G'1,G2), which produce alternating
current by moving electrons; and (6) two transformers (T X 1,7X2), which inside
the powerhouse take the alternating current and convert it to higher-voltage
current.

Two cases are presented in the following part: Case A presents the survival
analysis with the fully probability model; Case B considers imprecision within

the model.
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Figure 9: Schematic diagram of a hydro power plant system.

5.1. Case A

It is assumed that all components of the same type have the same failure
time distribution. Failure type and distribution parameters are listed in Table
5.
330 Let Iy, lo, I3, lg, 5 and lg denote CG, BV, T, G, CB and TX, respectively.
Table 6 shows the survival signature of the hydro power plant, whereby the rows

with values ©(l1,1s,13,14,15,1ls) = 0 are omitted.

BVIH Tl | Gl —HCBI TXI
1 2 3 4 5 10 11

— CG CB3
6 7 8 9 12
BV2HH T2 HH G2 HCB2 TX2

Figure 10: Reliability block diagram of a hydro power plant system.
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Table 5: Failure types and distribution parameters of components in a hydro power plant

Component name Distribution type Parameters («, 3) or A
ge Weibull (1.3,1.8)

BV Weibull (1.2,2.3)

T Exponential 0.8

G Weibull (1.6,2.6)

CB Gamma (1.3,3.0)

TX Gamma (0.6,1.1)

Table 6: Survival signature of a hydro power plant in Fig.9; rows with ®(11,12,13,14,15,l6) =0

are omitted

h f2 ls l s 's (11,1, I3, 1a, 15, Ig)
1 1 1 1 2 1,2 1/12
1 1 1 2 2 1,2 1/6
1 1 2 1 2 1,21 1/6
1 2 1 1 2 1,21 1/6
1 1 1 1 3 1,2 1/4
1 1 2 2 2 1,2 1/3
1 2 1 2 2 1,21 1/3
1 2 2 1 2 1,21 1/3
1 1 1 2 3 1,2 1/2
1 1 2 1 3 1,2 1/2
1 2 1 1 3 1,20 1/2
1 2 2 2 2 1,2 2/3
1 1 2 2 3 1,2 1

1 2 1 2 3 1,2 1

1 2 2 2] 3 1,2 1
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The survival signature can now be used as follows. There are m; = 1, my =
mg = myq = mg = 2 and ms = 3 components of each type. The survival signa-
ture must consider combinations for all I; € {0, 1}, ls,13,14,1 € {0,1,2} and I5 €
{0,1,2,3}, and the state vector is z = (z1, 2%, 23, 23, 23, 21, 23, 3, 25, 23, 29, 25).
Now consider ®(1,1,1,2,2,1) for example. This covers all possible vectors x
with 2z} = 1, 23+23 = 1, 23423 = 1, 2] +23 = 2, 23 +25+23 = 2 and 28425 = 1.
There are 24 such vectors, but only four of these can make the system function.
Due to the iid assumption of the failure times of components of the same type,
and due to independence between components of different types, all these 24
vectors have equal probability to occur, hence ®(1,1,1,2,2,1) =4/24 = 1/6.

The survival function of the hydro power plant system with twelve compo-

nents of six types is shown in Fig. 11.

1

0.9 .

0.8 i

0.7 4

0.6 .

0.5 .

04 8

0.3 .

Survival Function P(Ts>t)

0.2 .

01 i

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Time t

Figure 11: Survival function of a hydro power plant system along with survival functions for

the individual components.
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Based on the survival function it is possible to calculate the influence of
each component on the system reliability for each point in time ¢. The basic
theoretical knowledge and equations can be seen in Section 4, which allows to
estimate of relative importance index RI;(t) of each component.

For the other component importance measures, analytical methods can be
used to rank the component importance degree. The equations of Birnbaum’s
measure (BM), risk achievement worth (RAW) and Fussel-Vesely’s measure
(FV) to calculate the component importance I;(t) of the ith component at

time ¢ can be seen in Table 7.

Table 7: Component importance equations of BM, RAW and FV

Methods Component Importance Equations
_ O9Rs(t)
BM IB(t) = Wf(t)
_ Bs(t)(Ri(t)=1)
RAW IRAW () = S—Rs(t)——
FV I,LFV(t) — RS(t)*RRE‘é?E()Ri(t):O)

In the above equations, Rg(t) and R, (t) represent the reliability of the system
and the ith component at time ¢. For the power plant in Fig. 9, the reliability
equation Rg(t) = Ri(1—(1=RoR3R4R5)(1—RgR7RgRg)) R1o(1—(1—Ry1)(1—
R12)).

The component importance obtained at ¢ = 0.12 using the proposed method
for the power plant system have been compared with the results Birnbaum’s
measure (BM), risk achievement worth (RAW) and Fussel-Vesely’s measure
(F'V) as shown in Table 8.

According to the above table, it can be drawn that RI method can get
the same component importance ranking as Birnbaum’s measure. Also, the
proposed RI method has the same ranking trend as RAW and FV. The RI
method just needs the survival signature without calculating the reliability equa-
tion, which is useful for large systems with multiple component types.

The relative importance index values of each components over the time are

shown in Fig. 12.
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Table 8: Comparision of component importance obtained using different methods at ¢ = 0.12

Components CcG BV1 T1 G1 CBl1 (CB3 TX1

Methods BV2 T2 G2 CB2 TX2
BM 0.8854 0.1181 0.1366 0.1177 0.1191 0.8846 0.2703
ranking 1 6 4 7 5 2 3
RAW 7.8947 1.9280 1.9280 1.9280 1.9280 7.8947 2.5270
ranking 1 3 3 3 3 1 2

FV 1.000 0.1346 0.1346 0.1346 0.1346 1.000 0.2215
ranking 1 3 3 3 3 1 2

RI 0.8831 0.1217 0.1401 0.1213 0.1221 - 0.8693 0.2656
ranking 1 6 4 7 5 2 3

The relative importance index values reveal the component importance over
time. The bigger the value of RI;(t) is, the more “critical” the ith component is.
The above results show that BV'1 and BV 2 have the same relative importance
index values, and the same applies to T'1 and 72, G1 and G2, CB1 and CB2,
TX1 and TX2. This is because the components are in a parallel configuration
and they have the same failure time distribution type and parameters, which
is also according to our common sense that these components have the same
importance degree to the system. For component C' B3, it has same failure time
type and distribution parameters as components C'B1 and C' B2, but has dif-
ferent location in the system. Therefore, the relative importance index value
of component C'B3 is bigger than relative importance index values of compo-
nents CB1 and C'B2, but not as big as the relative importance index value of
component C'G. Components CG and C' B3 have the same decreasing trend of
relative importance index over time, while for the other components, the trends
of relative importance index increase first, then decay with time. The rela-
tive importance index values of components T X1 and T X2 are always smaller
than other components, which means they have smallest influence degree to the

system reliability.
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Figure 12: Relative importance index values of the system components.
5.2. Case B

The investigation from CASE A is now extended by considering imprecision
in the description of the probabilistic model for the failure characterization of
the system components. Intervals are used to describe the imprecision in the
failure time distribution as shown in Table 9.

The upper and lower bounds of the parameters reflect the ideal and the
worst case of the performance of the components, respectively. The range of
the parameters represents epistemic uncertainty, which results from expert as-
sessments of the component performance. This modelling leads to upper and
lower survival functions of the hydro power plant system reflecting the epistemic
uncertainties as range between the curves, see Fig. 13. The imprecision from
the input is translated into imprecision of the output.

As a further step the imprecision can be carried forward to calculate ranges
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Table 9: Failure types and distribution parameters of components in a hydro power plant

Component name Distribution type Parameters («, §) or A
cG Weibull ([1.2,1.5], [1.5,2.1])
BV Weibull ([1.0,1.6], [2.1,2.5))

T Exponential [0.4,1.2]

G Weibull ([1.3,1.8], [2.3,2.9])
CB Gamma ([1.2,1.4], [2.8,3.3])
TX Gamma ([0.3,0.8], [1.0,1.3])

for the relative importance index. Firstly, ranges for the survival functions
assuming given component fails or works are calculated for each component,
then the associated ranges for the relative importance index for each component
are determined, see Fig. 14 and Fig. 15.

From the above figures it can be recognized that imprecision within compo-
nent failure times can lead to imprecision of relative importance index of the

component.

6. CONCLUSIONS

In this paper an efficient approach for analysing imprecise system reliability
and component importance has been presented. The method is based on the
survival signature, which has been proven to be an effective method to estimate
the survival function of systems with multiple component types. In the proposed
approach, the system model needs to be analysed only once in order to conduct
a reliability analysis and measure a component importance, which represents a
significant computational advantage. Performing a survival analysis on systems
using the survival signature has been presented as a novel pathway for system
reliability and component importance. In addition, the effect of imprecision,
for example resulting from incomplete data, has been taken into account in
the system reliability analysis and component importance measurement. As a

consequence, bounds of survival functions of the system and intervals of relative
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Figure 13: Upper, lower and precise survival functions of the hydro power plant system.

importance index values can be obtained.

In order to quantify the influence degree of components without and with
imprecision, a novel component-wise importance measure has been presented:
the relative importance index. Importance measures allow to identify the most
“critical” system component at a specific time. This allows an optimal alloca-
tion of resources for repair, maintenance and inspection. This novel and effi-
cient method is conducted in an analytical way or through simulation method
based on survival signature, which improves the computational efficiency. Using
the relative importance index, the importance of the individual components is
ranked to obtain a preference list for maintenance and repair. The effectiveness
and feasibility of the proposed approaches have been demonstrated with some
numerical examples. The results show that the survival signature is an efficient

method to perform a reliability analysis of systems and measure components
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importance.
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