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in Junbo and Jeff Mouse Mutants
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Wells2, Mahmood F. Bhutta'3, Paul K. Potter’, Steve D. M. Brown'

1 MRC Mammalian Genetics Unit, MRC Harwell, Harwell, United Kingdom, 2 Mary Lyon Centre, MRC Harwell, Harwell, United Kingdom, 3 Nuffield Department of Surgical

Sciences, University of Oxford, Oxford, United Kingdom

Abstract

Otitis media with effusion (OME) is the commonest cause of hearing loss in children, yet the underlying genetic pathways
and mechanisms involved are incompletely understood. Ventilation of the middle ear with tympanostomy tubes is the
commonest surgical procedure in children and the best treatment for chronic OME, but the mechanism by which they work
remains uncertain. As hypoxia is a common feature of inflamed microenvironments, moderation of hypoxia may be a
significant contributory mechanism. We have investigated the occurrence of hypoxia and hypoxia-inducible factor (HIF)
mediated responses in Junbo and Jeff mouse mutant models, which develop spontaneous chronic otitis media. We found
that Jeff and Junbo mice labeled in vivo with pimonidazole showed cellular hypoxia in inflammatory cells in the bulla lumen,
and in Junbo the middle ear mucosa was also hypoxic. The bulla fluid inflammatory cell numbers were greater and the
upregulation of inflammatory gene networks were more pronounced in Junbo than Jeff. Hif-1a gene expression was
elevated in bulla fluid inflammatory cells, and there was upregulation of its target genes including Vegfa in Junbo and Jeff.
We therefore investigated the effects in Junbo of small-molecule inhibitors of VEGFR signaling (PTK787, SU-11248, and BAY
43-9006) and destabilizing HIF by inhibiting its chaperone HSP90 with 17-DMAG. We found that both classes of inhibitor
significantly reduced hearing loss and the occurrence of bulla fluid and that VEGFR inhibitors moderated angiogenesis and
lymphangiogenesis in the inflamed middle ear mucosa. The effectiveness of HSP90 and VEGFR signaling inhibitors in
suppressing OM in the Junbo model implicates HIF-mediated VEGF as playing a pivotal role in OM pathogenesis. Our
analysis of the Junbo and Jeff mutants highlights the role of hypoxia and HIF-mediated pathways, and we conclude that
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targeting molecules in HIF-VEGF signaling pathways has therapeutic potential in the treatment of chronic OM.
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Introduction

Chronic middle ear effusion without the symptoms of acute
infection is termed otitis media (OM) with effusion and can be
sequel to acute bacterial otitis media. Otitis media with effusion
(OME) is the most common cause of hearing impairment in
children potentially causing language delays, learning and
behavioral problems [1,2]. About 2.2 million episodes of OME
occur annually in the US with an annual cost estimate of $4.0
billion [3].The prolonged ventilation of the middle ear with
tympanostomy tubes, also known as grommets, remains the best
treatment for OME [4]. Placement of tympanostomy tubes is the
most common operation in the UK (30,000 procedures per
annum) however the mechanism by which they work remains
uncertain. As hypoxia is a common feature of inflamed
microenvironments [5,6] the therapeutic benefits of ventilating
the middle ear may conceivably include the moderation of
hypoxia as well as relieving negative pressure and fluid drainage.

Responses to hypoxia are mediated by Hypoxia Inducible
Factor (HIF) protein a transcription factor that induces genes
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whose products restore blood supply, nutrients and energy
production to maintain tissue homeostasis. Constitutively ex-
pressed HIF-1a is modified by prolyl hydroxylase domain (PHD)
enzymes under normoxic conditions and targeted for proteasomal
degradation. Under hypoxic conditions PHD activity is limited
and HIF-1a is stabilized and forms a heterodimer with HIF-13
before translocation to the nucleus where it binds to hypoxic
response elements [7]. HIF signaling is also regulated by
inflammation at the transcriptional level via HIF-1la interactions
with the master regulator of inflammation NF-xB [8-10] and at
the translational level by cytokines such as IL-1p and TNF-a [5,6].
HIF responses are adaptive and help overcome localized ischemia
as well as regulating innate immune responses to microbial
infections [11] but chronic hypoxic inflammation may result in
dysregulated HIF signaling and lead to pathological outcomes.
Examples include fibrosis via immune cell activation [6] and the
progression of rheumatoid arthritis [12] via angiogenesis caused by
HIF-induced vascular endothelial growth factor (VEGYF). Indeed,
treatment using VEGF receptor (VEGFR) signaling inhibitors
moderates experimentally-induced arthritis [13].
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Author Summary

Otitis media with effusion (OME) is the commonest cause
of hearing loss in children, and treatment using grommets
remains the commonest surgical procedure in children.
Chronic forms of OM are known from human population
studies to have a significant genetic component, but little
is known of the underlying genes or pathways involved.
We have analyzed two chronic OM mouse models, the
Junbo and Jeff mutants, and have found that both
demonstrate hypoxia and hypoxia-inducible factor (HIF)
mediated responses. There is upregulation of inflammato-
ry pathways in the mutant middle ears and in Junbo
elevation of cytokines that modulate Hif-10. Hif-1o levels
are raised in the middle ear as well as downstream targets
of HIF such as Vegfa. We explored the effects of small-
molecule inhibitors of HSP90 and VEGF receptor signaling
in the Junbo mutant and found significant reductions in
hearing loss, the occurrence of bulla fluid, and moderation
of vascular changes in the inflamed middle ear mucosa
with the VEGF receptor inhibitors. The study of the Junbo
and Jeff mutants demonstrates the role of hypoxia and HIF
mediated pathways in OM pathogenesis, and it indicates
that targeting the HIF-VEGF pathway may represent a
novel approach to therapeutic intervention in chronic OM.

Although hypoxia might be expected in the inflammatory
conditions of chronic OM the evidence is inconsistent. Some
studies have found that OME fluids in the middle ear cavity (bulla)
have oxygen tensions similar to venous blood, of ~40 Torr
[14,15]. Another study reported pOsy in mucoid and serous OME
fluids were lower ~29-32 Torr. However, these values were not
significantly different than pOg values in barotrauma bulla fluids
[16]. Nevertheless, there are a few studies to suggest that the
downstream HIF signaling protein VEGF plays a role in
experimental and clinical OME. Injection of recombinant VEGF
into the rat bulla causes fluid effusion, mucosal inflammation and
an increase in vascular permeability [17]. Vegf, Vegfrl (also
known as Flt1) and Vegfr2 (also known as Kdr) gene and protein
expression are upregulated in the endotoxin-induced rat model of
OME [18,19] and Vegf protein is elevated in mouse middle and
mner ear tissue after challenge with Haemophilus influenzae [20].
Moreover VEGF mRNA and protein are detectable in bulla fluids
of patients with OME [18,21]. However, these studies have not
investigated the role of hypoxia and HIF signaling in the inflamed
middle ear.

There is a significant genetic component predisposing to
recurrent or chronic OM in human populations [22-26].
However, while a number of association studies have been carried
out, sample sizes are relatively small and confirmation will be
required through larger scale analyses and replication. A number
of underlying OM susceptibility genes have been discovered in the
mouse which represents a powerful model for dissecting the
underlying pathways. These genes apppear to fall into three
categories; those which are involved in craniofacial development
and thereby Eustachian tube morphology and function, TLR4/
MyD88 pathway genes that regulate innate immune function, and
TGF-f pathway genes that modulate pro-inflammatory responses
[27]. The two OM mouse mutants funbo and Jeff; generated by N'-
ethyl-V -nitrosourea mutagenesis, represent powerful models for
human OM as unlike many other mouse mutants they are non-
syndromic and do not show the wide-ranging pleiotropic effects
often associated with middle ear inflammatory disease in other
models [27]. Jeff encodes a mutation in the Fbxoll protein [28]
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and funbo encodes a mutation in the transcription factor Evil [29].
Heterozygote Junbo (Fbo/+) and Jeff (jf7+) mice develop OM
spontaneously in the absence of other organ pathology or overt
immune deficiency [28,29]. There is an association between
polymorphisms in FBXO0!1, the human homologue of the Jeff
mutant protein, in OME and recurrent OM [24] and severe OM
[25], but there is no such association with EVII polymorphisms.

In this work we have analyzed the two OM mouse models funbo
and feff by hypoxia labeling, transcriptional profiling and, in funbo,
using small-molecule inhibitors. We have discovered that the
response to chronic inflammatory hypoxia via Hif-low signaling
and VEGF pathways is critical for chronic OM. Our analysis of
the two mutants provides insight into the molecular and genetic
mechanisms of OM and identifies potential new therapeutic
targets for OM.

Results

Hypoxia in the middle ear

We surmised that the inflamed microenvironment in chronic
OM is hypoxic and proceeded to test this hypothesis by the
analysis of the Junbo and Jeff mutants. To test whether the
inflammatory cells that accumulate within the middle ear were
hypoxic we injected mice i vivo with pimonidazole (PIMO), a
marker that labels cells and tissues with a pOy<<10 Torr (~1.5%
Oy). FACS analysis revealed hypoxia in viable and apoptotic
polymorphonuclear cell (PMN) populations in the purulent bulla
fluids of Fho/+ (7.1£1.7x10° cells per ul, n=10) and serous
effusions of Jf/+ mice (55%25x10° cells per ul, n=>5) (Figure 1H
and Table 1). In addition, immunohistochemistry showed hypoxia
in F4/80-positive foamy macrophages (m®) within the bulla, the
epithelium and in the connective tissues of the thickened, inflamed
middle ear mucosa of 7bo/+ mice (Figure 1A, 1C, 1D, 1G) but not
in the normal thin mucosa of wild type (+/+) mice (Figure 1B).
Hypoxia was evident at 4 wk, increased at 7-8 wk and remained
chronically elevated for >30 wk (Figure 1E). The only part of the
tubotympanum that appeared hypoxic under normal physiological
conditions was the Eustachian tube (Figure 1F). In Jf/+ mice
PIMO labeling was restricted to inflammatory cells in the bulla
fluids and there was no detectable mucosal labeling (Figure 11, 1J).

Chronic inflammatory hypoxia and upregulation of HIF
and VEGF pathways

Evil and Fbxoll were expressed in the inflammatory cells that
accumulate within the bulla fluids of 7bo/+ and Ff7+ mice, but
only Fuil (23-37 fold) was expressed at higher levels relative to a
normoxic baseline control of Jbo/+ or Jf/+ venous blood white
blood cells (WBC). The Evil target genes fun (28-50 fold) and Fos
(5-10 fold) were also elevated in jbo/+ and Jf/+ bulla fluid
inflammatory cells relative to blood WBC (Figure S1).

We found elevated expression of Hif-Ia (6-12 fold) and HIF
responsive genes Vegfa (41-122 fold) and Slc2al (also known as
Glutl) (8 fold) in fbo/+ and Ff7+ bulla fluid WBC relative to blood
WBC (Figure S1) and Vegf signaling arrays showed elevated
expression in a wide spectrum of Vegf pathway genes (Table S1).
In Jbo/+ and Jf/+ mice we obtained data for 84 and 77 genes
respectively and there was a strong similarity in pattern of
upregulation of genes belonging to functional groups such as
Vegf/growth factors and their receptors, Akt and Pi-3-Kinases,
phospholipases A2, heat shock proteins, Hif~Io. and Amt (Hif~1p).
44% of the genes were significantly elevated (>2-fold, P<<0.05) in
both mutants; 18% genes were elevated in both mutants with
levels in either Jf/+ or Jbo/+ achieving statistical significance; 4%
of genes were elevated in both mutants but £>0.05, and 8% of
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Figure 1. The inflamed middle ear of the Jbo/+ and Jf/+ mice is hypoxic. (A) Jbo/+ mouse labeled with pimonidazole (PIMO), arrows indicate
hypoxia in [ep] epithelium, [f] connective tissue fibrocyte, [m®] foamy macrophage; [tm] temporomandibular bone, [m] thickened inflamed mucosa,
[ex] exudate. Note * the cleft is an artifact produced by tissue processing. (B) The normal thin mucosa [m] is not labeled in Junbo wild type (+/+) mice.
(C) An unlabeled Jbo/+ mouse is a negative control for anti-PIMO antibody. (D) Hypoxia in foamy m®. (E) The middle ear in Jbo/+ mice is chronically
hypoxic. The labeling index scores one point each for PIMO-positive staining in inflammatory cells in the bulla; mucosal epithelium; and mucosal
connective tissues. Histogram bars are mean = SEM. 4 wk group size n=8, 7-8 wk n=10, 13-15 wk n=5, 31-37 wk n=7. (F) The Eustachian tube
epithelium [et] is hypoxic in a +/+ mouse but the adjacent nasopharynx epithelium [np] is normoxic. (G) Bulla fluid cytology from a Jbo/+ mouse
shows F4/80 foamy m® and polymorphonuclear cells (PMN). (H) FACS analysis of PIMO-labeled Jbo/+ bulla fluids stained with Ly6G and Ly6C (PMN
marker), for PIMO (hypoxia), and Annexin V (apoptosis marker). The PMN population was gated on the Ly6G and Ly6C signal. Population (1) normoxic
viable PMN, (2) hypoxic viable PMN, (3) hypoxic apoptotic PMN. (I) Jf/+ mouse PIMO labeling was restricted to inflammatory cells in the bulla fluids
and there was no detectable mucosal labeling, (J) Jeff +/+ mouse does not show PIMO labeling. Scale bars: AB,ClJ=50 um; D,G= 20 um;

F=100 pm.
doi:10.1371/journal.pgen.1002336.g001

genes were up-regulated in fbo/+ mice but beneath detection
limits for 7f/+. 11% of genes were unaltered in one or other
mutant; 14% unaltered in both mutants and only 1 gene was
significantly lower in both mutants (Table S1, Figure S2).

In 8 wk old mice, Vegfa protein was elevated ~74-fold in 7//+
bulla fluids compared with 7//+ sera (median values of 5,793 pg/
ml versus 78 pg/ml; P<0.001) and ~335-fold in jbo/+ bulla fluids
compared with Jbo/+ sera (median values of 28,123 pg/ml versus
84 pg/ml; P<0.001) (Figure 2). The difference between Vegfa
titers in ff/+ and jbo/+ bulla fluids did not achieve statistical
significance, nor did titer differences between Jeff and Junbo
mutant and wild type (+/+) sera (Kruskall Wallis ANOVA and
Dunn’s multiple comparison post hoc tests).

Using inflammation arrays we obtained data for 84 genes in
Jbo/+ and 79 genes in Jf/+ mice. Again there was a strong
similarity in the pattern of upregulation of gene expression for
chemokines, cytokines, their receptors and acute phase response
mediators. 35% of genes were significantly elevated (>2-fold,
P<0.05) in both mutants; 31% genes were elevated in both
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mutants with either 7f/+ or Jbo/+ achieving statistical significance;
11% of genes were elevated in both mutants but did not achieve
statistical significance (P>0.05); 6% of genes were up-regulated in
Jbo/+ mice but beneath detection limits for 7f/+. 10% of genes
were unaltered in one or other mutant, 5% unaltered in both and
only 2 genes were significantly lower (>2-fold, £<<0.05) in one or
both mutants (Table S2, Figure S3).

II-1B and Tnf-o are known modulators of Hif-1a translation
and array data indicated that they were significantly elevated
(P<0.05) in fbo/+ (I-1P 26-fold; Tnf-o 78-fold) but elevations in
Jf7+ expression (II-1B 3-fold; Tnf-o 50-fold) were not statistically
significant (Table S2). We therefore went on to determine their
protein titers. II-1B and Tnf-a were elevated in Fbo/+ bulla fluid
but not consistently so in 7f/+ mice (Figure 3). Two of 22 Ff/+
mice had Tnf-o bulla fluid titers of 571 and 7,352 pg/ml
respectively whereas 20/29 7bo/+ mice had a median bulla fluid
titer of 4,598 pg/ml (range 2,156 to 15,293 pg/ml). The Tnf-a
serum titers for mutant and +/+ mice were comparable and

ranged from 24 to 107 pg/ml. One of 22 7f/+ mice had an II-1B
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Table 1. Viable and apoptotic PMN populations in bulla fluids of Jbo/+ and Jf/+ mice are hypoxic.

PMN hypoxic PMN normoxic PMN
age n viable apoptotic viable apoptotic viable apoptotic
Jbo/+ 5-8 wk 7 61*4 21x2 124 49+8 79+5 45+5P
12-17 wk 13 67%5 15%2 22+6 85+3? 63%6 11+2
Jt+ 7-11 wk 12 52+7 40+8 45+12 16+2 47+12 83*2

SEM. Statistics were performed using 2-tailed Student t-tests.
doi:10.1371/journal.pgen.1002336.t001

bulla fluid titer of 1920 pg/ml whereas 28/29 Jbo/+ mice had a
median bulla fluid titer of 2,862 pg/ml (range 1,319 to 5,819 pg/
ml). The II-1B serum titers for mutant and +/+ mice were
comparable and ranged from 15 to 27 pg/ml Figure 3).

Inhibitors of VEGFR signaling and HSP90 moderate
hearing loss, angiogenesis, and lymphangiogenesis in
Junbo mice

To investigate whether Vegf has a pro-inflammatory role in
OM we employed a variety of small-molecule inhibitors of
VEGFR and assessed their effects on OM when delivered
systemically to the Junbo mouse mutant. The rationale for using
the Junbo model and not Jfeff was that the OM phenotype was more
penetrant. The percentage of 7bo/+ mice with bilateral OM was
higher at 78% versus 46% in J7//+ (Figure S4) making auditory
brainstem response (ABR) measurements more robust (see below).
Moreover, hearing loss over the standard test period from day 28
to day 56 was greater in fbo/+ (averaging 7-14 dB in independent
experiments) than in ff/+ (~4 dB) (Figure 4 and Figure S5). When
Jbo/+ mice were treated with VEGFR signaling inhibitors BAY
43-9006 (30 mg/kg), SU-11248 (20 mg/kg) and PTK787/ZK
222584 (50 mg/kg or 75 mg/kg) (hereafter referred to as
PTK787) there was a significant moderation of hearing loss
(Figure 4). The trial with BAY 43-9006 was terminated after 2 wk
when mice suddenly became piloerect. Although BAY 43-9006
was not as well tolerated as PTK787 and SU-11248, the positive
therapeutic response to three separate VEGFR signaling inhibitors
confirms our data, indicating that HIF mediated VEGF is a critical
pathway in OM pathogenesis. We also proceeded to target HIF
signaling directly using a HSP90 inhibitor, 17-DMAG. HSP90 is a
chaperone of HIF-lo. We found that its use also moderated
hearing loss (Figure 4).

We went on to examine the middle ear mucosal changes in mice
treated with VEGFR inhibitors. Morphometric analysis of the
mucosal histology was performed on 50 mg/kg and 75 mg/kg
PTK787 treatment groups (Figure 5). ANOVA analyses revealed
significant reductions in blood vessel number at the higher 75 mg/
kg dose; lymphatic vessel number was reduced at both dosages; but
neither the mucosal thickness nor lymphatic vessel diameter was
reduced by PTK787 treatment (Figure 5). In the BAY 43-9006
trial, treated Jbo/+ mice had reduced lymphatic vessel number
(10.8%1.1 n=11 mice versus 16.4%£1.0 n=11, P=0.0012) and
lymphatic vessel dilation (9.9%1.0 um 7= 11 versus 14.2%0.9 um
n=11, P=0.0072) compared with sham treated controls but
mucosal thickness and blood vessel number were not altered.

To qualitatively assess the effect of drug treatment on bulla fluid
accumulation, the middle ears were sampled in the 75 mg/kg
PTK787, SU-11248 and 17-DMAG treated and sham treated
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Populations are expressed as percentages of their parent viable or apoptotic populations. The population of hypoxic apoptotic PMN was larger (*P=0.0024) in 12—
17 wk Jbo/+ than in 5-8 wk Jbo/+ mice and conversely, the normoxic apoptotic PMN population was larger (°P=0.00027) in 5-8 wk Jbo/+ than 12-17 wk Jbo/+ mice.
Propidium iodide staining showed that 7+2% of the Jbo/+ and 8=2% of the Jf/+ PMN populations were necrotic. Mean polymorphonuclear cell (PMN) percentages *

Jbo/+ mice. In each trial, a significantly lower (P<0.05) proportion
of treated Jbo/+ mice yielded bulla fluid samples than sham
treated Jbo/+ controls (Figure S6).

Discussion

Single gene mutations in mouse Eya4, Tird, p73, MyD88, Faus,
E2f4, Plg, Fbxoll and Evil give rise to chronic spontaneous OM
phenotypes, in several cases as part of a spectrum of pleiotropic
effects, and are candidate susceptibility genes for human OM. In
human populations there are significant associations between OM
and polymorphisms in FBXO11, TLR4 and PAIl. However, the
mechanisms and pathways by which these mutations result in
chronic middle ear inflammatory disease are poorly understood. It
has been proposed that they may act by a variety of different
mechanisms including altered Eustachian tube function and
reduced clearance of middle ear pathogens, dysregulation of
innate immunity via TLR4/MyD88 pathways and dysregulation
of anti-inflammatory mechanisms via TGF-p pathways [27]. We
have analyzed the jJunbo and jJeff mutants using a number of

P<0.001
1000000 ~ =10
P<0.001 n=
100000 - n=15
10000 4
E
2 1000 - NS NS
1 1
n=14 n=15 n=14 n=10
100 - — —_— ==
10 4
7
1 L I T L ] T
+H+  JfI+ Jfi+ ++ Jbol+ Jbol+
serum bulla serum bulla
fluid fluid

Figure 2. Vedfa titers are elevated in bulla fluids of 8-week-old
Jbo/+ and Jf/+ mice compared to serum. Protein titers of Vegfa in
serum and bulla fluids of 8 wk Junbo (+/+ and Jbo/+) and Jeff (+/+ and
Jf/+) mice. The gray zone represents the lowest assay standard (7 pg/
ml). Each box represents the median with 25 and 75% inter-quartile
ranges, with whiskers representing the data range (minimum and
maximum). A Kruskall-Wallis test was performed followed by Dunn’s
multiple comparison tests for post hoc testing.
doi:10.1371/journal.pgen.1002336.g002
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Figure 3. ll-1f and Tnf-a titers in bulla fluids are elevated in
Jbo/+ but not Jf/+ mice. Protein titers of (A) Tnf-o. and (B) II-1B in
serum and bulla fluids of 8 wk Junbo (+/+ and Jbo/+) and Jeff (+/+ and
Jf/+) mice. Figures in the gray zone represent the numbers of samples
with values beneath the lowest assay standard (23 pg/ml for Tnf-o. and
12 pg/ml for II-1B. Each box and whisker symbol represents the
minimum, 25% quartile, median, 75% quartile and maximum for
reportable measurements while single values are represented by dots.
Since the level of Tnf-o and II-1B in many Jf/+ and Jbo/+ sera and Jf/+
bulla fluid samples was beneath detection limits, a statistical analysis
was not performed.

doi:10.1371/journal.pgen.1002336.9003

approaches, including transcriptional profiling and, in Junbo mice,
small-molecule inhibitors to dissect the genetic pathways and
pathophysiological processes leading to chronic OM.

The characteristic lesion of OM is the accumulation of fluid and
inflammatory cells in the bulla and mucosal inflammation. At
other sites of inflammation, hypoxia is likely to occur as a result of
the uptake of oxygen by inflammatory cells coupled with their
physical separation from an underlying vascular bed [30]. Using
PIMO labeling we have identified cellular hypoxia in inflamma-
tory cells in the purulent 7bo/+ and serous Jf/+ fluids that
accumulate within the 56 ul bulla [31]. However mucosal
hypoxia was only detectable in Jbo/+ mice. The driver of mucosal
hypoxia may be the unmet oxygen demand of inflammatory cells
in bulla fluids which in turn is presumably a function of their
numbers and viability. The cellularity of Jbo/+ bulla fluids is
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certainly >100-fold higher than in Jjf/+ mice but there are
substantial apoptotic PMN cell populations (ranging from 20—
40%) and a necrotic cell population (7-8%) which may affect
overall oxygen requirements (Table 1). Apoptosis/cell death
pathways and oxidative stress pathways would be expected to be
upregulated as part of the inflammatory process. Human chronic
OME effusions (with or without bacterial infection) range from
purulent to serous and mucoid and contain viable and degener-
ative inflammatory cells [32,33] and VEGF protein [21] which is a
critical downstream mediator of hypoxia signaling. Our results
provide direct evidence of cellular hypoxia in bulla fluid
inflammatory cells whereas the data for pOy in human OME
bulla fluids is inconsistent [14—16]. Mucosal gas exchange is the
main method of ventilation of the normal tubotympanum and the
resting oxygen tension of the middle ear is comparable to that of
venous blood [34]. Surgical ventilation causes relative hyperoxia of
the middle ear [35] and a change in oxygen tension might also be
an important mechanism in the down-regulation of HIF signaling.
One therapeutic benefit may be reduced mucin secretion as
conserved promoter regions of respiratory mucin genes expressed
in human middle ear bind to HIF-1a [36,37].

While the influx of inflammatory cells into the bulla lumen may
be a key event in the development of hypoxia and activation of
HIF signaling via stabilization of HIF-1a protein the activation of
inflammatory cells and upregulation of II-1f8, Tnf-at and Nfkb in
particular may further modulate HIF signaling [5,6]. Transcrip-
tional profiling showed upregulation of inflammatory gene
networks in the bulla fluids of 7bo/+ and Jf/+ mice relative to
blood WBC. II-1B and Tnf-o serum titers are comparable in
mutant and +/+ mice suggesting that OM is not a cause of
systemic inflammation, nor is it part of an ongoing systemic
inflammatory condition in jJunbo and Jeff models. A number of
inflammatory genes associated with OM have been published; for
areview, see [38] and [39-63] and our array data adds another 20
genes to this list (Table S2). However, middle ear inflammation
appeared less pronounced in {7+ mice. In line with Jjf/+ serous
bulla fluids containing fewer inflammatory cells, protein titers for
the key cytokines Il-1B and Tnf-oe were only elevated in a minority
of mice. This degree of biological variation between individual 7f/
+ mice may explain the variability between pooled samples in
which elevated expression levels for genes such as -1 and Tnf~o
failed to achieve statistical significance. The relative contributions
of II-1p and Tnf-a to hypoxic modulation of Hif-la and Vegf
signaling in the middle ear may be greater in fbo/+ mice.
Nevertheless in both mutants upregulation of HIF signaling was
evident from the elevated expression of multiple Vegf signaling
pathway genes (Figure S1 and Table S1) including Vegfa and in
Jbo/+ its principle receptor Kdr (Vegfr2). Elevated Tegfa gene
expression was accompanied by elevated Vegfa protein in jbo/+
and Jf/+ mice (Figure 2).

VEGT acts to induce angiogenesis, increases vascular perme-
ability and recruitment of neutrophils and macrophages [64,65]
and may therefore contribute to OM by the accumulation of fluid
and inflammatory cells within the bulla causing conductive
hearing loss and secondary cochlear dysfunction via diffusion of
cytokines through the round window [66,67]. We tested the
hypothesis that VEGF signaling contributes to OM pathogenesis
by treating Junbo mice, which have highly penetrant OM, with the
VEGFR signaling inhibitors PTK787, SU-11248, and BAY 43-
9006 and the HSP90 inhibitor 17-DMAG. Their use reduced
hearing loss (Figure 4). Histological analysis of the middle ear
mucosa in PTK787 treated Jbo/+ mice revealed reduced blood
vessel formation (at the higher 75 mg/kg dose) and lymphatic
vessel formation (at 50 mg/kg and 75 mg/kg dosages) consistent
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Figure 4. Treatment of Jbo/+ mice with VEGF receptor inhibitors and the HSP90 inhibitor 17-DMAG moderates hearing loss. (A)
Change in Auditory Brain Stem response (AABR) in decibels (dB) in 15 d treatment with BAY 43-9006 (+/+, sham Jbo/+, drug Jbo/+ n= 5, 11, 11
respectively); (B) AABR in 28 d treatment with SU-11248 (+/+, sham Jbo/+, drug Jbo/+ n=10, 15, 15 respectively); (C) AABR in 21 d treatment with
50 mg/kg PTK787 (+/+, sham Jbo/+, drug Jbo/+ n=9, 13, 15 respectively); (D) AABR in 28 d treatment with 75 mg/kg PTK787 (+/+, sham Jbo/+, drug
Jbo/+ n=40, 60, 40 respectively); (E) AABR in 28 d treatment with 17-DMAG (+/+, sham Jbo/+, drug Jbo/+ n=9, 15, 15 respectively). In each
experiment, the response to drug treatment was compared to the sham control. Histogram bars are mean = SEM. Statistics were conducted using 1-

tailed Mann Whitney U tests.
doi:10.1371/journal.pgen.1002336.g004

with the anti-angiogenic effects of VEGFR signaling inhibitors
(Figure 5). Only lymphatic vessel number and diameter were
significantly moderated by BAY 43-9006 but this may be a
reflection of the initial acute inflammatory change taking place in
the first 2 wk which was the end point of this trial. SU-11248
treated mice were not examined by histology.

Another effect of treatment with PTK787, SU-11248 and 17-
DMAG was to reduce the proportion of fbo/+ mice that yielded
bulla fluid samples (Figure S6). This may reflect moderation of
VEGYF induced vascular permeability in treated mice. The
implication is that bulla fluids recoverable from treated Jbo/+
mice come from those which are less responsive to treatment, and
this would confound comparisons of inflammatory cell numbers
and gene expression between treated and control mice.

The range of molecular targets for VEGFR and HSP90
inhibitors will require further clarification. VEGF receptors are
members of the Receptor Tyrosine Kinase (RTK) superfamily and
small-molecule VEGFR inhibitors have multi-kinase inhibitor
profiles against different VEGF receptors as well as other RTK
families. PTK787 is an inhibitor of VEGFRI1, VEGFR2,
VEGFR3, PDGFR-f and c-Kit; SU-11248 acts as a VEGFR2,
PDGFR-B, FLLT3 and c-Kit inhibitor; and BAY 43-9006 acts as a
VEGFR2, FLT3, PDGFR-B, c-Kit and Rafl inhibitor [68].
VEGFR inhibitors therefore have the potential to disrupt
additional pathways [69] that might contribute to OM pathogen-
esis. We therefore also targeted HIF-VEGF signaling pathways
using 17-DMAG treatment to inhibit HSP90. HSP90 chaperones
a number of proteins involved in HIF-VEGF signaling including
HIF-1a itself, the mitogenic signaling protein AKT, and RAF-1 in
the RAS/RAF/MEK/ERK MAPK pathway [70-72]. In addi-
tion, phosphorylation of HSP90 by its client protein VEGFR2 is
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required for receptor signaling to endothelial NO synthase [73].
However, 17-DMAG can also attenuate inflammatory pathways
[74] and may also contribute to the amelioration of OM observed
in Junbo mice.

The expression of mutant Fvi/ and Fbxoll proteins in
inflammatory cells in bulla fluids has the potential to perturb a
variety of signaling pathways that may affect the response to
hypoxia and contribute to OM pathogenesis. The Fbxol1 gene is a
member of the large I-box family which are specificity factors for
the SCF E3 ubiquitin ligase complex, and in homozygote Jeff
mutants there are developmental defects in palate, eyelid and lung
airway as a result of perturbed Tgf- signaling [75]. EVII is a co-
transcriptional repressor of SMAD3 and the mutation in Evi/ in
Junbo mice may also exert effects via TGF-f3 signaling. EVI1 has two
zinc-finger domains and a central transcription repression domain.
Repressor activities via the proximal N-terminal zinc-finger domain
include c-Jun N-terminal kinases (JNK) and TGF-f signaling via
direct binding of SMAD3. SMADS3 activity is also reduced by
recruitment of the co-repressor CtBP by the central repressor
domain [76]. There is considerable cross-talk between TGF-f and
HIF-1o pathways. For example, SMAD3 and HIF-lo are co-
activators of VEGF expression [77,78] and mutations affecting
TGF-B signaling might be expected to perturb hypoxia responses.

The distal zinc-finger domain of EVI1 has three zinc-finger
motifs [79] and the Junbo mutation is a non-conservative
Asn763lle change located within three amino acids of a contact
residue in the second zinc-finger motif. Interactions with the distal
zinc finger domain raise AP-1 activity by increased expression of
Jun and Fos [80]. AP-1 and Jun also interact with HIF pathways
[81,82] and play a role in the pathogenesis of inflammatory bone
and skin disease [83]. We found Evi/, and its target genes fun and
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Figure 5. Treatment of Jbo/+ mice with PTK787 reduces angiogenesis and lymphangiogenesis in the inflamed middle ear mucosa.
Junbo (+/+ and Jbo/+) mice were treated with either 50 mg/kg or 75 mg/kg of PTK787 for 4 wk, the sham control Jbo/+ groups received vehicle
alone. The middle ear mucosa in treated Jbo/+ mice had (A) fewer blood vessels in the 75 mg/kg treatment group and (B) fewer lymphatic vessels in
the 50 mg/kg or 75 mg/kg treatment groups. (C) The mucosa thickness and (D) mucosal lymphatic vessel diameter did not differ significantly from
sham treated controls. The +/+ group sizes were n=8; Jbo/+ drug treatment groups n=15; Jbo/+ sham group n = 28. Histogram bars represent mean
+ SEM. Data in panels A, B and C were analyzed by one-way ANOVAs and Bonferroni’s multiple comparison tests for post hoc testing. Lymphatic
vessel number (panel B) was not normally distributed and a Kruskall-Wallis test was performed followed by Dunn’s multiple comparison tests for post

hoc testing.
doi:10.1371/journal.pgen.1002336.g005

Fos were relatively upregulated in the bulla of both 7bo/+ and Jf7+
mice. However we cannot usefully speculate on the possibility of
differential expression of Fun and Fos by mutant Evil?**’* and wild
type Evil*’* protein. Interpretation is problematic because bulla
gene expression levels were normalized to their respective blood
baselines, and we have no Evil protein data.

Our studies on the mutants Junbo and Jeff; highlights chronic
inflammatory hypoxia as a key mechanism of OM pathogenesis
and underlines the role of Hif-1ar signaling in the underlying
genetic and pathophysiological mechanisms that predispose to
chronic OM. Jeff has a less pronounced inflammatory OM
phenotype, nevertheless the underlying hypoxic signaling mech-
anism acting via VEGF appears similar to the Funbo model. As a
consequence we have identified potential new therapeutic targets
for OM. The practical clinical implications for using small-
molecule VEGFR signaling inhibitors or other anti-VEGF agents
and HSPI0 inhibitors are limited in pediatric applications as they
are used principally for the treatment of cancer [68,69,84].
Ototopical delivery appears to be the most likely way forwards to
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achieve therapeutic levels of small-molecule inhibitors in the bulla
fluids whilst reducing any adverse effects caused by systemic
administration. In summary, our findings on the genetic bases for
OM in the Junbo and Jeff mutants have underlined the importance
of hypoxia mechanisms in the development of chronic OM and as
a consequence have revealed potential new therapeutic strategies
that merit further exploration.

Materials and Methods

Ethics statement
The humane care and use of mice in this study was under the
appropriate UK Home Office license.

Mice

Junbo mice were congenic on a C3H/HeH background [29]
and J¢ff mice were on a mixed C3H/HeH and C57BL/6] genetic
background [28]. The mice were specific pathogen free and had
normal commensal nasopharyngeal flora [29].
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Blood and bulla fluid collection

Blood was collected from the retro-orbital sinus of mice under
terminal anesthesia induced by an ip. overdose of sodium
pentobarbital. After removal of any adherent material on the
external surface of the tympanic membrane, a hole in the
membrane was made by removing the malleus with a clean pair of
forceps and collecting the bulla fluid with a pipette. Bulla fluid
volume was measured by collecting 0.5 ul aliquots and the total
pooled samples from both ears generally ranged between 0.5—
2.0 pl. Bulla fluid was collected into 100 pl aliquots of the
appropriate buffer for each analysis (see below) or into 20 pl of
RNase free water for RNA isolation. Whole blood for RNA
isolation was collected in RNAlater (Qiagen).

Hematology and bulla fluid analysis

Samples of bulla fluids from 8 wk old Jbo/+ and Jf7/+ mice were
analyzed for total WBC counts on an Advia 120 hematology
analyzer (Bayer). Cytology preparations of bulla fluids were made
on electrostatically charged slides (Superfrost Plus, Menzel Glaser),
methanol fixed then stained with rat anti-mouse I'4/80 Mab
(MCA497) (AbD Serotech) and counterstained with haematoxylin.

Pimonidazole labeling for hypoxia

Jbo/+, Jf/+ and their respective wild type (+/+4) controls were
labeled 3 h in vivo by i.p. injection with 60 mg/kg pimonidazole
(PIMO) (Hypoxyprobe, HPI Inc) dissolved in 100 pl of sterile PBS.
For FACS, bulla fluid samples were collected into 100 pl aliquots
of ice cold FACS buffer then stained with anti-PIMO FITC, anti-
mouse Ly6G and Ly6C PerCP-Cy5.5 (BD Pharminogen) and anti-
Annexin V Biotin (BD Pharminogen)/Streptavidin Pacific Blue
(Invitrogen). Propidium iodide (BD Pharminogen) was used to
assess necrotic cells. 50 pl EDTA blood samples were diluted in
100 ul FACS buffer then treated with RBC lysis buffer (BD
Pharminogen). Unlabeled bulla fluid PMN and non-staining
peripheral (normoxic) PMN from PIMO-labeled mice served as
negative controls. For histology, the head with the tympanic
membranes left intact was fixed for 48 h in 10% neutral buffered
formalin then decalcified with Formical (Decal Corp) for 72 h.
Wax embedded 3 um dorsal plane sections of the middle ear were
immunostained for PIMO or stained with haematoxylin and eosin.

Real-time quantitative PCR (RT-gPCR) using Applied
Biosystems’ TagMan assays

Total RNA from 4 independent pooled samples of Jbo/+ and
Jf/+ bulla fluids was isolated using Nucleospin RNA/protein
isolation kits (Macherey-Nagel). Individual blood samples from
Jbo/+ and Jf/+ mice were extracted using Mouse RiboPure kits
(Ambion) then the RNA was made into 3 separate sample pools.
Each sample pool comprised 10-15 Fbo/+ mice or 5-9 JFf/+ mice.
RNA quantity was measured on a Nanodrop 8000 (Thermo Fisher
Scientific) and the integrity assessed by gel electrophoresis. 1 pg of
RNA from each pool was used to synthesize double stranded
cDNA with a High Capacity cDNA archive kit (AB).

RT-gPCR was performed using TagMan gene expression
assays using Fast Universal PCR Master Mix on a 7500 Fast Real-
Time PCR System (AB). Three technical replicates were
performed for each TagMan assay. Data was normalized using
Ppia as the endogenous control and fold changes of expression
(ddCits) of bulla fluid WBC over blood WBC were calculated using
AB 7500 software v2.0.1. This software allowed us to average the
technical replicates for each pool and then average the biological
replicates for the n=4 bulla fluid sample pools and n=3 blood
sample pools. The fold change data is shown by mean relative
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quantification (RQ) * min/max error bars representing 95%

Confidence Limits (CL).

Real-time quantitative PCR (RT-gPCR) using
SABiosciences’ RT? Profiler PCR array system

Using the biological replicate pools of bulla fluids and bloods
described above, Vegf signaling (PAMM-091c¢) and Inflammation
Response and Autoimmunity (PAMM-077¢) arrays (RT?-qPCT™,
SA Biosciences) were performed. For each plate, 0.5 pg of RNA was
converted to double stranded ¢cDNA using the RT? first strand
synthesis kit. After mixing with the SABiosciences RT? qPCR
mastermix, the cDNA was pipetted into the 96 well profile plate and
run on a 7500 Fast Real-Time PCR System (AB). Data was
normalized using B-actin as an endogenous control and fold changes
of expression of bulla fluid WBC over blood WBC were calculated
using SA Biosciences online software (http://pcrdataanalysis.
sabiosciences.com/pcr/arrayanalysis.php). The significance of the
fold change is shown as a P value based on a Student’s t-test of the
replicate 2/(—dCt) values for each gene in the n= 3 control blood
and n=4 bulla fluid sample pools.

Vegfa, II-1B, and Tnf-o protein assays

Blood was collected into serum-gel clotting activator tubes
(Sarstedt). Measured volumes of bulla fluid were added to 100 pl
of ice cold PBS, then vortexed and centrifuged at 500 xg for 5 min
at 4°C. Bulla fluid supernatants and serum samples were stored at
—80°C: until assay using Quantikine mouse Vegfa, II-1p and Tnf-o
ELISA kits (R&D Systems). Some serum and bulla fluid samples
had cytokine titers beneath the lowest assay standard (23 pg/ml
for Tnf-a and 12 pg/ml for II-1B) and according to the
manufacturer’s instructions these results are not reportable.

Drug treatment and auditory brain-stem response (ABR)

27-29 d old +/+ and jbo/+ mice were dosed by oral gavage
once a day with 30 mg/kg BAY 43-9006, 20 mg/kg SU-11248,
50 or 75 mg/kg PTK787, or 10 mg/kg 17-dimethylaminoethyla-
mino-17-demethoxy-geldanamycin (17-DMAG). +/+ mice were
treated with drug as a control for unforeseen ototoxicity. DMSO
stock solutions of BAY 43-9006 and SU-11248 (LC Laboratories)
or aqueous solutions of PTK787 and 17-DMAG were frozen at
—20°C then diluted 10-fold in 2% methyl cellulose for
administration. Drug and sham jJbo/+ groups were matched for
age, gender and pre-trial ABR threshold (range 30-60 dB) and the
sham group received vehicle alone. The anesthetized mouse was
placed in right lateral recumbency with the speaker positioned
1.5 cm from the right ear, and a click-evoked ABR performed
[85]. ABR measurements were made one day before the first
treatment and one day after the last treatment. For ABR with
recovery, anesthesia was induced by 1.p. injection with a mixture of
10 mg/kg xylazine and 100 mg/kg ketamine and was reversed by
5 mg/kg atipamezole hydrochloride.

To assess whether treatment with SU-11248, 75 mg/kg
PTK787, or 17-DMAG treatment altered bulla fluid accumulation
a note was made whether fluids were recoverable.

Histology

Middle ear histology was assessed in the BAY 43-9006, and the
50 or 75 mg/kg PTK787 trial mice. Morphometric evaluation was
by blinded assessment of a standard 1000 pum length of middle ear
mucosa (avoiding the cochlea and the region close to the
Eustachian tube), the mucosal thickness was averaged from 5
measurements, and the numbers of capillaries and lymphatic
vessels (and their diameter) were recorded.
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Statistics

D’Agostino & Pearson omnibus normality tests were performed
on PTK787 histology data and Vegfa titer data. Blood vessel
number, lymphatic vessel diameter and mucosal thickness were
normally distributed and this data was subsequently analyzed
using one-way ANOVAs and Bonferroni’s multiple comparison
tests for post hoc testing. Lymphatic vessel number and Vegfa
titers were not normally distributed and a Kruskall-Wallis test was
performed followed by Dunn’s multiple comparison tests for post
hoc testing. Arcsine transformed proportion data from FACS was
analyzed using Student t-tests. Chi-squared tests were used to
analyze tympanic membrane appearance (cloudy or clear) and the
presence or absence of bulla fluids. All other data including ABR
measurements (where interval data was in 5 dB increments) was
analyzed using Mann Whitney U tests. In the drug trials, 1-tailed
tests were used to test positive response to therapy, otherwise 2-
tailed tests were used and values P<<0.05 were considered
significant. Data are presented as mean * SEM (n) or in the
case of Vegfa, Tnf-oe and II-1f protein titers with box and whisker
plots.

Supporting Information

Figure S1 Gene expression in 8 wk fbo/+ and ff/+ bulla fluid
inflammatory cells compared with blood WBC. Relative Quan-
tification (RQ) of gene expression using TagMan RT-qPCR for
(A) Jbo/+ and (B) Jf/+ mice. Data represents mean RQ) = min/
max 95% CL, n=13 blood and n=4 bulla fluid sample pools.
(TTF)

Figure S2 Vegf pathway gene expression in 8 wk 7bo/+ and Jff/+
bulla fluid inflammatory cells compared with blood WBC. Gene
expression: 1. 44% elevated in both jbo/+ and jf/+ (>2 fold,
P<0.05). 2. 12% elevated in both but only 77+ P<0.05. 3. 6%
elevated in both but only 7bo/+ P<<0.05. 4. 4% elevated in both Jbo/
+ and Jf/+ but neither achieve statistical significance. 5. 8%
elevated in Jbo/+ but undetected in Jf/+. 6. 11% elevated in one
mutant but unaltered in the other. 7. 14% unaltered in both 7bo/+
and Jf/+. 8. 1% lower in Jbo/+ and Jf/+.

(TIF)

Figure 83 Inflammation pathway gene expression in 8 wk 7bo/+
and Jf/+ bulla fluid WBC compared with blood WBC. Gene
expression: 1. 35% elevated in both Jbo/+ and Jf/+ (>2 fold,
P<0.05). 2. 12% elevated in both but only 7/+ P<<0.05. 3. 19%
elevated in both but only 7bo/+ P<0.05. 4. 11% elevated in both
Jbo/+ and Jf/+ but neither achieve statistical significance. 5. 6%
elevated in fbo/+ but undetected in 77+. 6. 10% elevated in one
mutant but unaltered in the other. 7. 5% unaltered in both 7bo/+
and ff/+. 8. 1% elevated in jf/+ and lower in Fbo/+. 9. 2%
unaltered in Jbo/+ and lower in Jjf/+.

(TIF)

Figure 84 'The gross OM phenotype is more penetrant in Jbo/+
than in 7f/+ mice. (A) The cloudy appearance ear drum is a semi-
quantitative measure of bulla fluid accumulation. Wild type (+/+)
mice have clear eardrums and the malleus is easily recognizable,
while affected Jbo/+ and jf7+ mice have cloudy ear drums. (B) The
proportion of Jbo/+ mice with bilateral and unilateral eardrum
cloudiness is greater than in jf/+ mice. fbo/+ n=>54, Jf/+
n=>50. 2x3 contingency table Chi-square=9.99, 2 df, 2-tailed
P=0.007. Nevertheless, the majority of Jbo/+ and Jf/+ mice
without grossly evident fluid have some degree of microscopic OM.
(TIF)
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Figure 85 'The increase in ABR (dB) thresholds between day 28
and day 56 is greater in Jbo/+ than jf/+ mice. Wild type (+/+)
Junbo and +/+ Feff mice have ABR thresholds of 20-30 dB range
and thresholds do not rise significantly in the day 28 to day 56
interval. In both Jbo/+ and Jf/+ mice, the ABR thresholds at day
28 are elevated, but the rise is greater in jJbo/+ than Jf/+ mice.
Because of the higher incidence of unilateral OM, ABRs were
recorded from both ears in Jeff mice. Mean = SEM, n = number of
mice. Paired Mann Whitney 2-tailed tests.

(TTF)

Figure S6 The occurrence of fluid in bulla fluid is reduced in
Jbo/+ mice treated with VEGT receptor inhibitors and the HSP90
mhibitor 17-DMAG. 75 mg/kg PTK787 treated n=40, sham
n=30. 2x2 contingency table Chi-square =4.92, 2 df, 2-tailed
P=0.0265. 20 mg/kg SU-11248 treated n = 30, sham n= 30. Chi-
square =4.51, 2 df, 2-tailed P=0.0338. 10 mg/kg 17-DMAG
treated 7=30, sham n=30. Chi-square=4.31, 2 df, 2-tailed
P=0.0379.

(TTEF)

Table S1 Vegf pathway gene expression in 8 wk Jbo/+ and Jf7/+
bulla fluid inflammatory cells compared with blood WBC. Gene
expression was determined using RT?-qPCR arrays (SA Biosci-
ences). Fold-change is the normalized gene expression in the bulla
fluid sample divided by the normalized gene expression in the
control blood sample. Data represents mean fold-change with
values >2 indicated in red and those <—2 indicated in blue. P
values are based on a Student’s t-test of the replicate 2/(— Delta
Ct) values for n=3 blood and n=4 bulla fluid sample pools.A:
This gene’s average threshold cycle is relatively high (>30) in
either the control or the test sample, and is reasonably low in the
other sample (<30). B: This gene’s average threshold cycle is
relatively high (>30), meaning that its relative expression level is
low, in both control and test samples. C: This gene’s average
threshold cycle is either not determined or greater than the defined
cut-off value (default 35), in both samples meaning that its
expression was undetected, making this fold-change result
erroneous and un-interpretable.

(XLS)

Table S2 Inflammatory gene expression in 8 wk 7bo/+ and Jf/+
bulla fluid inflammatory cells compared with blood WBC.
References are given to previously published genes that are
modulated in otitis media. *Genes that are upregulated in both
mutants that have not been previously associated in the literature
with OM.

(XLS)

Acknowledgments

We thank the staff in ward 4 in the Mary Lyon Centre and Sue Morse for
the husbandry and humane care of these mice; Jim Humphreys and Dave
Shipston in the pathology team; Gordon McGregor, Adele Austin,
Caroline Barker, Jenny Corrigan, and Liz Darley in the histology team;
Anne Southwell and Deen Quwailid for genotyping; Steve Thomas and
Adrian Ford for preparing the figures.

Author Contributions

Conceived and designed the experiments: MTC HET SDMB. Performed
the experiments: MTC HET DW TAH PP MRR HH SB AP LV TP KV
PKP. Analyzed the data: MTC HET DW TAH PP MRR HH AP PKP
SDMB. Contributed reagents/materials/analysis tools: AP SW. Wrote the
paper: MTC MFB SDMB.

October 2011 | Volume 7 | Issue 10 | e1002336



References

1.

20.

23.

24.

27.

28.

Davidson J, Hyde ML, Alberti PW (1989) Epidemiologic patterns in childhood
hearing loss: a review. Int J Ped Otorhinolaryngol 17: 239-266.

. Kubba H, Pearson JP, Birchall JP (2000) The aetiology of otitis media with

effusion: a review. Clin Otolaryngol Allied Sci 25: 181-194.

. Rosenfeld RM, Culpepper L, Doyle KJ, Grundfast KM, Hoberman A, et al.

(2004) Clinical practice guideline: otitis media with effusion. Otolaryngol Head
Neck Surg 130: S95-S118.

. Lous J, Burton MJ, Felding JU, Ovesen T, Rovers MM, et al. (2005) Grommets

(ventilation tubes) for hearing loss associated with otitis media with effusion in
children. Cochrane Database Syst Rev CD001801.

. Frede S, Berchner-Pfannschmidt U, Fandrey ] (2007) Regulation of hypoxia-

inducible factors during inflammation. Meth Enzymol 435: 405-419.

. Dehne N, Briine B (2009) HIF-1 in the inflammatory microenvironment. Exp

Cell Res 315: 1791-1797.

. Doedens A, Johnson RS (2007) Transgenic models to understand hypoxia-

inducible factor function. Meth Enzymol 435: 87-105.

. Walmsley SR, Print C, Farahi N, Peyssonnaux C, Johnson RS, et al. (2005)

Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-
kappaB activity. J Exp Med 201: 105-115.

. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, et al. (2008)

NF-xB links innate immunity to the hypoxic response through transcriptional
regulation of HIF-lo.. Nature 453: 807-811.

. Taylor C'T (2008) Interdependent roles for hypoxia inducible factor and nuclear

factor-kappaB in hypoxic inflammation. J Physiol 586: 4055-4059.

. Zinkernagel A, Johnson R, Nizet V (2007) Hypoxia inducible factor (HIF)

function in innate immunity and infection. J Mol Med 85: 1339-1346.

. Oliver K, Taylor C, Cummins E (2009) Hypoxia. Regulation of NFkB signalling

during inflammation: the role of hydroxylases. Arthritis Res Ther 11: 215.

. Grosios K, Wood J, Esser R, Raychaudhuri A, Dawson J (2004) Angiogenesis

inhibition by the novel VEGF receptor tyrosine kinase inhibitor, PTK787/
7K222584, causes significant anti-arthritic effects in models of rheumatoid
arthritis. Inflamm Res 53: 133-142.

. Ingelstedt S, Jonson B, Rundcrantz H (1975) Gas tension and pH in middle ear

effusion. Otol Rhinol Laryngol 84: 198-202.

. Hergils L, Magnuson B (1997) Middle ear gas composition in pathologic

conditions: mass spectrometry in otitis media with effusion and atelectasis. Ann
Otol Rhinol Laryngol 106: 743-745.

. Takahashi M, Niwa H, Yanagita N (1990) PO2 levels in middle ear effusions

and middle ear mucosa. Acta Otolaryngol Suppl 471: 39-42.

. Kim TH, Chae SW, Kim HJ, Jung HH (2005) Effect of recombinant vascular

endothelial growth factor on experimental otitis media with effusion. Acta
Otolaryngol 125: 256-259.

. Jung HH, Kim MW, Lee JH, Kim YT, Kim NH, et al. (1999) Expression of

vascular endothelial growth factor in otitis media. Acta Otolaryngol 119:
801-808.

. Chae SW, Kim SJ, Kim JL, Jung HH (2003) Expression of vascular endothelial

growth factor receptors in experimental otitis media in the rat. Acta Otolaryngol
123: 559-563.

Trune DR, Larrain BE, Hausman FA, Kempton JB, MacArthur CJ (2010)
Simultaneous measurement of multiple ear proteins with multiplex ELISA
assays. Hear Res 2010 Dec 7: doi:10.1016/j.heares.2010.11.009.

Sekiyama K, Ohori J, Matsune S, Kurono Y (2011) The role of vascular
endothelial growth factor in pediatric otitis media with effusion. Auris Nasus
Larynx 3: 319-24 Epub 2011 Jan 11.

. Casselbrant ML, Mandel EM, Rockette HE, Kurs-Lasky M, Fall PA, et al.

(2004) The genetic component of middle ear disease in the first 5 years of life.
Arch Otolaryngol Head Neck Surg 130: 273-278.

Daly KA, Brown WM, Segade F, Bowden DW, Keats BJ, et al. (2004) Chronic
and recurrent otitis media: a genome scan for susceptibility loci. Am J Hum
Genet 75: 988-997.

Segade F, Daly KA, Allred D, Hicks PJ, Cox M, et al. (2006) Association of the
FBXO11 gene with chronic otitis media with effusion and recurrent otitis media:
The Minnesota COME/ROM family study. Arch Otolaryngol Head Neck Surg
132: 729-733.

. Rye MS, Wiertsema SP, Scaman ESH, Oommen J, Sun W, et al. (2011)

FBXOLI1, a regulator of the TGFB pathway, is associated with severe otitis
media in Western Australian children. Genes Immun;2011 Feb 3. Epub ahead
of print doi:10.1038/gene.2011.2.

5. Daly KA, Hoffman HJ, Kvaerner KJ, Kvestad E, Casselbrant ML, et al. (2010)

Epidemiology, natural history, and risk factors: panel report from the ninth
international research conference on otitis media. Int J Ped Otorhinolaryngol 74:
231-240.

Rye MS, Bhutta MF, Cheeseman MT, Burgner D, Blackwell JM, et al. (2010)
Unraveling the genetics of otitis media - from mouse to human and back again.
Mammalian Genome 22: 66-82.

Hardisty-Hughes RE, Tateossian H, Morse SA, Romero MR, Middleton A,
et al. (2006) A mutation in the F-box gene, Fbxol1, causes otitis media in the Jeff
mouse. Hum Mol Genet 15: 3273-3279.

. Parkinson N, Hardisty-Hughes RE, Tateossian H, Tsai HT, Brooker D, et al.

(2006) Mutation at the Evil Locus in Junbo mice causes susceptibility to otitis
media. PLoS Genet 2: €149. doi:10.1371/journal.pgen.0020149.

@ PLoS Genetics | www.plosgenetics.org

10

30.

31.

32.

33.

34.

36.

37.

38.

39.

40.

41.

42.

43.

44.

46.

47.

48.

49.

50.

51.

52.

54.

o
=

56.

VEGF Pathways in Chronic Otitis Media

Walmsley SR, Cadwallader KA, Chilvers ER (2005) The role of HIF-lalpha in
myeloid cell inflammation. Trends Immunol 26: 434-439.

Huangfu M, Saunders J (1983) Auditory development in the mouse: structural
maturation of the middle ear. ] Morphol 176: 249-259.

Giebink GS, Juhn SK, Weber ML, Le CT (1982) The bacteriology and cytology
of chronic otitis media with effusion. Ped Infect Dis 1: 98-103.

Sipila P, Karma P (1982) Inflammatory cells in mucoid effusion of secretory otitis
media. Acta Otolaryngol 94: 467-472.

Sadé J, Ar A (1997) Middle ear and auditory tube: middle ear clearance, gas
exchange, and pressure regulation. Otolaryngol Head Neck Surg 116: 499-524.

. Felding JU, Rasmussen JB, Lildholdt T (1987) Gas composition of the normal

and the ventilated middle ear cavity. Scand J Clin Lab Invest Suppl 186: 31-41.
Kerschner JE (2007) Mucin gene expression in human middle ear epithelium.
Laryngoscope 117: 1666-1676.

Young HW, Williams OW, Chandra D, Bellinghausen LK, Pérez G, et al.
(2007) Central role of Mucac expression in mucous metaplasia and its
regulation by conserved 5" elements. Am J Respir Cell Mol Biol 37: 273-290.
Juhn SK, Jung MK, Hoffman MD, Drew BR, Preciado DA, et al. (2008) The
role of inflammatory mediators in the pathogenesis of otitis media and sequelae.
Clin Exp Otorhinolaryngol 1: 117-138.

Iino Y, Kakizaki K, Katano H, Saigusa H, Kanegasaki S (2005) Eosinophil
chemoattractants in the middle ear of patients with eosinophilic otitis media.
Clin Exp Allergy 35: 1370-1376.

Nonaka M, Ogihara N, Fukumoto A, Sakanushi A, Pawankar R, et al. (2009)
Poly(I:C) synergizes with Th2 cytokines to induce TARC/CCL17 in middle ear
fibroblasts established from mucosa of otitis media with effusion. Acta
Otolaryngol Suppl 562: 57-62.

Moon SK, Woo JI, Lee HY, Park R, Shimada J, et al. (2007) Toll-like receptor
2-dependent NF-kappaB activation is involved in nontypeable Haemophilus
influenzae-induced monocyte chemotactic protein 1 up-regulation in the spiral
ligament fibrocytes of the inner ear. Infect Immun 75: 3361-3372.

Leichtle A, Hernandez M, Ebmeyer J, Yamasaki K, Lai Y, et al. (2010) CC
chemokine ligand 3 overcomes the bacteriocidal and phagocytic defect of
macrophages and hastens recovery from experimental otitis media in TNF—/—
mice. ] Immunol 184: 3087-3097.

Tong HH, Long JP, Shannon PA, DeMaria TF (2003) Expression of cytokine
and chemokine genes by human middle ear epithelial cells induced by influenza
A virus and Streptococcus pneumoniae opacity variants. Infect Immun 71:
4289-4296.

Kita H, Himi T (1999) Cytokine and chemokine induction using cell wall
component and toxin derived from gram-positive bacteria in the rat middle ear.
Acta Otolaryngol 119: 446-452.

. Harimaya A, Fujii N, Himi T (2009) Preliminary study of proinflammatory

cytokines and chemokines in the middle ear of acute otitis media due to
Allotococcus otitidis. Int J Pediatr Otorhinolaryngol 73: 677-680.

Kariya S, Okano M, Fukushima K, Nomiya S, Kataoka Y, et al. (2008)
Expression of inflammatory mediators in the otitis media induced by Helicobacter
pylori antigen in mice. Clin Exp Immunol 154: 134-140.

Skovhjerg S, Roos K, Nowrouzian F, Lindh M, Holm SE, et al. (2010) High
cytokine levels in perforated acute otitis media exudates containing live bacteria.
Clin Microbiol Infect 16: 1382-1388.

Zhao SQ, Li J, Liu H, Zhang QG, Wang Y, et al. (2009) Role of interleukin-10
and transforming growth factor beta 1 in otitis media with effusion. Chin
Med J (Engl) 122: 2149-2154.

Long JP, Tong HH, Shannon PA, DeMaria TT (2003) Differential expression of
cytokine genes and inducible nitric oxide synthase induced by opacity phenotype
variants of Streptococcus pneumoniae during acute otitis media in the rat. Infect
Immun 71: 5531-5540.

Emonts M, Veenhoven RH, Wiertsema SP, Houwing-Duistermaat JJ,
Walraven V, et al. (2007) Genetic polymorphisms in immunoresponse genes
TNFA, IL6, 1110, and TLR4 are associated with recurrent acute otitis media.
Pediatrics 120: 814-823.

Matkovi¢ S, Vojvodi¢ D, Baljosevic I (2007) Cytokine levels in groups of patients
with different duration of chronic secretory otitis. Eur Arch Otorhinolaryngol
264: 1283-1287.

Mattila PS, Nykinen A, Eloranta M, Tarkkanen J (2002) Adenoids provide a
microenvironment for the generation of CD4(+), CD45RO(+), L-selectin(—),
CXCR4(+), CCR5(+) T lymphocytes, a lymphocyte phenotype found in the
middle ear effusion. Int Immunol 12: 1235-1243.

. Leichtle A, Hernandez M, Pak K, Yamasaki K, Cheng CF, et al. (2009) TLR4-

mediated induction of TLR2 signaling is critical in the pathogenesis and
resolution of otitis media. Innate Immun 15: 205-215.

King P, Ngui J, Oppedisano F, Robins-Browne R, Holmes P, et al. (2008) Effect
of interferon gamma and CD40 ligation on intracellular monocyte survival of
nontypeable Haemophilus influenzae. APMIS 116: 1043-1049.

. Rezes S, Késmarki K, Sipka S, Sziklai I (2007) Characterization of otitis media

with effusion based on the ratio of albumin and immunoglobulin G
concentrations in the effusion. Otol Neurotol 28: 663-667.

Hong CK, Park DC, Kim SW, Cha CI, Cha SH, et al. (2008) Effect of paranasal
sinusitis on the development of otitis media with effusion: influence of
Eustachian tube function and adenoid immunity. Int J Pediatr Otorhinolaryngol

72: 1609-1618.

October 2011 | Volume 7 | Issue 10 | e1002336



57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Sabharwal V, Ram S, Figueira M, Park IH, Pelton SI (2009) Role of
complement in host defense against pneumococcal otitis media. Infect Immun
77: 1121-1127.

Jaatinen T, Ruuskanen O, Truedsson L, Lokki ML (1999) Homozygous deletion
of the CYP2IA-TNXA-RP2-C4B gene region conferring C4B deficiency
associated with recurrent respiratory infections. Hum Immunol 60: 707-714.
Chen A, Li HS, Hebda PA, Zeevi A, Swarts JD (2005) Gene expression profiles
of early pneumococcal otitis media in the rat. Int J Pediatr Otorhinolaryngol 69:
1383-1393.

Hernandez M, Leichtle A, Pak K, Ebmeyer J, Euteneuer S, et al. (2008) Myeloid
differentiation primary response gene 88 is required for the resolution of otitis
media. J Infect Dis 198: 1862-1869.

Li HS, Doyle W], Swarts JD, Lo CY, Hebda PA (2003) Mucosal expression of
genes encoding possible upstream regulators of Na+ transport during
pneumococcal otitis media. Acta Otolaryngol 123: 575-582.

Granath A, Uddman R, Cardell LO (2010) Increased TLR7 expression in the
adenoids among children with otitis media with effusion. Acta Otolaryngol 130:
57-61.

Kamimura M, Himi T, Kataura A (1996) Cell adhesion molecules of
experimental otitis media in the rat. Acta Otolaryngol 116: 857-862.

Angelo LS, Kurzrock R (2007) Vascular endothelial growth factor and its
relationship to inflammatory mediators. Clin Cancer Res 13: 2825-2830.
Nagy J, Benjamin L, Zeng H, Dvorak A, Dvorak H (2008) Vascular
permeability, vascular hyperpermeability and angiogenesis. Angiogenesis 11:
109-119.

Penha R, Escada P (2007) Interrelations between the middle and inner ear in
otitis media. Int Tinnitis J 9: 87-91.

Juhn SK, Hamaguchi Y, Goycoolea M (2009) Review of round window
membrane permeability. Acta Otolaryngol 105(s457): 43-48.

Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor
signalling - in control of vascular function. Nat Rev Mol Cell Biol 7: 359-371.
Kiselyov A, Balakin KV, Tkachenko SE (2006) VEGF/VEGFR signalling as a
target for inhibiting angiogenesis. Expert Opin Investig Drugs 16: 83-107.
van der Bilt JD, Soeters ME, Duyverman AM, Nijkamp MW, Witteveen PO,
et al. (2007) Perinecrotic hypoxia contributes to ischemia/reperfusion-accelerated
outgrowth of colorectal micrometastases. Am J Pathol 170: 1379-1388.
Milkiewicz M, Doyle JL, Fudalewski T, Ispanovic E, Aghasi M, et al. (2007)
HIF-1oe and HIF-2a: play a central role in stretch-induced but not shear-stress-
induced angiogenesis in rat skeletal muscle. J Physiol 583: 753-766.

@ PLoS Genetics | www.plosgenetics.org

1

73.

74.

76.

77.

78.

79.

80.

81.

82.

83.

84.

VEGF Pathways in Chronic Otitis Media

. Fukuyo Y, Hunt CR, Horikoshi N (2010) Geldanamycin and its anti-cancer

activities. Cancer Lett 290: 24-35.

Duval M, Le Boeuf F, Huot J, Gratton JP (2007) Src-mediated phosphorylation
of Hsp90 in response to vascular endothelial growth factor (VEGF) is required
for VEGF receptor-2 signaling to endothelial NO synthase. Mol Biol Cell 18:
4659-4668.

Madrigal-Matute J, Lopez-Franco O, Blanco-Colio LM, Muiioz-Garcia B,
Ramos-Mozo P, et al. (2010) Heat shock protein 90 inhibitors attenuate
inflammatory responses in atherosclerosis. Cardiovasc Res 86: 330-337.

. Tateossian H, Hardisty-Hughes RE, Morse S, Romero MR, Hilton H, et al.

(2009) Regulation of TGF-B signalling by Fbxol1, the gene mutated in the Jeff
otitis media mouse mutant. PathoGenet;Published online 2009 July 6. doi:
10.1186/1755-8417-2-5.

Goyama S, Kurokawa M (2009) Pathogenetic significance of ecotropic viral
integration site-1 in hematological malignancies. Cancer Sci 100: 990-995.
Jeon SH, Chae BC, Kim HA, Sco GY, Seo DW, et al. (2007) Mechanisms
underlying TGF-betal-induced expression of VEGF and Flk-1 in mouse
macrophages and their implications for angiogenesis. J Leukoc Biol 81: 557-566.
Sanchez-Elsner T, Botella LM, Velasco B, Corbi A, Attisano L, et al. (2001)
Synergistic cooperation between hypoxia and transforming growth factor-beta
pathways on human vascular endothelial growth factor gene expression. J Biol
Chem 276: 38527-38535.

Morishita K, Parker DS, Mucenski ML, Jenkins NA, Copeland NG, et al. (1988)
Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-
dependent myeloid leukemia cell lines. Cell 54: 831-840.

Tanaka T, Nishida J, Mitani K, Ogawa S, Yazaki Y, et al. (1994) Evi-1 raises
AP-1 activity and stimulates c-fos promoter transactivation with dependence on
the second zinc finger domain. J Biol Chem 269: 24020-24026.

Laderoute KR (2005) The interaction between HIF-1 and AP-1 transcription
factors in response to low oxygen. Semin Cell Dev Biol 16: 502-513.

Yu B, Miao ZH, Jiang Y, Li MH, Yang N, et al. (2009) c-Jun protects hypoxia-
inducible factor-lalpha from degradation via its oxygen-dependent degradation
domain in a nontranscriptional manner. Cancer Res 69: 7704-7712.

Zenz R, Efer] R, Scheinecker C, Redlich K, Smolen J, et al. (2008) Activator
protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. Arthritis
Res Ther 2008;10(1): 201. Epub 2008 Jan 18.

Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic
HSP90 complex in cancer. Nat Rev Cancer 10: 537-549.

. Zheng QY, Johnson KR, Erway LC (1999) Assessment of hearing in 80 inbred

strains of mice by ABR threshold analyses. Hearing Res 130: 94-107.

October 2011 | Volume 7 | Issue 10 | e1002336



