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1 Introduction

Knee osteoarthritis is a disease characterized by progressive degradation of articular cartilage via
mechanical forces [1]. In the United States alone, more than 9 million people suffer pain and
reduced mobility as a result of knee osteoarthritis, with an economic burden exceeding $100
billion [2]. Additionally, the number of patients who require treatment but are unsuitable for joint
replacement surgery is projected to rise; bridging of this treatment gap is clinically important [3].
Osteoarthritis progression may be inhibited by reducing exposure to large compressive loads [4],
particularly on the medial side where damage is most common [5]. Consequently, interventions
such as knee braces have been developed to postpone disease progression by reducing medial

knee loads.

Unfortunately, knee braces are not uniformly effective. In one study, 25% of participants
discontinued brace use within 3 months, citing a lack of perceived benefit and some discomfort
[6]. Further, in vivo measurements of joint space [7-9] and joint load [10] showed that bracing
may not reduce medial loads for some subjects. To interpret these inconsistent results and
improve future brace designs, we must improve our understanding of the biomechanical factors

that contribute to brace effectiveness.

There are three primary mechanisms through which a knee brace might unload the medial
condyle: direct application of an external brace abduction moment, altered gait dynamics, or
modified muscle activation [11]. Previous studies have measured brace abduction moments up
to 11Nm [12], which could theoretically decrease medial compartment loads by 11% [13].
Additionally, bracing can alter gait kinematics [14—16], kinetics [17-19], and antagonistic co-
contraction of quadriceps, hamstrings, and gastrocnemii [17,20]. These parameters also vary

with osteoarthritis severity [21,22], which complicates efforts to understand brace effectiveness.



Since it is not currently feasible to measure in vivo loads in a native knee, the link between each

of these observed changes and contact loads is not well-established.

One recent study showed, using high-speed radiography, that bracing increases medial joint
space by approximately 10% during stance, without inducing corresponding changes in ground
reaction forces (GRFs) [23]. This evidence indicates that bracing decreases dynamic medial
cartilage loading. Yet, neither medial joint space, nor the increase induced by bracing, was
constant throughout stance. It is unclear how much of this variation was due to factors such as
the mechanical action of the brace, muscle coordination, or even subtle shifts in gait mechanics
that were not captured by the GRF. Computational modeling provides a viable approach to
probe the relative contributions of each factor to internal joint loads within the musculoskeletal

system [24].

Therefore, the purpose of the current study was to quantify the relative contributions of the
applied brace abduction moment, gait dynamics, and muscle activation to reduction of medial
loads during gait, using a detailed musculoskeletal model. We hypothesized that bracing would
reduce medial knee loads not simply by applying an external brace moment, but also by inducing
changes in both gait dynamics and neuromuscular control. Further, we expected to see
differences in the neuromuscular response between asymptomatic and osteoarthritis groups. A
secondary aim was to investigate differences in these mechanisms between two different knee

braces.



2 Methods

2.1 Participants

Participants were 20-65 years old, recreationally active and able to walk a city block (400 m), not
currently taking medications for any neurological, cardiovascular, or metabolic disorders, and
had no lower-limb injuries or surgeries within the last year (Table 1). Seventeen participants with
moderate radiographic (Kellgren-Lawrence, KL > 1) and symptomatic medial knee
osteoarthritis, diagnosed by an orthopaedic surgeon, formed the osteoarthritis group.
Osteoarthritis participants had been prescribed a knee brace, but had not used one prior to this
study. Eighteen participants with no history of any lower-limb disease formed the control group.
Participants completed the WOMAC questionnaire to assess knee health [25,26], and provided

written, informed consent. The study was approved by the institutional ethics review board.



2.2 Knee Braces
Two off-the-shelf osteoarthritis knee braces were used in this study: OA Assist and OA Adjuster
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Figure 1). Both designs employ a deformable lateral beam to apply an abduction moment to the

knee joint via three-point-bending [27], but exhibit substantial design differences. The OA



Assist brace has a single lateral beam and a screw-based load adjustment mechanism (
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Figure 1A), while the OA Adjuster 3 brace has both medial and lateral beams and a hinge-based
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Figure 1B). Each brace was fitted per manufacturer guidelines, and the abduction load was
iteratively adjusted to a maximal level that each subject perceived as tolerable for a 4-hour bout

of brace usage; a previous study reported daily brace usage of 4.7 + 4.4 hours [28].

2.3 Measurements

Eighty-one retroreflective markers were adhered to participants’ limbs using elastic straps and
tape [29]. Kinematics were recorded at 200Hz using an eleven-camera motion capture system

(Qualisys, Sweden) while ground reaction forces were measured synchronously at 1000Hz using



six tandem force platforms (AMTI, MA, USA). Participants wore their own shoes. Eight

retroreflective markers were affixed to the lateral brace beam to compute brace adduction
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Figure 1A,B), which were multiplied by calibrated brace stiffness (
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Figure 1C,D) to yield brace abduction moments (
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Figure 1E,F) [30].

Surface electromyograms (EMG) (Trigno, Delsys Inc, MA, USA) were recorded at 1000Hz from
twelve muscles on the braced leg: rectus femoris, vastus medialis, vastus lateralis, biceps
femoris, semitendinosus, medial gastrocnemius, lateral gastrocnemius, tibialis anterior, soleus,

gluteus maximus, gluteus medius, and tensor fascia lata. Electrodes were located per Seniam



guidelines (www.seniam.org), except for vastus lateralis and vastus medialis. Due to geometric
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Figure 1), electrodes for these muscles were placed distal to the brace strap, but as far as possible
from the knee joint to avoid regions of muscle innervation [31] and large skin motion artefact

[32].

2.4 Procedure
Participants performed two thirty-second treadmill gait trials (not reported) and eight overground
gait trials at self-selected speed in each of three conditions in the following order: unbraced,

wearing an OA Adjuster 3 brace, and wearing an OA Assist brace. The OA Assist brace was



always tested last due to its greatest potential interference with EMG sensors (
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Figure 1A,B).

Subsequently, participants performed maximum voluntary isometric contractions at the ankle,
hip, and knee using a dynamometer (Biodex Medical Systems, NY, USA). Exercises included:
seated knee flexion and extension with knee flexed 90°; ankle plantar- and dorsi-flexion with
neutral ankle and knee flexed 100°; supine hip extension against hip restraining belt with the hip
flexed 30°; and hip abduction with the hip abducted 20°. For each exercise, participants

performed two, three-second contractions with verbal encouragement, followed by 30 seconds of



rest [33]. Finally, participants obtained standing full-length radiographs to measure frontal plane

knee alignment [34], medial knee joint space [35], limb length, and pelvis width.

2.5 Data Processing

Marker trajectories and ground reaction forces were low-pass filtered at 6Hz and 12Hz,
respectively using a second order zero lag butterworth filter [36] in MATLAB (R2012b, The
MathWorks, MA, USA). Electromyogram data were band-pass filtered (20-450Hz), rectified,
enveloped using a 6Hz low-pass butterworth filter [37], and normalized to the maximum
observed signal across all gait and isometric trials [33,38]. For each subject and brace condition,
the first “clean” trial of the eight attempts was exported for musculoskeletal modeling. A “clean”
trial required alternating, independent foot placement on three successive force platforms such

that all contralateral and ipsilateral external ground reaction forces were measured for the stride.

2.6 Musculoskeletal Model

A generic musculoskeletal model with 96 muscles and 3-degree-of-freedom (DOF) hip joints, 1
DOF knee joints, and 1 DOF ankle joints [39] was modified to include subject-specific static
frontal plane alignment and frontal-plane hinge joints at medial and lateral knee contact locations
[40,41]. These hinge joints were locked at O degrees during scaling and inverse kinematics, and
remained at this default position when “unlocked” (in OpenSim terminology) to enable reporting
of moments and muscle moment arms at each contact location. The model was scaled to each
participant using radiographic leg length, pelvis width and anatomical markers. Inverse
kinematics, residual reduction (RRA), and muscle analysis were performed using OpenSim 3.2
[42]. Inverse kinematics solved an optimization problem at each time step for the generalized
coordinates (joint angles and translations) that positioned the skeletal model to best-match

experimental marker trajectories [42]. Residual reduction (RRA) was used to resolve net inverse



dynamic moments or forces for each generalized coordinate, taking into account inertia and
external loads. Recognizing that segment inertial properties and skeletal motion have limited
accuracy [43], RRA reduced discrepancies between measured external forces and inertial forces
by i) recommending an adjustment to each subject’s torso centre-0f-mass (COM) location and
i) making small, temporally-smooth adjustments within measurement error (<1 deg or 1cm
pelvis translation) to generalized coordinates using a proportional-derivative controller [44].
Joint angles and moments were reported along generalized coordinate axes, computed using an
intrinsic rotation sequence; this corresponds with a joint coordinate reference frame [45].
Muscle Analysis was performed in OpenSim to extract muscle moment arms for each DOF.
Subsequently, muscle forces were estimated in MATLAB using static optimization with an
objective function (SO-1) that minimized the muscle area-weighted sum of squared of muscle
stress [40], with additional weight factors of 1.5 on gastrocnemii, 2 on hamstrings and 1 on all
other muscles. Weighting each muscle by its area ensures that sub-division of a muscle into
multiple rope-like actuators does not inherently alter the total cost of muscle recruitment [46].
Placing additional weights on gastrocnemii and hamstrings muscles improves (i.e. reduces)
prediction of in vivo knee contact loads by penalizing activation of bi-articular muscles that span
the knee [47]. Muscle forces were constrained to equilibrate inverse dynamic hip flexion, hip
rotation, knee flexion, and ankle plantarflexion moments [40]. Compressive medial and lateral
tibiofemoral contact loads, acting along the long axis of the tibia, were estimated using a quasi-

static frontal-plane moment balance [48, equation 1], which equilibrated the net inverse dynamic



knee adduction moment, including the brace abduction moment (
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Figure 1). Finally, the individual contribution of each muscle and external load to the medial

compartment force was quantified by its contribution to the moment balance equation.

To test whether errors in model-predicted muscle activations affected the interpretation of knee
brace mechanics, we performed a follow-up static optimization (SO-2) based on the objective

function described above (SO-1), but with additional constraints to ensure that the mean change
in muscle activation from unbraced to braced conditions matched observed differences in EMG

[40]. Specifically, for all muscles where significant differences were detected in EMG between



braced and unbraced conditions, activation was prescribed in the braced conditions as the sum of
the unbraced activation (SO-1) plus the mean observed change in EMG. Remaining muscles,
which exhibited no change in EMG, were constrained to remain within statistically-insignificant
bounds of the unbraced solution (<2-8 %MVC, see Supplementary Material). Thus, the
constrained optimization solution (SO-2) both equilibrated the inverse dynamic joint moments

and captured the neuromuscular changes that were induced by the knee braces.

2.7 Statistical Analysis

Discrete peak measures from joint angles, moments, contact forces, EMG, and model-predicted
muscle activation (for complete list, see Supplementary Material), gait speed, and cumulative
(i.e. integral thorough gait) medial, lateral, and total contact loads, were compared between brace
conditions and subject groups using a two-factor ANOVA with Brace as the repeated factor, and
planned Sidak post-hoc contrasts between brace conditions. Subject characteristics, and original
versus follow-up static optimization solutions, were compared using unpaired t-tests.

Significance (o) was set at 0.05.

3 Results

Osteoarthritis participants were older, heavier, walked slower, and had greater varus alignment,
smaller medial joint space, and lower WOMAC scores than control subjects (Table 1). Gait

speed was unaffected by bracing (Post-hoc, P > 0.08).

3.1 Joint Kinematics

Bracing increased late-stance hip extension angles (P < 0.01,
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Figure 2A,E), increased early-stance hip abduction angles (P < 0.01,
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Figure 2B,F), decreased early-stance, late-stance, and swing knee flexion angles (P < 0.01,
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Figure 2D,H). Osteoarthritis subjects differed from control subjects only in ankle dorsiflexion (P

< 0.05). The effect of bracing was consistent across both groups and braces.



3.2 Joint Moments

Both braces decreased late-stance hip extension moments (P = 0.03,
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Figure 3A,G), decreased early-stance hip external rotation moments (P < 0.01,
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Figure 3B), increased late-stance hip internal rotation moments (P < 0.01,



Control
Unbraced

—— QAAssist
OAAdjuster 3
0OA

= = = = Unbraced

= = = = OAAssist

= = = = OAAdjuster 3

A) Hip Flex. B) Hip Int. Rot.  C) Knee Flex. D) Ankle Dorsi.  E) Knee Add. F) Knee + Brace Abd.

_ int ] flex s dorsi s 0.8 add 0.8 add

5 1 0.2 * :

= | 061 A 0.6

5 0.5

z N 0 0.4 0.4

g 0 0.5 02 02

5 0 0 0

=-1 02 05 *

ext ext -5 [plant -0.2tabd -0.2
0 50 000 50 000 50 00 0 30 100 0 50 000 50 100
% Gait % Gait % Gait % Gait % Gait % Gait
G) H) I U} K) L) ‘

-0.8 016 0.1 ¢,02
= : Q| 0.7 0.7
=-09 0.14 Q s (LAY
=z L 0.6 0.6
z - 0.12 14
5 03 0.5 0.5
5-11 0.1
= L3 04 04

12 0.08 04

Control OA Control OA Control OA Control OA Control OA Control OA

Figure 3B,H), increased late-stance knee extension moments (P < 0.01,

Figure 3C,I), and decreased late-stance dorsiflexion moments (P < 0.01,
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Figure 3D,J). Knee adduction moments, neglecting the brace moment, were unaffected by

bracing (P > 0.2,
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Figure 3E,K). However, net knee adduction moments, including the brace abduction moment,

decreased throughout stance (P < 0.01,
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Figure 3F,L). Osteoarthritis subjects selected a larger brace abduction moment than control



subjects for both braces, (P < 0.01,
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Figure 1E,F, Table 2) and both groups selected a larger brace moment with the OA Assist brace

than the OA Adjuster 3 brace (P < 0.01,
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Figure 1E,F, Table 2).

3.3 Knee Contact Forces

Both braces shifted loading from the medial to lateral tibiofemoral compartment, with no change

in the peak or cumulative total contact load (
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Figure 4C,F, Table 3). Early- and late-stance peak medial contact loads were reduced by 0.1 to

0.3 BW, or roughly 10% (P < 0.01, Table 3,
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Figure 4A), with no difference between braces (P > 0.37) or between subject groups (P > 0.74,
Table 3). Conversely, bracing increased early- and late-stance peak lateral contact loads by 0.03

to 0.2 BW, (P <0.01, Table 3,
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Figure 4B). The load shift was most apparent from the cumulative load (integral) throughout
gait: medial loads decreased by 8-17 BW*%Gait, while lateral loads increased by a nearly-equal

magnitude (8-19 BW*%Gait, Table 3,
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Figure 4D,E), with no difference between control and osteoarthritis groups. The cumulative
medial load was reduced more for the OA Assist than the OA Adjuster 3 brace (between braces:

P <0.01 OA, P =0.08 Control,
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Figure 4D, Table 3).

3.4 Muscle Activation and EMG

The magnitude and timing of predicted muscle activations agreed well with experimental EMG

(Supplementary Material). EMG was significantly affected by bracing for one muscle (biceps

femoris,
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Figure 5A,E). However, this decrease was not predicted by the initial static optimization

solution (SO-1, P =0.35,
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Figure 51). Furthermore, in contrast with EMG measurements, the initial solution (SO-1)

predicted significant differences in muscle activation for lateral gastrocnemius (
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Figure 5J), soleus (
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3.5 Follow-up simulation

When muscle activations were constrained to resolve these discrepancies with EMG

(Supplementary Material), predicted activations (SO-2,
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Figure 5I-L), and the change in contact force between braced and unbraced conditions was

unaltered (P > 0.76,
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Figure 6). Therefore, contributions to joint contact loads were interpreted only for the initial

(SO-1) static optimization.

3.6 Contributions to Joint Contact Loads

In the unbraced condition, the primary contributor to medial knee contact loading was the

external adduction moment (
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Figure 7A-C). Medial contact forces were increased by quadriceps forces in early-stance and
gastrocnemii in late-stance. Hamstrings played a minor role at the start and end of the gait cycle,

which was not aligned with early- or late-stance peak loads.

When subjects were wearing either knee brace, the abduction moment applied by the knee brace

was the primary contributor to unloading the medial knee joint (
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Figure 7E,H). The quadriceps contribution decreased in braced versus unbraced conditions,

which indicates slightly decreased quadriceps force (
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Figure 7E,H) due to statistically insignificant (P > 0.3) decreases in first peak knee flexion

moments (
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Figure 3C). However gastrocnemii contributions were greater in braced than unbraced

conditions (
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Figure 7D,G), which inhibited the unloading effect of the braces. The OA Assist brace achieved

a greater reduction in medial contact force than the OA Adjuster 3 brace (
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Figure 7F vs 1) primarily by applying a greater abduction moment (
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4 Discussion

Knee bracing decreased peak medial knee contact loads by an estimated 0.1-0.3 BW (Table 3) in
osteoarthritis and control subjects during overground gait. This medial load reduction was

primarily caused by the unloading abduction moment applied by the brace to the knee joint (
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Figure 7). The model revealed no change in the total knee contact load; therefore, the primary

effect of bracing was to shift loading from the medial to the lateral condyle (
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Unbraced peak contact loads predicted in this study (medial = 2.7 BW, total = 4.6 BW,
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Figure 4) were similar to previous model estimates (total = 4.4 BW, Richards and Higginson
2010), but greater than in vivo medial and total loads of 1.95BW and 2.6BW [50,51]. Walking
speeds in the current study (~1.4m/s) were faster than those reported for the in vivo study
(1.12m/s, Kutzner et al. 2013) which would slightly increase joint loads [52]. However, the
majority of this error can likely be attributed to the use of a simplified musculoskeletal model
[53], and in particular excessive recruitment of bi-articular gastrocnemius versus uni-articular
soleus muscles [54]. Interestingly, osteoarthritis subjects walked approximately 0.2 m/s slower
than healthy controls (Table 1). While slower walking has been proposed as a mechanism to
alleviate both knee contact forces and pain [49], osteoarthritis subjects in the present study did

not significantly reduce their peak medial knee contact loads (
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Figure 4). This observation further motivates clinical need for bracing as a load-relief device.

Despite potential errors in predictions of contact force magnitude, our previous validation against
in vivo data [40] suggested that even when absolute contact force predictions were inaccurate,
relative changes in contact between gait conditions may be more accurate (i.e. within 0.03 BW).
For the braced conditions, we predicted mean reductions in medial loading of roughly 5 to 15%
(Table 3), which is similar to the range of 8 to 17% reported using a different brace design and a
simplified musculoskeletal model [12]. By comparison, in vivo measurements in three subjects
revealed mean reductions in medial knee loads of 7 to 23% during gait, with a range of 0 to 40%,
for two different brace designs [10]. In this study, we found a similar range of 0 to 35%; thus,

our model provided realistic predictions of medial load reduction due to knee bracing.

This study was motivated by the hypothesis that medial knee loads are not simply reduced by the
applied brace moment, but are also influenced by concomitant changes in gait dynamics and
neuromuscular control. However, our detailed musculoskeletal model revealed that the largest

contributor to medial load reduction was the abduction moment applied by the brace to the knee (
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Figure 7E,H). Previous studies have reported a decrease in antagonist co-contraction of
hamstrings, gastrocnemii, and quadriceps muscles when subjects use an unloader knee brace
[17,20]. As these muscles span the knee joint, changes in their activation will directly alter
compressive joint loads [55,56]. In this study, we detected a small decrease only in biceps
femoris EMG, which was significant (post-hoc) only for the osteoarthritis subjects. However,

due to their timing of activation at the start and end of the gait cycle (
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Figure 5) hamstrings muscles did not affect the braces' ability to reduce peak medial loads (
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Figure 7). In literature, the effect of bracing on the external knee adduction moment (ignoring

the load applied by a brace) is unclear; some studies found a reduction [18,19,57] while others



found no change [12,58,59]. In this study, there was no change in the knee adduction moment (
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Figure 3E), and therefore a negligible contribution of the inverse dynamics load to changes in the

medial and lateral knee contact forces due to bracing (
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Figure 7). Thus, both braces reduced medial contact loads without substantially changing gait

dynamics (
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Figure 5,
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Figure 7). Based on these findings, it remains unclear why other studies [7,10] have found such
inter-individual variance in brace effectiveness. Future work should investigate whether sub-
groups exist with unique dynamics or muscle activation that were masked by group averaging.
Indeed, we recently identified the external hip adduction moment as a potential “biomarker” to

explain why some subjects achieve a greater medial load reduction [60].



A secondary objective of this study was to contrast the function of two different brace designs (
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Figure 1). Previous studies have standardized brace loading by counting the number of ‘turns’ of
the tightening screw [10,17]. In this study, brace deflection angles were measured dynamically,
which allowed adjustment of each brace based on each participant’s perceived comfort. Across

all subjects, the single-beam OA Assist applied a greater unloading moment to the knee than the



dual-beam OA Adjuster 3 brace (
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Figure 1, Table 2), which resulted in a greater reduction in medial loading (Table 3,
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Figure 7). However, both braces are capable of similar unloading moments (

A) OA Assist B) OA Adjuster 3

Bdeﬂectior. ﬁdeﬂection

'Bdeflection = omeasured = aun-deformed
— 15 5
- E C)  k=0.75 Nm/deg D)
£Z0 10 | k =0.44 Nm/deg
ERs
=5
o
=
0
0 10 20
- E
SZ
9 =
= D
ER:
o
=
0 50 100 0 50 100
% Gait % Gait

Figure 1), and it is unclear why subjects selected a larger moment with the OA Assist brace. We
speculate that this may represent an acclimatization effect, since the OA Assist brace was always
tested last to avoid dislodging sensors (82.4 Procedure). Future work could employ pressure
sensors to assess comfort, and should include both randomization and a longer acclimatization

period to fully elucidate differences between braces.

A primary limitation of this study is the use of a static optimization model to estimate muscle

forces. This type of model does not inherently capture changes in antagonist muscle co-



contraction [61] as may occur with bracing [17] or knee osteoarthritis [21]. Indeed, we identified

four muscles for which static optimization predictions did not match EMG measurements (
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Figure 5). To assess whether these discrepancies confounded our results, we performed a

follow-up simulation where the change in activation from unbraced to braced conditions was

constrained to match measured EMG data (SO-2,
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Figure 5, Supplementary Material). The change in medial loading did not differ between the
original and follow-up simulations and both simulations, which supported our observation that

the brace moment is the primary contributor to reducing medial knee loads (
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Figure 6, Supplementary Material). While an EMG-driven model is more suitable for capturing
patient-specific muscle co-contraction [62], it is unlikely to have revealed different conclusions
in the present study where mean changes in EMG were too small to significantly alter contact

loads.

A second, related, limitation is the use of a 1-DOF knee joint model that does not predict
changes in knee alignment or muscle activation due to knee abduction moments. Valgus bracing
may reduce the knee adduction angle by approximately 1-2 degrees during gait [7], which could
reduce medial contact load predictions by roughly 0.05-0.1BW, or 2-4% [63]. Further, changes
in knee adduction angles or moments may reduce strain in passive tissues (e.g. ligaments) and
thus reduce contact forces while also altering muscle forces [64]. Indeed, mild co-contraction
(10-20%) of quadriceps and hamstrings has been observed during isolated ab/adduction loading
[65], but it is unclear whether this is a neuromuscular strategy to resist abduction loads or an
artifact of the overall coordination pattern (primarily hip muscle activation). Further, subjects
exhibit a significant muscle reflex response to positional knee abduction perturbations (+7° at
60°/sec, ~100Nm), but it is unclear how this translates to dynamic movements [66]. Future work

should investigate mechanisms to accurately predict changes in knee muscle activation due to



dynamic abduction moment and/or angle perturbations; this requires knee models with additional
DOF [64,67,68]. However, it is important to consider that EMG data did not reveal substantial

differences between braced and unbraced conditions (
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Figure 5); therefore the use of a 1-DOF knee joint is unlikely to have limited our ability to

understand the primary mechanisms of unloader brace effectiveness.

Finally, it is important to note that maximal EMG amplitude was observed during MVIC trials in
only 83% of muscles, across all subjects. It is widely known that isometric tasks, while
generally repeatable [33], do not always yield maximal neuromuscular activation [38]. In this
study, the use of a different normalisation approach would have changed the absolute magnitude
of activation for 17% of muscles. Nevertheless, since normalization was constant across brace
conditions, it is unlikely to have affected our primary conclusions about the relative importance

of muscle forces for brace effectiveness.



This study has important implications for both clinicians and brace designers. Firstly, while a
previous study [17] suggested that braces with neutral alignment (i.e. zero abduction moment)
perform as well as or better than braces with valgus alignment (i.e. applying an abduction
moment) in reducing measures including pain and muscle co-contraction, the current study
suggests that application of a brace abduction moment is crucial to reduce medial knee contact
loads. Future work should investigate mechanisms to increase the brace abduction moment
without discomfort, while considering the possible dissociation between reduction in pain and
reduction in mechanical loading. Secondly, despite the dominance of the brace abduction
moment effect, the current study reveals that even small changes in gait mechanics and muscle
activation can enhance, or inhibit, brace effectiveness. For example, even without a significant
change in EMG or muscle activation, a small decrease in late-stance hip and early-stance knee

flexion moments (
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Figure 3), caused the model to predict a slight decrease in the quadriceps contribution to medial

contact loads (
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Figure 7) which enhanced medial load reduction. Conversely, a small increase in ankle moments
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Figure 3D) caused an undesirable increase in gastrocnemii contributions to late-stance medial

knee loads during braced conditions (
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Figure 7). These observations, which were consistent between both original (SO-1) and EMG-
informed (SO-2) static optimization solutions, highlight the importance of considering both
frontal and sagittal plane moments (the latter via muscle forces) in assessing knee contact loads
[69]. Further, it appears that brace effectiveness might be enhanced by including mechanisms or

rehabilitation training to modify both gait patterns and neuromuscular coordination [70].

In conclusion, a detailed musculoskeletal model revealed that knee unloader braces are effective
in reducing medial knee loads primarily through the application of an external abduction
moment. While these braces in this study were both from the same manufacturer (DJO Global,
Vista, CA, USA), it is likely that the dominance of the applied abduction moment in reducing

medial loads (
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Figure 5) can be generalized to other unloader braces which apply the same principle of three-

point bending.
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Figure 1: OA Assist (A) and OA Adjuster 3 (B) knee braces (DJO Global, Vista, CA, USA)
used in this study, shown for example on a varus-aligned subject with medial knee osteoarthritis.
EMG electrodes on the vasti are visible below distal to the brace strap, but proximal to the knee.
Reflective markers, visible along the lateral beam of each brace, were used to compute brace
adduction deflection angles, Bdefiection, as the difference between the measured angle, Omeasured, and
the known un-deformed angle, aun-deformed. Braces were calibrated using a custom mechanical
testing procedure to determine the linear relationship between brace adduction deflection angle,
Bdefiection and the applied abduction moment. Dashed grey lines represent 16 load-unload cycles
for each brace, the linear regression fit superimposed for OA Assist (solid green, C) and OA
Adjuster 3 (solid blue, D) braces. Based on this calibrated stiffness, the abduction moment
applied by the brace to each user’s leg was computed throughout gait (E,F). Mean brace
moments (£ shaded standard deviation) are shown for the control group (solid grey, E,F), and for
the osteoarthritis group (dashed lines, E,F). For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.
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Figure 2: Mean joint angles for control (solid) and osteoarthritis (dashed) groups: hip flexion
(A), hip adduction (B), knee flexion (C), and ankle dorsiflexion (D). OA Assist (green), and OA
Adjuster 3 (blue) brace conditions were significantly different from the unbraced (red) condition
for these angles (*, ANOVA P<0.05). An interaction plot (E-H) showing mean + SEM is
presented for one of the significant peak measures from each waveform (E = hip flexion angle, F
= 1% peak hip adduction angle, G = 1% peak knee flexion angle, H = ankle dorsiflexion angle).
Significant pairwise comparisons (® = OAAssist vs unbraced, Q = OAAdjuster 3 vs unbraced, P
< 0.05) between brace conditions were detected in both osteoarthritis and control groups for hip
flexion angles, but only in the osteoarthritis subjects for hip adduction, knee flexion, and ankle
dorsiflexion angles. For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.
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Figure 3: Mean joint moments for control (solid) and osteoarthritis (dashed) groups: hip flexion
(A), hip internal rotation (B), knee flexion (C), ankle dorsiflexion (D), knee adduction (E,
without including brace external moment) and net knee adduction (F, including brace external
moment). OA Assist (green), and OA Adjuster 3 (blue) brace conditions were significantly
different from the unbraced (red) condition for these moments (*, ANOVA P<0.05). An
interaction plot (G-L) showing mean + SEM is presented for one of the significant peak
measures from each waveform (G = 2" peak hip flexion moment, H = 2" peak hip internal
rotation moment, | = 2" peak knee flexion moment, J = peak ankle dorsiflexion moment, K =
knee adduction moment, L = 2" peak net knee adduction moment including the brace abduction
moment). Significant pairwise comparisons (® = OAAssist vs unbraced, Q = OAAdjuster 3 vs
unbraced, P < 0.05) between brace conditions were detected in both osteoarthritis and control
groups for the net knee adduction moment (J), but only in the osteoarthritis subjects for hip
internal rotation and knee flexion moments. Hip flexion and ankle dorsiflexion moments were
not significant in post-hoc tests. For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.
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Figure 4: Mean medial (A), lateral (B), and total (C) knee contact forces for control (solid) and
osteoarthritis (dashed) subjects during overground gait. OA Assist (green), and OA Adjuster 3
(blue) brace conditions were significantly different from the unbraced (red) condition for these
contact forces (*, P<0.05).Interaction plots show mean +- SEM predictions of the cumulative
medial (D), lateral (E), and total knee contact force (F), integrated throughout the gait cycle(® =
OAAssist vs unbraced, Q = OAAdjuster 3 vs unbraced, P < 0.05). Medial loads (A,D) decreased
for both OA Assist (green) and OA Adjuster 3 (blue) conditions, as compared with the unbraced
condition (red), while lateral loads increased due to bracing (B,E). Combined, there was no
change in the integral of the total knee contact force due to brace use (F), although a small
significant difference was detected atthe first peak (C). For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.
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Figure 5: Mean enveloped EMG (A-D), peak EMG (E-H), peak activation from the first static
optimization (SO-1, I-L), and peak activation from the second, constrained static optimization
(SO-2, M-P). Data are presented for the four muscles for which the change in EMG due to
bracing did not match the change predicted by simple static optimization (E-H vs I-L). Row 1
(AE,I,M) shows biceps femoris; there was a decrease in peak EMG due to bracing (A,1), no
change in the first optimization solution (1), and therefore the model was constrained to induce a
decrease in the second optimization solution (M) in order to match the EMG. Rows 2-4 show
lateral gastrocnemius, soleus, and gluteus medius, respectively. These muscles showed no
change in EMG due to bracing, but a significant change was predicted in the original static
optimization solution (F-H vs J-L). Consequently, these muscles were constrained to yield no
significant change for the second, constrained, optimization solution (N-P). (® = OAAssist vs
Unbraced, Q = OAAdjuster 3 vs Unbraced, P <0.05, NS = not significant)
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Figure 6: Mean = SEM change in peak medial knee contact force due to the use of OA Assist
(blue) and OA Adjuster 3 (green) knee braces for control (A) and osteoarthritis (B) groups. The
reduction in predicted medial contact force was not significantly different (P > 0.76) between the
original static optimization (SO-1, dark green, dark blue) and the follow-up constrained static
optimization (SO-2, light green, light blue) in which estimated muscles activations were
constrained to match observed changes in EMG.
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Figure 7: Contributions of the knee adduction moment, muscle forces, and the knee brace
abduction moment to unbraced medial knee contact forces (A-C), and to the change in medial
loading when using the OA Assist (D-F) and OA Adjuster 3 (G-I) knee braces. These
contributions are shown for the osteoarthritis group, as estimated using the original static
optimization solution (SO-1). Loads that generate a positive (adduction) moment about the
lateral tibial location act to increase medial knee contact force (first column, A,D,G), while loads
that generate a negative (abduction) moment contribute to unloading the medial compartment
(second column, B,E,H). The third column shows the sum of positive and negative
contributions, which yields the medial knee contact force (C, red), and the change in contact
force due to the OA Assist (F, green) and OA Adjuster 3 (1, blue) braces. The adduction moment
(primarily due to the ground reaction force passing medial to the knee) was the primary
contributor to medial knee loading, while quadriceps and gastrocnemii made a smaller
contribution (A). For each of the braced conditions, the abduction moment applied by the knee
brace (E,H, shaded grey) was the primary contributor to reduced medial contact forces. Relative
to the unbraced condition, the gastrocnemii and hamstrings muscles were estimated to increase
their contribution to medial knee loads (D,G), while quadriceps contributions decreased (E, H).
The total reduction in medial knee contact due to bracing was between 0.1 and 0.2 BW
throughout most of the gait cycle, for both brace designs (F,I).



Tables

Table 1: Participant Characteristics, Mean (SD)

Parameter Osteoarthritis  Control P-value

Male 9 8 -

Female 8 10 -

Age [years] 54 (4) 47 (11) 0.01
Height [m] 1.72 (0.10)  1.72(0.09) 0.89
Mass [kg] 89 (18) 75 (13) 0.05
BMI [kg/m’] 30 (4) 26 (3) <0.01
HKA [deg, + varus] 6.9 (5.6) 12 (2.1) <0.01
Medial Joint Space [mm] 2.1(1.8) 5.1(0.9) <0.01
WOMAC - Pain 66 (18) 100 (1) <0.01
WOMAC - Stiffness 57 (22) 99 (6) <0.01
WOMAC - Function 62 (19) 100 (1) <0.01
WOMAC - Total 62 (18) 100 (1) <0.01
Gait Speed [m/s] 1.3(0.1) 1.5(0.2) <0.01



Table 2: Unloading brace abduction moment applied to the knee during gait, Mean (SD)
reported across all subjects

Control OA P-value
Mean Mean (groups)
(SD) (SD)
OA Assist [Nm] 6 (3) 9 (4) <0.01
OA Adjuster 3 [Nm] 3(2) 6 (2) <0.01

P-value (braces) <0.01 <0.01



Table 3: Change in contact loads due to bracing, Mean (SD)

Medial Lateral
Peak 1 Peak 2 Integral Peak 1 Peak 2 Integral
[BW] [BW] [BW*% Gait]] [BW] [BW] [BW*% Gait]
OA Assist
Control| -0.18(0.2) -0.14(0.2) -13 (8) 0.22(0.2) 0.1(0.2) 15 (10)
OA -0.25(0.2) -0.13(0.3) -17 (7) 0.16 (0.2) 0.2(0.2) 19 (9)
OA Adjuster 3
Control| -0.13(0.2) -0.13(0.2) -8 (8) 0.08 (0.2) 0.03(0.2) 8 (7)
OA -0.19 (0.2)  -0.02 (0.3) -10 (6) 0.04 (0.2) 0.09(0.2) 10 (7)

Bold: significant change in joint load due to bracing (Sidak post-hoc test, P < 0.05)
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