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Voice problems are routinely assessed in hospital voice clinics by speech and language
therapists (SLTs) who are highly skilled in making audio-perceptual evaluations of voice
quality. The evaluations are often presented numerically in the form of five-dimensional
'GRBAS' scores. Computerised voice quality assessment may be carried out using digital
signal processing (DSP) techniques which process recorded segments of a patient's voice
to measure certain acoustic features such as periodicity, jitter and shimmer. However,
these acoustic features are often not obviously related to GRBAS scores that are widely
recognised and understood by clinicians. This paper investigates the use of machine
learning (ML) for mapping acoustic feature measurements to more familiar GRBAS
scores. The training of the ML algorithms requires accurate and reliable GRBAS
assessments of a representative set of voice recordings, together with corresponding
acoustic feature measurements. Such 'reference’ GRBAS assessments were obtained in
this work by engaging a number of highly trained SLTs as raters to independently score
each voice recording. Clearly, the consistency of the scoring is of interest, and it is
possible to measure this consistency and take it into account when computing the reference
scores, thus increasing their accuracy and reliability. The properties of well known
techniques for the measurement of consistency, such as intra-class correlation (ICC) and
the Cohen and Fleiss Kappas, are studied and compared for the purposes of this paper.
Two basic ML techniques, i.e. K-nearest neighbour regression and multiple linear
regression were evaluated for producing the required GRBAS scores by computer. Both
were found to produce reasonable accuracy according to a repeated cross-validation test.

1. Introduction

quality assessment originally presented in the 10th CISP-BMEI,
conference in Shanghai [1]. Speech and language therapists

Voice problems are a common reason for referrals by primary
practices to ear, nose and throat (ENT) departments and voice
clinics in hospitals. Such problems may result from voice-strain
due to speaking or singing excessively or too loudly, vocal cord
inflammation, side-effects of inhaled steroids as used to treat
asthma, infections, trauma, neoplasm, neurological disease and
many other causes. This paper is an extension of work on voice

*Corresponding Author: Zheng Xie, Email: zxie2@uclan.ac.uk
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(SLTs) are commonly required to assess the nature of voice quality
impairment in patients, by audio-perception. This requires the
SLT, trained as a voice quality expert, to listen to and assess the
patient’s voice while it reproduces, or tries to reproduce, certain
standardized vocal maneuvers. In Europe, voice quality
assessments are often made according to the perception of five
properties of the voice as proposed by Hirano [2]. The five
properties are referred to by the acronym ‘GRBAS’ which stands
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for ‘grade’, ‘roughness’, ‘breathiness’, ‘asthenia’ and ‘strain’.
Each GRBAS property is rated, or scored by assigning an integer
0, 1, 2 or 3. A score of 0 signifies no perceived loss of quality in
that property, 1 signifies mild loss of quality, 2 signifies moderate
loss and 3 signifies severe loss. The scoring may be considered
categorical or ordinal. With categorical scoring the integers 0, 1,
2 and 3 are considered as labels. With ordinal scoring, the integers
are considered as being numerical with magnitudes indicating the
severity of the perceived quality loss.

Grade (G) quantifies the overall perception of voice quality
which will be adversely affected by any abnormality. Roughness
(R) measures the perceived effect of uncontrolled irregular
variations in the fundamental-frequency and amplitude of vowel
segments which should be strongly periodic. Breathiness (B)
quantifies the level of sound that arises from turbulent air-flow
passing through vocal cords when they are not completely closed.
Asthenia (A) measures the perception of weakness or lack of
energy in the voice. Strain (S) gives a measure of undue effort
needed to produce speech when the speaker is unable to employ
the vocal cords normally because of some impairment.

Voice quality evaluation by audio-perception is time-
consuming and expensive in its reliance on highly trained SLTs
[3]. Also, inter-rater inconsistencies must be anticipated, and have
been observed [4] in the audio-perceptual scoring of groups of
patients, or their recorded voices, by different clinicians. Intra-
rater inconsistencies have also been observed when the same
clinician re-assesses the same voice recordings on a subsequent
occasion. A lack of consistency in GRBAS assessments can
adversely affect the appropriateness of treatment offered to
patients, and the monitoring of its effect. A computerised approach
to GRBAS assessment could eliminate these inconsistencies.

According to Webb et al. [5], GRBAS is simpler and more
reliable than many other perceptual voice evaluation scales, such
as Vocal Profile Analysis (VPA) [6] and the ‘Buffalo Voice
Profile’ (BVP) [7], scheme. The 'Consensus Auditory-Perceptual
Evaluation of Voice' (CAPE-V) approach, as widely used in
North America [8], allows perceptual assessments of overall
severity, roughness, breathiness, strain, pitch and loudness to be
expressed as percentage scores. It is argued [8] that, compared
with GRBAS, the CAPE-V scale better measures the quality of
the voice and other aphonic characteristics. Also, CAPE-V
assessments are made on a more refined scale. However, GRBAS
is widely adopted [9] by practising UK voice clinicians as a basic
standard.

No definitive solutions yet exist for performing GRBAS
assessments by computer. Some approaches succeeded in
establishing reasonable correlation between computerised
measurements of acoustic voice features and GRBAS scores, but
have not progressed to prototype systems [12]. Viable systems
have been proposed, for example [13], but problems of training the
required machine learning algorithms remain to be solved. The
'Multi-Dimensional Voice Program' (MDVP) and 'Analysis of
Dysphonia in Speech and Voice' (ADSV) are commercial software
packages [10] providing a wide range of facilities for acoustic
feature analysis. Additionally, ADSV gives an overall assessment
of voice dysphonia referred to as the Cepstral/spectral Index of
Dysphonia (CSID) [11]. This is calculated from a multiple
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regression based on the correlation of results from ADSV analyses
with CAPE-V perceptual analyses by trained scorers. The CAPE-
V overall measure of dysphonia is closely related to the 'Grade'
component of GRBAS, therefore the CSID approach offers a
methodology and partial solution to the GRBAS prediction
problem. However the commercial nature of the CSID software
makes it difficult to study and build on this methodology.
Therefore, this paper considers how the results of a GRBAS
scoring exercise may be used to produce a set of reference scores
for training machine learning algorithms for computerised
GRBAS assessment.

For the purposes of this research, a scoring exercise was carried
out with the participation of five expert SLT raters, all of whom
were trained and experienced in GRBAS scoring and had been
working in university teaching hospitals for more than five years.
A database of voice recordings from 64 patients was accumulated
over a period of about three months by randomly sampling the
attendance at a typical voice clinic. This database was augmented
by recordings obtained from 38 other volunteers.

The recordings were made in a quiet studio at the Manchester
Royal Infirmary (MRI) Hospital. Ethical approval was given by
the National Ethics Research committee (09/H1010/65). The
KayPentax 4500 CSL ® system and a Shure SM48 ® microphone
were used to record the voices with a microphone set at 45 degrees
at a distance of 4 cm. The recordings were of sustained vowel
sounds and segments of connected speech.

To obtain the required GRBAS scores for each of the subjects
(patients and other volunteers), the GRBAS properties of the
recordings were assessed independently by the five expert SLT
raters with the aid of a ‘GRBAS Presentation and Scoring Package
(GPSP)’ [14]. This application plays out the recorded sound and
prompts the rater to enter GRBAS scores. Raters used Sennheiser
HD205 ® head-phones to listen to the recorded voice samples. The
voice samples are presented in randomised order with a percentage
(about 20 %) of randomly selected recordings repeated without
warning, as a means of allowing the self-consistency of each rater
to be estimated.

Different statistical methods were then employed to measure
the intra-rater consistency (self-consistency) and inter-rater
consistency of the scoring. Some details of these methods are
presented in the next section. The derivation of 'reference' GRBAS
scores from the audio-perceptual rater scores is then considered for
the purpose of training ML algorithms for computerised GRBAS
scoring. The derivation takes into account the inter-rater and intra-
rater consistencies of each rater,

Voice quality assessment may be computerised using digital
signal processing (DSP) techniques which analyse recorded
segments of voice to quantify universally recognised acoustic
features such as fundamental frequency, shimmer, jitter and
harmonic-to-noise ratio [14]. Such acoustic features are not
obviously related to the GRBAS measurements that are widely
recognised and understood by clinicians.  We therefore
investigated the use of machine learning (ML) for mapping these
feature measurements to the more familiar GRBAS assessments.
Our approach was to derive ‘reference scores’ for a database of
voice recordings from the scores given by expert SLT raters. The
reference scores are then used to train a machine-learning
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algorithm to predict GRBAS scores from the acoustic feature
measurements resulting from the DSP analysis. The effectiveness
of these techniques for computerised GRBAS scoring is
investigated in Section 13 of this paper.

2. Measurement of Consistency

The properties of a number of well-known statistical methods
for measuring rater consistency were considered for this research.
The degree of consistency between two raters when they
numerically appraise the same phenomena may be measured by a
form of correlation. Perhaps the best known form of correlation is
Pearson Correlation [15]. However, this measure takes into
account only variations about the individual mean score for each
rater [16]. Therefore a rater with consistently larger scores than
those of another rater can appear perfectly correlated and therefore
consistent with that other rater. Pearson correlation has been
termed a measure of ‘reliability’ [17] rather than consistency. It is
applicable only to ordinal appraisals, and is generally inappropriate
for measuring consistency between or among raters [9] where
consistency implies agreement. The notion of consistency
between two raters can be extended to self-consistency between
repeated appraisals of the same phenomena by the same rater (test-
retest consistency), and to multi-rater consistency among more
than two raters.

An alternative form of correlation is given by the ‘intra-class
correlation” coefficient (ICC) [18] and this may be used
successfully as a measure of consistency for rater-pairs. It is also
suitable for intra-rater (test-retest) and multi-rater consistency.
The scoring must be ordinal. ICC is based on the differences that
exist between the scores of each rater and a ‘pooled’ arithmetic
mean score that is computed over all the scores given by all the
raters. Therefore ICC eliminates the disadvantage of Pearson
Correlation that it takes into account only variations about the
individual mean score for each rater.

The ‘proportion of agreement’ (P,), for two raters, is a simple
measure of their consistency. It is derived by counting the number
of times that the scores agree and dividing by the number, N, of
subjects. P, will always be a number between 0 (signifying no
agreement at all) and 1 (for complete agreement). It is primarily
for categorical scoring but may also be applied to ordinal scoring
where the numerical scores are considered as labels. For ordinal
scoring, P, does not reflect the magnitudes of any differences, and
in both cases, P, is biased by the possibility of agreement by
chance. The expectation of P, will not be zero for purely random
scores because some of the scores will inevitably turn out to be
equal by chance. With Q different categories or scores evenly
distributed over the Q possibilities, the probability of scores being
equal by chance would be 1/Q. Therefore, the expectation of P,
would be 1/Q rather than zero for purely random scoring. With Q
= 4, this expectation would be a bias of 0.25 in the value of P,. The
bias could be even greater with an uneven spread of scores by
either rater. The bias may give a false impression of some
consistency when there is none, as could occur when the scores are
randomly generated without reference to the subjects at all.

The Cohen Kappa is a well known consistency measure
originally defined [19] for categorical scoring by two raters. It was
later generalised to the weighted Cohen Kappa [20] which is
applicable to ordinal (numerical) scoring with the magnitudes of
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any disagreements between scores taken into account. The Fleiss
Kappa [21] is a slightly different measure of consistency for
categorical scoring that may be applied to two or more raters. The
significance of Kappa and ICC measurements is often summarised
by descriptions [22, 23] that are reproduced in Tables 1 and 2. A
corresponding table for the Pearson correlation coefficient may be
found in the literature [24].

Table 1: Significance of Kappa Values

Kappa Consistency

1.0 Perfect

08-1.0 Almost perfect
0.6-0.8 Substantial
04-0.6 Moderate
0.2-04 Fair

0-0.2 Slight

<0 Less than chance

Table 2: Significance of ICC Values

ICC Consistency
0.75-1.0 Excellent
0.4-0.75 Fair

<04 Poor

3. The Cohen Kappa

The original Cohen Kappa [19] for two raters, A and B say, was
defined as follows:

Kappa = R-F
¢ 1)

where P, is the proportion of agreement, as defined above, and Pe
is an estimate of the probability of agreement by chance when
scores by two raters are random (unrelated to the patients) but
distributed across the range of possible scores identically to the
actual scores of raters A and B. The estimate P, is computed as the
proportion of subject pairs (i ,j) for which the score given by rater
Ato subject i is equal to the score given by rater B to subject j. This
is an estimate of the probability that a randomly chosen ordered
pair of subjects (i, j) will have equal scores.

This measure of consistency [19] is primarily for categorical
scoring, though it can be applied to ordinal scores considered as
labels. In this case, any difference between two scores will be
considered equally significant, regardless of its humerical value.
Therefore, it will only be of interest whether the scores, or
classifications, are the same or different.

The weighted Cohen Kappa [20] measures the consistency of
ordinal scoring where numerical differences between scores are
considered important. It calculates a ‘cost’ for each actual
disagreement and also for each expected ‘by chance’
disagreement. The cost is weighted according to the magnitude of
the difference between the unequal scores. To achieve this,
equation (1) is re-expressed by equation (2):

Kappa = 1—1_:2" = 1—%
e e (2)
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where D, = 1 - P, is the proportion of actual scores that are not
equal and is considered to be the accumulated cost of the
disagreements. The quantity De = 1 — P is now considered to be
the accumulated cost of disagreements expected to occur ‘by
chance’ with random scoring distributed identically to the actual
scores. Weighting is introduced by expressing Do and De in the
form of equations (3) and (4):

D, = 3 C(AG), B()
®

>3 ABC(ali). (i) @

2
\ j=1

D, = 1

In equations (3) and (4), C(a,b) is the cost of any difference
between scores (or categories) a and b. In equation (4), Aj denotes
the number of subjects that rater A scores as (i) and B; denotes the
number of subjects that rater B scores as «(j). Q is the number of
possible scores or scoring categories and these are denoted by «(1),
a2)... Q). If the cost-function C is defined by equation (5):

l:a=b

U )
the weighted Cohen Kappa [20] becomes identical to the original
Cohen Kappa [19] also referred to as the unweighted Cohen Kappa

(UwCK). If C is defined by equation (6),
C(a,b) =ja—hj (6)

we obtain the 'linearly weighted Cohen Kappa' (LwCK), and
defining C by equation (7) produces the ‘quadratically weighted
Cohen Kappa’(QWCK).

C(a,b) = (a—b)? )

There are other cost-functions with interesting properties, but
the three mentioned above are of special interest. For GRBAS
scoring, there are Q =4 possible scores which are «(1)=0, (2)=1,
o(3)=2 and (4)=3.

Equation (4) may be re-expressed as equation (8):
1 & . .
D, = 7 2.2.C(AM.B())
N* = j=1 (8)

Therefore, from equations (2), (3) and (8), we obtain equation
(9) which is a general formula for all 2-rater (pair-wise) forms of
Cohen Kappa:

(1/NYY C(AG), B))
Kappa= 1 — =L

WINE)Y S CCAG). B()
i=1 j=1 (9)

The original and weighted Cohen Kappa [19, 20] are applicable
when there are two individual raters, A and B say, who both score
all the N subjects. The raters are ‘fixed’ in the sense that rater A is
always the same clinician who sees all the subjects; and similarly
for rater B. Therefore the individualities and prejudices of each
rater can be taken into account when computing Pe, the probability
of agreement by chance. For example, if one rater tends to give
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scores that are consistently higher than those of the other rater, this
bias will be reflected in the value of Cohen Kappa obtained.

4. Other Versions of Kappa

The Fleiss Kappa [21] measures the consistency of two or more
categorical raters, and can therefore be a 'multi-rater' consistency
measure. Further, the raters are not assumed to be 'fixed' since
each subject may be scored by a different pair or set of raters.
Therefore, it is no longer appropriate to take into account the
different scoring preferences of each rater. If the Fleiss Kappa is
used for a pair of fixed raters as for the Cohen Kappas, slightly
different measurements of consistency will be obtained.

Assuming that there are n raters and Q scoring categories, Fleiss
[21] calculates the proportion p;of the N subjects that are assigned
by raters to category j, as follows:

=3
n.
]
N X n i=1 (10)
forj=1, 2, ..., Q, where nj is the number of raters who score
subject i as being in category j. The proportion, P;, of rater-pairs
who agree in their scoring of subject i is given by:

pj:

Q
R=%ZWX%~DQ 11)

=

where L is the number of different rater-pairs that are possible, i.e.
L = n(n-1)/2. The proportion of rater-pairs that agree in their
assignments, taking into account all raters and all subjects, is now:

1

Pozﬁi

N
R
= (12)
Fleiss [21] then estimates the probability of agreement ‘by
chance’ as:

Q
P=>p’ (13)

j=1

Substituting from equations (12) and (13) into the Kappa
equation (1) gives the Fleiss Kappa [21] which may be evaluated
for two or more raters not assumed to be ‘fixed' raters. The
resulting equation does not generalise the original Cohen Kappa
because equation (13) does not take any account of how the scores
by each individual rater are distributed. Pe is now dependent only
on the overall distribution of scores taking all raters together.
Agreement by chance is therefore redefined for the Fleiss Kappa.

The original Cohen Kappa may be truly generalised [27] to
measure the multi-rater consistency of categorical scoring by a
group of n ‘fixed' raters, where n > 2. Light [28] and Hubert [29]
published different versions for categorical scoring, and Conger
[30] extended the version by Light [28] to more than three raters.
The generalisation by Hubert [29] redefines D, and De to include
all possible rater-pairs as in equation (14):

D, :%Zn: Zn:Do(r,s) D, :%Zn: Zn:De(r,s)

r=1 s=r+1 r=1 s=r+1 (14)
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where the expression for Dy(r,s) generalises equation (3) and
the expression for D¢(r,s) generalises equation (8) to become the
cost of actual disagreement and the expected cost of by chance
disagreement between raters r and s. Denoting by A(i, r) the score
given by rater r to subject i, we obtain equations (15) and (16):

D,(r,s)= %iC(A(i, r), A(i,s))

(15)

D,(9) =17 > > C(AG), A )
i=1 j=1 (16)

where equation (5) defines the cost-function C. Substituting for
D, and D, from equation (14) into equation (2), with Do(r,s) and
D¢(r,s) defined by equations (15) and (16) gives a formula for the
multi-rater Cohen Kappa that is functionally equivalent to that
published by Hubert [29]. With C defined by equation (5) it
remains unweighted.

The generalisation by Light [28] is different from the Hubert
version when n > 2. It is given by equation (17):

D,(r,s)
Z Z D,(r,s) 4N

r=1 s=r+l

UwCK =1-

Although both generalisations were defined for categorical
scoring, they may now be further generalised to weighted ordinal
scoring simply by redefining the cost-function C, for example by
equation (6) for linear weighting or equation (7) for quadratic
weighting. With n = 2, both generalisations are identical to the
original [19] or weighted [20] Cohen Kappa.

5. Weighted Fleiss Kappa

As explained in [31], the original Fleiss Kappa [21] is given by
equation (18) when the cost-function C is as in equation (5).

N

ZZ ZC(A(I r), A, s)) a8)

(Nln)2 iZN:En:Zn:C(A(i,r) L A(),S))

i=1 j=1 r=1 s=1

FK=1-

The Fleiss Kappa may be generalised to a weighted version for
ordinal scoring by redefining cost-function C as for the multi-rater
Cohen Kappa. In all cases, the unweighted or weighted Fleiss
Kappa is applicable to measuring the consistency of any number
of raters including two.

6. Intra-Class Correlation Coefficient (ICC)

In its original form [25], ICC is defined for n raters as follows:

@ L)izn] an(A(i, r)—m)(A(i,s) - m)
ICC = i=L r=1 S:rNH

(1/n)Z:zn:(A(i,r)—m)2

i=1 r=1

where = —ZZA( r) (20)

i=1l r=1

(19)

Www.astesj.com

Other versions of ICC have also been proposed [26]. It is
known [26] that, for two raters, ICC will be close to quadratically
weighted Cohen Kappa (QwCK) when the individual mean score
for each rater is approximately the same. This property is observed
[31] also for multi-rater versions of ICC and QwCK. More
interestingly, it has been shown [31] that ICC is always exactly
equal to quadratically weighted Fleiss Kappa (QwFK) regardless
of the number of raters and their individual mean scores.

7. Intra-rater Consistency

For the GRBAS rating exercise referred to in Section 1, intra-
rater (test-retest) scoring differences were generally small due to
the experience and high expertise of the SLT raters. There were
some differences of 1, very occasional differences of 2, and no
greater differences. The test-retest consistency for the five
GRBAS components was measured for all five raters, by
unweighted, linearly weighted and quadratically weighted Cohen
Kappa (UWCK, LwCK and QwWCK) and ICC. By averaging UwCK,
LwCK and pair-wise ICC measurements over the five GRBAS
components we obtained Table 3 which gives three overall
measurements of the test-retest consistency of each rater. QWCK
gave a close approximation to ICC, and is not shown in the table.
QWFK, also not shown, was indistinguishable from ICC. For all
forms of Kappa, the P, and P, terms were averaged separately.
Similarly, the ICC numerators and denominators were averaged
separately.

With UwCK, any difference in scores incurs the same cost
regardless of its magnitude. Small differences cost the same as
large differences. This makes UwCK pessimistic for highly
consistent raters where most test-retest discrepancies are small.
Therefore, the averaged UwCK consistency measurements in
Table 3 are pessimistic for our rating exercise.

With QwCK, the largest differences in scores incur very high
cost due to the quadratic weighting. With ICC, the costs are
similar. These high costs are important even when there are few
or no large scoring differences because they strongly affect the
costs of differences expected to incur 'by chance'. These high 'by
chance' costs make both QwCK and ICC optimistic, when
compared with LwCK, for highly consistent rating with a fairly
even distribution of scores. We therefore concluded that LWCK
gives the most indicative measure of test-retest consistency for the
rating exercise referred to in this paper. A different set of scores
may have led to a different conclusion. In Table 3, it may be seen
that the self-consistency of raters 1 to 4, as measured by LwCK,
was considered ‘substantial’ according to Table 2. The self-
consistency of rater 5 was considered ‘moderate’. Conclusions can
therefore be drawn about the self-consistency of each rater and
how this may be expected to vary from rater to rater.

Table 3: Intra-Rater Consistency Averaged over all GRBAS Components

Consistncy | Consistnc
Rater | UWCK | LwCK | ICC | O00 y (1c0) y
1 0.72 0.77 0.84 | Substantial | Excellent
2 0.65 0.76 0.85 | Substantial | Excellent
3 0.53 0.64 0.75 | Substantial | Excellent
4 0.68 0.73 0.77 | Substantial | Excellent
5 0.44 0.60 0.74 | Moderate | Fair
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Table 4: Intra-rater Consistency Averaged over all 5 raters

Comp- | UWCK | LwWCK | ICC | Consistncy | Consistncy
onent (LwCK) (ICC)
G 0.64 0.77 | 0.87 | Substantial Excellent
R 0.57 0.67 | 0.76 | Substantial Excellent
B 0.55 0.66 | 0.76 | Substantial Excellent
A 0.68 0.73 | 0.80 | Substantial Excellent
S 0.59 0.68 | 0.76 | Substantial Excellent

Table 6: Multi-rater Consistency by Fleiss Kappa, Cohen Kappa and ICC

FK LwCK [ ICC | Consistncy | Consistncy
(LwCK) (ICC)
G 0.56 0.71 0.83 | Substantial Excellent
R 0.44 0.57 0.68 Moderate Fair
B 0.43 0.58 0.71 Moderate Fair
A 0.38 0.46 0.55 Moderate Fair
S 0.44 0.54 0.65 Moderate Fair

Table 4 shows UwCK, LwCK and ICC intra-rater consistency
measurements for G, R, B, A, and S, averaged over all five raters.
According to all the measurements, it appears that test-retest
consistency with R, B and S is more difficult to achieve than with
G and A.

8. Inter-rater Consistency

Measurements of inter-rater consistency between pairs of
raters for any GRBAS component may be obtained using the same
forms of Kappa and ICC as were used for intra-rater consistency.
Our rating exercise had a group of five raters, therefore ten possible
pairs. This means that there are ten pair-wise measurements of
inter-rater consistency for each GRBAS component. To reduce the
number of measurements, it is convenient to define an
‘individualised' inter-rater measurement for each rater. For each
GRBAS component, this individualised measurement quantifies
the consistency of the rater with the other raters in the group. Itis
computed for each rater by averaging all the pair-wise inter-rater
assessments which involve that rater. Thus an individualised
measure of inter-rater consistency is obtained for G, R, B, Aand S
for each rater. With five raters, the 25 measurements can be
reduced to five by averaging the individualised G, R, B, A and S
measurements to obtain a single average measure for each rater.

The UwCK, LwCK and ICC individualised inter-rater
measurements, averaged over all GRBAS components, are shown
in Table 5 for raters 1 to 5. For all raters, the average consistency
is ‘moderate’ according to LwCK and ‘fair’ according to ICC.
Raters 1, 4 and 5 have almost the same inter-rater consistency, rater
2 has slightly lower consistency and rater 2 is the least consistent
when compared with the other raters.

Table 5: Individualised Inter-rater Consistency averaged over all GRBAS

Components
Consistnc Consistnc
Rater | UWCK | LwCK | ICC (LWcK)y (1C0) y
1 0.47 0.59 0.70 Moderate Fair
2 0.40 0.52 0.60 Moderate Fair
3 0.45 0.57 0.67 Moderate Fair
4 0.48 0.60 0.71 Moderate Fair
5 0.47 0.59 0.70 Moderate Fair

9. Multi-rater Consistency

The multi-rater consistency according to the unweighted Fleiss
Kappa (FK), the generalised Cohen Kappa (with linear weighting)
and ICC, computed for the group of five raters, are shown in Table
6 for each GRBAS component. The values of UwCK were
indistinguishable from FK to the precision shown in the table.
Similarly for the values of QWCK and ICC. Quadratically
weighted FK, also not shown, would be exactly equal to ICC.
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In contrast to Table 5 which allows us to compare the overall
consistency of raters, Table 6 allows us to compare the difficulty
of achieving group consistency for each GRBAS component. It is
clear that some GRBAS components are more difficult to score
consistently than others. According to ICC, group consistency is
‘excellent’ for Grade and ‘fair’ for R, B, A and S. LwCK gives
‘substantial’ for Grade and ‘fair’ for the others. The FK and UwCK
measurements are more pessimistic due to their assumption that
the scoring is categorical. According to all measurements of multi-
rater consistency, the consistency is highest for highest, followed
by Breathiness, Roughness, Strain and Asthenia.

It should be mentioned that the classifications given by Tables
1 and 2 serve only as a rough guide to interpreting the values of
Kappa and ICC obtained. However, they are widely used despite
the fact that it seems inappropriate to use Table 2 for quadratically
weighted Kappa in view of its closeness to ICC. In particular, the
category ‘Fair’ in Tables 2 and 3 refers to quite different ranges
which may be misleading if Table 2 were used for QwCK.
Therefore, it is appropriate to refer to Table 3 for both ICC and
quadratically weighted Kappa.

10. Reference GRBAS Scores

The feasibility of performing automatic GRBAS scoring by
computer was investigated by training machine learning (ML)
algorithms for mapping acoustic feature measurements to the
familiar GRBAS scale. For the training, a set of accurate and
reliable GRBAS scores was required for each of the N subjects in
our database. We refer to these as 'reference’ GRBAS scores. A
technique for deriving these reference scores from the scores of a
group of audio-perceptual raters, such as that described in Section
1, was therefore devised. The measurements of inter-rater and
intra-rater consistency, obtained as described above, is taken into
account as a means of optimising the accuracy and reliability of
the reference scores.

Given the ‘Grade’ scores A(i, r) for subject i, with rater-index
rin the range 1 to 5, we first computed weighted average pair-wise
scores Gys(i) by equation (21), for all possible rater-pairs (r,s). The
weighting is by the LwCK intra-rater consistency measurements in
Table 3 referred to now as wi, W, Ws, Wa, Ws for raters 1 to 5
respectively.

G, (i) = w, A(i, r) +w,A(i, s)

W, + W,

(21)

The ‘Grade’ reference score for subject i is then obtained as a
weighted average of the Gs(i) values over all possible rater-pairs,
ie.
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Gy (=L Y D1, 5)G, ()

r=1 s=r+1 (22)

where L = n(n-1)/2 with n=5. The weights w(r,s) are the pair-wise
inter-rater LWCK measurements for Grade. This procedure is
performed for all subjects for Grade, and then repeated for the
other GRBAS dimensions. The weighting de-emphasises scores
from less self-consistent raters in favour of more self-consistent
ones. It also de-emphasises the scores from raters who are less
consistent with other raters.

11. Voice Quality Assessment by Computer

Considerable published research, including [12] and [13], has
not yet established a definitive methodology for GRBAS
assessment by computer. An overall CAPE-V assessment of
dysphonia, CSID [11], available commercially, is strongly related
to 'Grade’, but it does not independently assess the other GRBAS
and CAPE-V components [8]. Computerised voice quality
assessment may be carried out using digital signal processing
(DSP) to analyse segments of voice to produce mathematical
functions such as the autocorrelation function, fast Fourier
Transform and cepstrum. From such functions, acoustic features
such as the aperiodicity index (API), fundamental frequency (Fo),
harmonic-to-noise ratio (HNR), jitter, shimmer, cepstral peak
prominence (CPP), low-to-high spectral ratio (LH) and others
may be derived. However, these features are not obviously related
to GRBAS assessments of voice quality.

Perceived voice quality is strongly dependent on the short
term periodicity of the vowels and the nature of the fluctuations
in this periodicity. To measure short-term periodicity, and how
this varies over a spoken vowel, speech must be segmented into
frames. The degree of periodicity of each of these frames may
expressed as an aperiodicity index (API) which is equal to 1 - p
where p is the peak value of a suitable form of autocorrelation
function. An API of zero indicates exact periodicity and its value
increases towards 1 with increasing aperiodicity. The API is
increased by additive noise due to ‘breathiness’, fundamental
frequency or amplitude variation due to ‘roughness’ in the
operation of the vocal cords, and other acoustic features.

A sustained vowel without obvious impairment will generally
have strong short-term periodicity for the duration of the segment,
though the fundamental frequency (Fo) and loudness may vary
due to natural characteristics of the wvoice and controlled
intonation. By monitoring how the degree of short term
periodicity changes over a passage of natural connected speech,
vowels may be differentiated from consonants, thus allowing the
acoustic feature measurements to concentrate on the vowels.

Jitter is rapid and uncontrolled variation of Fo and shimmer is
rapid and uncontrolled variation of amplitude. Both these
acoustic features can be indicative of roughness in GRBAS
assessments. They will affect grade also. There are many ways
of defining jitter and shimmer as provided by the Praat software
package [32]. The HNR may be derived from the autocorrelation
function and can be indicative of breathiness in GRBAS
assessments since the 'noise' is often due to turbulent airflow.
Low-to-high spectral ratio (LH) measurements are made by
calculating and comparing, in the frequency-domain, the energy
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below and above a certain cut-off frequency, such as 1.5 kHz or
4.0 kHz. The required filtering may be achieved either by digital
filters or an FFT. A high value of LH with cut-off frequency 1.5
kHz can be indicative of asthenia [36] and strain [37] due to
imperfectly functioning vocal cords damping the spectral energy
of formants above 1.5 kHz. LH measurements with a cut-off
frequency of 4.0 kHz are useful for detecting breathiness and
voicing since the spectral energy of voiced speech (vowels) is
mostly below 4.0 kHz. CPP is widely used as an alternative to
APl and HNR as a means of assessing the degree of short term
periodicity.

As in [34], well known DSP techniques were employed [14,
35] to recognise vowels and measure the acoustic features
mentioned above, and several others. Frame-to-frame variations
in these features over time were also measured. Published DSP
algorithms and commercial and academic computer software are
available for making these measurements from digitised voice
recordings [32, 33]. Twenty acoustic features were identified by
Jalalinajafabadi [14] as being relevant to GRBAS scores. They
were measured by a combination of DSP algorithms specially
written in MATLAB and commercial software provided by
MDVP and ADSV [10, 11]. For the MATLAB algorithms, the
speech recordings were sampled at Fs = 44.1 kHz, and divided
into sequences of 75% overlapping 23.22 ms frames of 1024
samples. MDVP and ADSV use a slightly different sampling rate
and framing. Many of the features were strongly correlated and
their usefulness was far from uniform.  Therefore, some
experiments with feature selection were performed. The
usefulness of each possible sub-set of features for predicting each
GRBAS component was estimated by a combination of
correlation measurements, to reduce the dimensionality of the
task, and then a form of direct search. The use of Principle
Component Analysis’ (PCA) would have reduced the
computation, but this was not a critical factor.

Section 14 will evaluate the performance of MLR and KNNR
(with and without feature selection) and perceptual analysis
against the ‘reference GRBAS scores’.

12. Machine Learning Algorithms

We analysed the recordings of sustained vowels obtained from
the N = 102 subjects mentioned in Section 1. For each recording,
acoustic feature measurements were obtained as explained in
Section 11. A total of m = 20 feature measurements were obtained
as detailed in [14]. An Nxm matrix X of feature measurements
was defined for each of the five GRBAS components. These
matrices became the input to the machine learning (ML) algorithm
along with the Nx1 vector Y of reference GRBAS scores derived
as explained in Section 10. The ML algorithm was designed to
learn to predict, as closely as possible, the reference GRBAS
scores supplied for each subject. The prediction must be made
from the information provided by the m acoustic feature
measurements supplied for each voice segment. Two simple ML
approaches were compared [14, 35]: K-nearest neighbour
regression (KNNR) and multiple linear regression (MLR).

With KNNR, the ML information consists of a matrix X and
vector Y for each GRBAS component. Supplying the ML
algorithm with these arrays is all that is required of the training
process. K is an integer that defines the way the KNNR approach
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predicts a score for a new subject from measurements of its m
acoustic features. The prediction is based on the known scores for
K other subjects chosen according to the ‘distance’ of their
measured acoustic features from those of the new subject. The
concept of distance can be defined in various ways such as the
Euclidean distance which we adopted. The distance between the
new subject and each of the N database subjects is calculated.
Then K subjects are selected as being those that are nearest to the
new subject according to their feature measurements. A simple
form of KNNR takes the arithmetic mean of the scores of the K
nearest neighbours as the result. A preferred alternative form takes
a weighted average where the reference scores are weighted
according to the proximity of the reference subject to the new
subject.

A choice of K must be made, and this may be different for each
GRBAS component. The optimal value of K will depend on the
number, N, of subjects, the distribution of their scores and the
number of acoustic features being taken into account. K is often
set equal the square root of N, though investigations can reveal
more appropriate values. Inthis work, Jalalinajafabadi [14] plotted
the prediction error against K to obtain a suitable value of K for
each GRBAS component. This was done after selecting the most
appropriate set of acoustic features for each GRBAS component.
The values of K producing the lowest prediction errors were K=6
for grade, K=10 for roughness, K=5 for breathiness and K = 8 for
strain and asthenia.

The Multiple Linear Regression (MLR) approach computes,
for each GRBAS component, a vector g of K regression
coefficients such that

where the error-vector g is minimised in mean square value over

all possible choices of g of dimension K. It may be shown [14]
that the required vector g is given by:
=X"Y

b - (24)

where X# is the pseudo-inverse of the non-square matrix X. For a

subject whose m feature measurements x have been obtained, the
equation:

y=x"p (25)

produces a scoring estimate y. This will be close to Y(i) for each
subject i in our database, and may be expected to produce
reasonable GRBAS scores for an unknown subject.

13. Testing and Evaluation

The application developed by Jalalinajafabadi [14] made m =
20 voice feature measurements per subject. Feature selection was
applied to identify which subset of these m features gave the best
result for each GRBAS dimension. It was generally found that,
compared with including all 20 feature measurements, better
results were obtained with smaller subsets tailored to the GRBAS
dimensions. Several computational methods for feature selection
were compared [14] in terms of their effectiveness and
computational requirements. The results presented here were
obtained using a combination of correlation tables (between
feature measurements and GRBAS components) and exhaustive
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search. The best feature subsets for G, R, B, A and S are generally
different, since different feature measurements highlight different
aspects of the voice. It was found beneficial to normalise the
feature measurements to avoid large magnitudes dominating the
prediction process, especially for KNNR.

To evaluate the KNNR and MLR algorithms for mapping
acoustic feature measurements to GRBAS scores, 80 subjects were
randomly selected for training purposes from the 102 available
subjects. The remaining 22 subjects were set aside to be used for
testing the mapping algorithms once they had been trained.
Twenty ‘trials’ were performed by repeating the training and
testing, each time with a different randomisation. The same testing
approach was used for both KNNR and MLR. The trained
mapping algorithm was used to predict GRBAS scores for the 22
testing subjects from the corresponding acoustic feature
measurements. The GRBAS scores thus obtained were compared
with the known reference scores. For each trial, a value of ‘root
mean squared error’ (RMSE) was computed for each GRBAS
component over the 22 testing subjects. These RMSE values were
then averaged over the 20 trials. An RMSE of 100% would
correspond to an RMS error of 1 in the GRBAS scoring where the
averaging is over all 22 testing subjects and all 20 trials.
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Figure 1: RMSE% for SLT 1-5, KNNR & MLR with feature selection and using
all available 20 features (KNNR20 & MLR20).

A comparison of the GRBAS scoring produced by the five
SLTs and the KNNR and MLR algorithms is presented in Figure
1. This graph summarises the results of experiments carried out
by Jalalinajafabadi [14] with and without feature selection.
Measurements obtained without feature selection are labelled
KNNR20 and MLR20 since all available 20 features are taken into
account.  Comparing KNNR (with feature selection) and
KNNR20, the feature selection has reduced the prediction error
RMSE% by up to about 0.5%. Comparing MLR and MLR20, the
reduction due to feature selection is generally greater, i.e. about
1% for Roughness and up to 0.7% for the other components (apart
from Grade). With feature selection, the performances of the two
machine learning techniques appear quite similar according to the
RMSE measurements, though MLR is consistently better than
KNNR. For Asthenia and Strain, both KNNR and MLR with
feature selection deliver a lower RMSE than was obtained for each
of the SLT raters with reference to the corresponding reference-
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scores. For Grade, the KNNR and MLR values of RMSE (with
feature selection) are both markedly higher than the corresponding
values obtained for all the five SLT raters. The worst RMS
difference for Grade is about 7.5%. The results for ‘Breathiness’
are close to those of the two worst performing SLT raters, and the
MLR result for ‘Roughness’ lies between the two best and two
worst performing SLT raters. As reported by Jalalinajafabadi [14]
and further explained in [1], the RMSE taken over all GRBAS
components was found to be marginally lower for KNNR and
MLR (both with feature selection) than for each of the five
individual SLT raters.

14. Conclusions

Recordings of normal and impaired voices were obtained from
randomly selected patients and some other volunteers. These
recordings were audio-perceptually assessed by five expert
GRBAS raters to obtain a set of GRBAS scores for each recording.
Statistical methods for measuring the inter-rater and intra-rater
consistency of the scoring were investigated and it was concluded
that the linearly weighted Cohen Kappa (LwCK) was suitable for
this purpose. The measurements suggested that the GRBAS
assessments were reasonably consistent. The scores and LwCK
consistency measurements were then used to produce a set of
‘reference scores’ for training machine learning algorithms for
mapping acoustic feature measurements to GRBAS scores, and
thus performing automatic GRBAS scoring. With the reference
scores, and acoustic feature measurements extracted from each of
the 102 speech recordings by standard DSP techniques, KNNR and
MLR were found to produce comparable automatic GRBAS
scoring performances which compared favourably with the scoring
by the five SLT raters. Feature selection was applied to determine
the best subset of the twenty available acoustic features for each
GRBAS dimension.
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