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New approach to investigate 
Common Variable 
Immunodeficiency patients using 
spectrochemical analysis of blood
Emma L. Callery1, Camilo L. M. Morais2, Maria Paraskevaidi2,5, Vladimir Brusic3, 
Pavaladurai Vijayadurai1, Ariharan Anantharachagan1, Francis L. Martin   2 & 
Anthony W. Rowbottom1,4,6

Common variable immune deficiency (CVID) is a primary immunodeficiency disease, characterized by 
hypogammaglobulinemia, recurrent infections and various complications. The clinical heterogeneity 
of CVID has hindered identification of an underlying immune defect; diagnosis relies on clinical 
judgement, alongside evidence-based criteria. The lack of pathognomonic clinical or laboratory 
features leads to average diagnostic delays of 5 years or more from the onset. Vibrational spectroscopic 
techniques such as Fourier-transform infrared (FTIR) spectroscopy have recently gained increasing 
clinical importance, being rapid-, non-invasive and inexpensive methods to obtain information on the 
content of biological samples. This has led us to apply FTIR spectroscopy to the investigation of blood 
samples from a cohort of CVID patients; revealing spectral features capable of stratifying CVID patients 
from healthy controls with sensitivities and specificities of 97% and 93%, respectively for serum, and 
94% and 95%, respectively for plasma. Furthermore we identified several discriminating spectral 
biomarkers; wavenumbers in regions indicative of nucleic acids (984 cm−1, 1053 cm−1, 1084 cm−1, 
1115 cm−1, 1528 cm−1, 1639 cm−1), and a collagen-associated biomarker (1528 cm−1), which may 
represent future candidate biomarkers and provide new knowledge on the aetiology of CVID. This proof-
of-concept study provides a basis for developing a novel diagnostic tool for CVID.

Common variable immunodeficiency (CVID) is the most frequent life-threatening and symptomatic primary 
immune deficiency (PID)1. The estimated prevalence is between 1:10,000 and 1:100,000 of the population, with 
two peak ages of onset, one before the age of ten and another between 30–40 years of age2,3. The majority (>80%) 
of CVID cases are sporadic and the main diagnostic method is exclusion; often with a delay of approximately 5 
years4. Failure to produce sufficient immunoglobulins results in recurrent infections in 90% of CVID patients; an 
increased risk of autoimmune disorders (22% of patients) and malignancy (16% of patients)5–8. CVID is a heter-
ogeneous group of polygenic disorders for which the exact pathogenesis remains poorly understood9–11. Genetic 
mutations are implicated in CVID in 10–20% of patients; with defects found in more than 30 genes4,8,12.

There are no clinical or laboratory features that are pathognomonic for CVID. Diagnostic criteria have there-
fore been developed which require sequential application of both clinical and laboratory findings in order to 
increase the specificity of the diagnosis. Current diagnostic criteria5,13,14 define hypogammaglobulinemia as a 
major requirement for the diagnosis of CVID, but only when used in conjunction with further clinical or labora-
tory findings. This is due to the low diagnostic specificity of hypogammaglobulinemia for CVID; as reduced sero-
logical levels of immunoglobulin are also associated with a vast array of other primary and secondary immune 
disorders. The incidence and prevalence rates of hypogammaglobulinemia are not clearly defined, however 
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secondary causes are more common15. Although the requirement to exclude secondary causes of hypogam-
maglobulinemia limit the use of this finding as a diagnostic marker for CVID, it remains a fundamental test, 
given that the hallmark of the disease is a reduced serum level of IgG, IgA and/or IgM. The definition of local or 
regional population reference ranges will impact the diagnostic utility of immunoglobulin results, as will the lab-
oratory choice of analytical method (nephelometric and tubidmetric methods are most widely used). An absolute 
lower limit value of IgG at 4.5 g/L for adults has been proposed, as despite the wide range of IgG levels observed in 
CVID patients, Chapel and Cunningham-Rundles2 described the majority of their 334 patients (94.2%) as having 
initial IgG levels <4.5 g/l at diagnosis.

Further laboratory testing, such as measuring specific antibodies to vaccine responses, enumeration of lym-
phocyte subsets (B, T and NK cells) and class-switched memory B cells by flow cytometry, can provide additional 
evidence to suggest defective antibody production. Findings are variable across the disease group and also within 
individual patients. Repeat testing has therefore been suggested to confirm any sub-normal findings; these limi-
tations have been discussed in recent diagnostic criteria5,13.

Efforts to categorise clinical subgroups within cohorts of established CVID patients using flow cytometry 
have further demonstrated the complex aetiology of this disorder, emphasising the variety of B cell differentiation 
defects that can contribute to the disease. Phenotypic analysis of B cells using population sizes of class-switched 
memory- and transitional B cells, in correlation with clinical aspects has generated three classification proto-
cols for patients with CVID16–18. Whilst these studies demonstrate that B cell homeostasis is a pathogenic and 
clinically meaningful parameter for classification, reduced numbers of class-switched or memory B cells are not 
specific to CVID hence the diagnostic utility of these tests in isolation is limited2.

Further challenges with current diagnostics relate to a lack of understanding as to which physiological com-
partment should be investigated for CVID-associated abnormalities, i.e., tissues, biological fluids, or cells. A 
potential novel diagnostic methodology for CVID is vibrational biospectroscopy. High resolution spectroscopy 
methods such as Fourier-transform infrared (FTIR) spectroscopy can provide unique spectral patterns that 
reflect the chemical and molecular composition of biological samples. We hypothesised that pathological changes 
in CVID patients produce characteristic FTIR spectra that distinguish them from healthy controls. The interac-
tion of infrared (IR) light with biological matter produces an absorption plot, or ‘spectral fingerprint’, for each 
biological sample. The principles and biological applications of FTIR spectroscopy have been reviewed in detail 
in Baker et al.19. Vibrational spectroscopy is gaining recognition in the field of diagnostic medicine for a range of 
complex pathologies, mostly for malignancies19–21. A key requirement for diagnostic investigations is the highly 
accurate discrimination of pathological features from healthy neighbouring tissue or cells. These measurements 
are often performed on samples characterised by high background signals (or ‘noise’) relating to biological activ-
ity (e.g., increased cell turnover or inflammatory states). Due to the high complexity of vibrational spectroscopy 
data, computational-based methods (chemometrics) are needed to explore and extract relevant information 
from the experimentally acquired spectra. For this, multivariate classification techniques can be employed for 
feature extraction and classification, allowing biochemically-relevant information to be extracted and the auto-
matic grouping of samples into pre-defined categories. This can be achieved using a combination of chemometric 
algorithms, such as forward feature selection (FFS), principal component analysis linear discriminant analysis 
(PCA-LDA), and principal component analysis support vector machines (PCA-SVM). All of these algorithms 
are based on a principal component analysis (PCA) decomposition, which significantly reduces the original data 
complexity to a fewer number of relevant factors, named principal components (PCs). PCA-LDA performs a 
linear discriminant analysis (LDA) of the PCA scores to assign the samples to their predicted groups; whereas 
PCA-SVM does the same procedure but in a non-linear classification fashion through a support vector machines 
(SVM) algorithm. FFS allows identification of main biomarkers responsible for class differentiation by calculating 
p-values for the spectral wavenumbers with larger PCA loadings. Vibrational spectroscopy has been successfully 
applied across a wide area of clinical medicine; providing a new approach to detect molecular and structural 
changes caused by complex disorders such as Alzheimer’s disease22,23, multiple sclerosis24, mental disorders25,26, 
HIV/AIDS27, diabetes28 and carcinogenesis25,29–32. High diagnostic accuracy was demonstrated for classification 
of numerous cancer types and other biological applications33–38. We hypothesised that vibrational spectroscopy 
will demonstrate similar analytical advantages within our cohort, allowing for the sensitive detection of charac-
teristic spectral fingerprints that represent underlying pathological processes in CVID patients.

To our knowledge, this study reports for the first time, the application of FTIR methods, specifically, attenu-
ated total reflection-FTIR (ATR-FTIR) spectroscopy, for detection of CVID. In this first phase we have explored 
the application of this technique to stratify CVID patients from healthy controls (HC) using serum and plasma. 
We performed stratified spectroscopic classification at multiple levels, to differentiate subgroups of CVID patients 
with- and without- further clinical complications. Finally, we have identified a number of meaningful and dis-
criminating spectral biomarkers, tentatively assigned to specific molecular entities. These promising initial find-
ings encourage further development of FTIR spectroscopy as a diagnostic technique for immune deficiency.

Results
The major aim of this study was the discrimination of CVID patients from HC in two biofluids; serum and 
plasma using FTIR-spectroscopy and multivariate analysis techniques. The ATR-FTIR spectra from 51 subjects 
(1020 spectra) were obtained and analysed using multiple chemometric methods. An exploratory (unsupervised) 
analysis using PCA model was undertaken, followed by classification using supervised methods (PCA-LDA, 
FFS, SVM) to enable successful segregation of subjects into their respective groups, CVID patients and healthy 
controls.

https://doi.org/10.1038/s41598-019-43196-5
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Discrimination of CVID patients from Healthy controls
Analysis of prominent IR spectral regions reveals significant variance between CVID and HC 
groups.  Rubber-band baseline correction and vector normalisation produces spectra for crude visualis-
ation of differences between the two groups, and corrects for experimental variation; this recognised technique 
improves accuracy and interpretability of the data whilst maintaining spectral integrity. The generated figures 
(Supplemental Fig. 1a,b (fingerprint region); Supplemental Fig. 1e,f (high region)) demonstrate visual spectral 
similarities for each class (CVID, HC), prior to the application of multivariate analysis tools. As expected for bio-
logical samples, the Amide I band was most prominent in the IR spectrum of the fingerprint region, dominated 
by C=O stretching, and N-H bending vibrations of proteins39,40. To enhance spectral variability between groups, 
second-order differentiation was applied (Supplemental Fig. 1c,d (Fingerprint region); Supplemental Fig. 1g,h 
(High region)) prior to implementation of multivariate approaches.

Serum.  Key differences observed in the fingerprint region of serum (Supplemental Fig. 1a) at the pre-processing 
stage were lower absorbance intensities in the CVID group compared to HC at the nucleic acid-associated asym-
metric stretching (νas) of PO2

− (DNA/RNA) [1242 cm−1 (p = 0.0003). At the high region (Supplemental Fig. 1e) 
the CVID group revealed increased absorbance peaks within the lipid and protein associated (CH3 and CH2) 
stretching vibrations21 (serum 3000–2800 cm−1 p =< 0.0001).

Plasma.  The fingerprint region of the plasma spectra (Supplemental Fig. 1b) revealed greatest variance between 
the two groups at the Amide I [1643 cm−1 (p < 10−6)] and Amide II [1535 cm−1 (p < 10−6)] and Amide III peaks 
[1315 cm−1 plasma p =< 0.0001)], with lower absorbance found in the CVID group compared to HC. At the high 
region (Supplemental Fig. 1f), peak increases at 2928–2932 cm−1 (p =< 0.0001) were found in the CVID group 
compared to HC.

Segregation of CVID patients from HC can be demonstrated following multivariate analysis of 
the entire spectral dataset for both Fingerprint (1800–900 cm−1) and High (3700–2800 cm−1) 
regions.  Additional examination of the spectra was performed using cross-validated PCA-LDA. The 1D 
PCA-LDA scores plots (Fig. 1A–D) were generated, and utilised to illustrate the significant differences between 
the CVID group (red) and the HCs (blue) (p < 0.0005); the “scores” here represent individual spectra, (finger-
print region serum p < 10−6 and plasma p < 10−6; high region serum p < 10−6 and plasma p ≈ 10−4). To further 
explore whether the classes could be significantly separated on a study subject-level basis, mean values of the 20 
(second-order differentiated) spectral replicates per sample were calculated prior to performing cross-validated 
PCA-LDA (illustrated in Supplemental Fig. 1a–d), in which each score represents an individual study subject. We 
again demonstrated significant differences between HC and CVID groups, this time on a patient level, for both 
serum and plasma at the fingerprint region (p < 10−6 for both), and at the high region (p < 10−6 for both).

Discrimination of CVID patients from HC using classification models
SVM classification prior to incorporation of additional clinical information.  Following successful 
segregation of classes using PCA-LDA scores plots, the ability and performance of FTIR as a tool to discriminate 
CVID patients from HC was assessed through creation of classification models. Classification of CVID and HC 
was performed on the Fingerprint and High regions of the IR spectrum using support vector machine (SVM) 
learning algorithms as described in the methods. The SVM models were generated using 2/3 of the spectral data 
for the four distanced groups (Serum Fingerprint, Serum High, Plasma Fingerprint and Plasma High) prior to 
being tested with the remaining 1/3. The confusion matrices generated following the input of the test data into 
each classification model can be illustrated graphically in the form of confusion balls (Fig. 2a–d). Supplemental 
Table 2 specifies the c and γ values outputted by the four grid searches. Within the serum, correct classification 
was achieved for 99% of HC and 92% of CVID patients using the fingerprint region (Fig. 2a); and 71% of HC and 
44% of CVID patients using the high region (Fig. 2c). Within the plasma, correct classification was achieved for 
96% of HC and 92% of CVID patients using the fingerprint region (Fig. 2b); and 72% of HC and 51% of CVID 
patients using the high region (Fig. 2d). The highest sensitivities and specificities were obtained for the finger-
print region, achieving 97% and 93% respectively for serum; 94% and 95% respectively for plasma. In the high 
region, sensitivities and specificities were lower, at 66% and 91% respectively for serum; 55% and 69% for plasma 
(Fig. 2d).

SVM classification subsequent to incorporation of clinical subgrouping.  CVID patients were fur-
ther divided based on clinical manifestations (see methods) prior to application of SVM learning algorithms 
for classification (Fig. 3); the parameters identified during grid searches of the training data are included in 
Supplemental Table 3.

Serum.  In the HC group, 10% of subjects were classified correctly; within the two CVID sub-groups, the classifi-
cation model correctly assigned 56% of the CVID patients without further complications and 56% of patients with 
further complications into their respective groups (Fig. 3a). Classification using the high region achieved correct 
group assignment for 79% of HC subjects, 16% of CVID patients without further complications and 51% of CVID 
patients with further complication (Fig. 3d). The sensitivities and specificities of the fingerprint SVM model after 
incorporation of clinical data are documented in Fig. 3c; with greatest specificity, 91%, achieved when classifying 
HC subjects using the fingerprint region. For the classification of CVID subgroups using the high region, spe-
cificities of 92% for CVID-non complication patients and 82% for CVID-complication patients were achieved 
(Fig. 3f). In comparison to the classification model based on HC vs all CVID patients, sensitivities achieved 
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following clinical subgrouping were lower, at 41% for CVID-non complication and 71% for CVID-complication 
patients using the fingerprint region.

Plasma.  SVM models generated for the plasma data demonstrated increased classification ability com-
pared to the serum, correctly assigning 93% of HC, 77% of CVID-non complication patients and 76% of 
CVID-complication patients using the fingerprint region (Fig. 3b); classification rates in the high region were 
75%, 41% and 52% respectively (Fig. 3e). Sensitivities and specificities for the three groups are documented in 
(Fig. 3c,f). Classification using the fingerprint region achieved highest sensitivities and specificities; HCs were 
classified with a sensitivity and specificity of 93% and 87% respectively, CVID-non complication patients with 
73% and 93% respectively and CVID-complication patients with 73% and 95% respectively.

Biomarker analysis
Feature extraction was performed as described in the methods; the key biomarkers extracted from each technique 
are illustrated in Fig. 4 (fingerprint) and Supplemental Fig. 3 (high region) and documented in Supplemental 
Tables 4 and 5, along with the tentative molecular assignments previously described for individual wavenum-
bers. Relative increases or decreases in the absorbance intensity of CVID spectra are indicated where further 
subject-level analysis was performed.

Figure 4 and Supplemental Fig. 3(a,b) illustrates the 6 most variant peaks elucidated using the Student’s 
T-Test method; Fig. 4 and Supplemental Fig. 3(c,d) shows the biomarkers selected from the cluster vectors using 

Figure 1.  Supervised multivariate analysis techniques (PCA-LDA) successfully segregate classes (CVID vs HC). 
(A,B) Fingerprint region (900–1800 cm−1); 1D scores plots (LD1) after cross-validated PCA-LDA of the training 
dataset (CVID n = 13; HC n = 18) for serum and plasma respectively. (C,D) High region (2800–3700 cm−1); 1D 
scores plots (LD1) after cross-validated PCA-LDA of the training dataset (CVID n = 13; HC n = 18) for serum 
and plasma respectively.

https://doi.org/10.1038/s41598-019-43196-5
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PCA-LDA; and Fig. 4 and Supplemental Fig. 3(e,f) are FFS histograms illustrating the number of times each 
wavenumber was selected as a key feature for differentiating between the two classes. Figure 4 and Supplemental 
Fig. 3(g,h) visually represent the spectral wavenumber location where the 18 biomarkers were found using the 
three techniques. The points showing close proximity or overlap indicate the close agreement of the selected wav-
enumbers from the three methods of biomarker extraction.

Fingerprint region biomarkers.  Serum.  Within the serum a total of 10 spectral wavenumbers 
(p =< 0.05) were extracted. Wavenumber 1034 cm−1 was extracted by two different methods, which strengthens 
its utility as a serum biomarker.

Individual subject-level wavenumber intensity analysis was performed on each of the biomarkers 
(pre-processed (rubber-band, vector normalised) data). Four key peaks were shown to demonstrate significant 
differences (p < 0.05) between mean absorbance intensity for CVID and HC subjects (Fig. 5a–d); 1115 cm−1 
(symmetric stretching P–O–C), 1034 cm−1 (collagen), 1528 cm−1 (C=N guanine, adenine, cytosine) and 
1759 cm−1 (C=O ester group vibration of triglycerides). Intensity differences between the clinical sub-groups 
(patients with- and without further complications), were also explored. The increased absorbance intensity of 
wavenumbers 1115 cm−1, 1034 cm−1 and 1759 cm−1 were statistically significant in CVID compared to the HC 
group; whereas the intensity of wavenumber 1528 cm−1 was lower. This finding was mirrored in the CVID sub-
groups; patients with further complications demonstrated higher absorbance intensity for 1115 cm−1, 1034 cm−1 
and 1759 cm−1 compared to the patients without complications; with lower intensities observed for wavenumber 
1528 cm−1.

Plasma.  12 unique wavenumbers demonstrated significant absorbance intensity differences (p =< 0.05) within 
the plasma when comparing CVID patients and HC (Supplemental Table 4). Of these, 9 wavenumbers revealed 

Figure 2.  SVM classification model for CVID vs HC using each biofluid at the fingerprint (900–1800 cm−1) and 
high region (2800–3700 cm−1) of the spectrum. (a–d) SVM confusion matrices for (a) serum fingerprint, (b) 
plasma fingerprint, (c) serum high and (d) plasma high regions. The tuning parameters (c, γ) extracted from a 
grid search of the training dataset were used to subsequently generate confusion matrices (coloured balls) and 
associated classification rates for the test dataset (CVID n = 8; HC n = 12). (e) Sensitivity and specificity of SVM 
models calculated using the corresponding ‘accumulated hits’ data (individual spectra).

https://doi.org/10.1038/s41598-019-43196-5
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Figure 3.  SVM classification model ‘HC vs CVID-non complications vs CVID-complications’ for each biofluid 
at the fingerprint (900–1800 cm−1) and high region (2800–3700 cm−1) of the spectrum. (a,b) SVM confusion 
matrices for a, serum fingerprint, (b) plasma fingerprint. The tuning parameters (c, γ) extracted from a grid 
search of the training dataset were used to subsequently generate confusion matrices (coloured balls) and 
associated classification rates for the test dataset (CVID n = 8; HC n = 12). (c) Sensitivity and specificity of 
SVM models using Fingerprint region, calculated using the corresponding ‘accumulated hits’ data (individual 
spectra). (d,e) SVM confusion matrices for (c) serum high and (d) plasma high regions. (e) Sensitivity and 
specificity of SVM models using High region, calculated using the corresponding ‘accumulated hits’ data 
(individual spectra).

https://doi.org/10.1038/s41598-019-43196-5
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significant differences on individual subject-level analysis (Fig. 6a–i); 984 cm−1, 1007 cm−1, 1053 cm−1, 1084 cm−1, 
1107 cm−1 and 1119 cm−1 (within phosphodiester region 900−1 300 cm−1); 1416 cm−1, 1566 cm−1 and 1639 cm−1 
(within protein region; Amide I, Amide II). Wavenumber 1053 cm−1 was extracted by two different methods, 
strengthening its utility as a serum biomarker.

Absorbance intensities of 8 of the 9 wavenumbers increased in the CVID group compared to HC, with 
only wavenumber 1639 cm−1 (Amide I; thymine, adenine, guanine) demonstrating a lower absorbance inten-
sity. Consistent with the serum data, the findings within the CVID subgroups reflected the intensity differences 
observed between the CVID patients and HC, with absorbance intensity for 8 of the 9 biomarkers found to be 
increased in the CVID patients with further complications compared to those patients without, and only wave-
number 1639 cm−1 demonstrating a lower intensity respectively.

Differences between HC subjects and CVID patients with further complications were calculated as significant 
for all 9 biomarkers. In contrast to the serum data, exploration of the plasma biomarkers revealed significant 
differences between HC and CVID patients without further complication. Wavenumbers 1107 cm−1, 1119 cm−1 
and 1416 cm−1 all demonstrated higher absorbance intensities in the CVID-non group compared to HC, whereas 
wavenumber 1639 cm−1 showed lower intensity. None of the 9 plasma wavenumbers demonstrated significant 
absorbance differences to segregate the two CVID subgroups.

Figure 4.  Serum and plasma Fingerprint region biomarkers identified using three feature extraction 
methods on the training dataset (CVID n = 13; HC n = 18). (a) Serum T-test. (b) Plasma T-test. (c) Serum 
FFS. (d) Plasma FFS. (e) Serum cross-validated PCA-LDA. (f) Plasma cross-validated PCA-LDA. (i,j) Visual 
representation of wavenumber location for extracted biomarkers from each method for serum and plasma 
respectively. FFS Forward Feature Selection.

https://doi.org/10.1038/s41598-019-43196-5
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High region biomarkers.  Serum.  In the high region 11 biomarkers were calculated to be statistically sig-
nificant when comparing intensities between the two classes (HC vs CVID) (Supplemental Table 5).

On individual subject-level analysis, 2 significant biomarkers (p < 0.05) were identified; 2932 cm−1 and 
2862 cm−1, corresponding to important CH, CH2 and CH3 molecular vibrations found in lipids and fatty acids 
(Fig. 5e,f). The absorbance intensity of both wavenumbers were increased within the CVID patients compared to 
HC; similarly, intensity increases were observed in CVID patients with further complications compared to those 
without. The increased absorbance intensities were calculated to be significant for HC vs CVID patients-with 
further complications, HC vs CVID patients-without complications, but not between the two CVID subgroups.

Figure 5.  Serum Biomarkers. Between group absorbance intensity analysis for discriminating spectral 
wavenumbers. Mean absorbance intensity plotted for each study subject (20 replicates) per wavenumber. CVID 
n = 21 (CVID-non n = 8; CVID-comp n = 13); HC n = 30. Data are expressed as mean (±95% CI). *P < 0.05; 
**P < 0.005.

https://doi.org/10.1038/s41598-019-43196-5


9Scientific Reports |          (2019) 9:7239  | https://doi.org/10.1038/s41598-019-43196-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Plasma.  10 biomarkers were found to demonstrate significant differences between CVID and HC groups 
(Supplemental Table 5). Only one wavenumber demonstrated significant intensity differences between HC and 
CVID patients on an individual subject level (3302 cm−1) however the tentative assignment of this wavenumber 
to water renders it unsuitable for use as a biomarker.

Figure 6.  Plasma Biomarkers. Between group absorbance intensity analysis for discriminating spectral 
wavenumbers. Mean absorbance intensity plotted for each study subject (20 replicates) per wavenumber. CVID 
n = 21 (CVID-non n = 8; CVID-comp n = 13); HC n = 30. Data are expressed as mean (±95% CI). *P < 0.05; 
**P < 0.005; ***P < 0.0005.

https://doi.org/10.1038/s41598-019-43196-5
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Discriminating biomarkers between the CVID subgroups.  Of all identified serum and plasma bio-
markers (total 17) only one wavenumber, 1528 cm−1 (Fig. 5c) detected in the fingerprint region of the serum, 
was shown to be a discriminating biomarker between the CVID patients presenting with further complications 
(CVID-comp) and those remaining complication-free (CVID-non) (p = 0.037). The mean intensity of this 
wavenumber was reduced in both of the CVID groups compared to HC (HC = 0.1456, CVID-non = 0.1454, 
CVID-complications = 0.1455).

Discussion
Although great progress has been made in developing diagnostic and classification criteria for CVID6,16–18,41, there 
is still no robust method to achieve this. This study has demonstrated the effectiveness of FTIR spectroscopic 
methods towards the diagnosis of CVID, correctly segregating CVID patients and HC into their respective groups 
following analysis of biofluids. This has been performed using a classification model on the fingerprint region of 
the ATR-FTIR spectrum with a sensitivity and specificity of 94% and 95% respectively for plasma, and 97% and 
93% respectively for serum. The high region of the spectrum was similarly analysed, providing a classification 
model with a sensitivity and specificity of 55% and 69% respectively for plasma, and 66% and 91% respectively for 
serum; suggesting analysis of the fingerprint region would be more appropriate for classification of CVID. The use 
of blood-based vibrational spectroscopy to detect differences between clinical sub-groups of CVID patients has 
also been achieved; demonstrated by the successful assignment of individual study subjects into their respective 
groups; greatest sensitivities and specificities were achieved within the plasma fingerprint region, at 93% and 87% 
respectively for HC subjects, 73% and 94% for CVID patients without complications and 73% and 95% for CVID 
patients with further complications.

A further aim of the current study was to extract spectral biomarkers responsible for the differentiation 
between CVID patients and HC. As each wavenumber corresponds to molecular bonds within biochemical sam-
ple components, we could tentatively assign the most discriminating peaks for use as potential disease biomark-
ers. In the serum we found evidence of detectable alterations in band intensities at four wavenumbers 1034 cm−1 
(collagen42), 1115 cm−1 (symmetric stretching P–O–C43), 1528 cm−1 (C=N guanine, adenine, cytosine43,44) and 
1759 cm−1 (C=O ester group vibration of triglycerides45,46). We hypothesise that the significant increase in the 
collagen-associated peak (1034 cm−1) observed in CVID patients may be associated with increased collagen 
turnover and production of degradation fragments following recurrent respiratory tract infection-driven lung 
damage. Abnormal distributions of extracellular matrix components, such as collagen type I and III, have been 
demonstrated in fibrotic lung conditions such as alveolitis, respiratory distress syndrome and chronic obstructive 
pulmonary disease (COPD)47–50; with degradation fragments detected and used as diagnostic makers in COPD 
and idiopathic pulmonary fibrosis51. We postulate 1034 cm−1 wavenumber analysis could have similar clinical 
utility, thus warranting a more detailed evaluation as a disease marker. Interestingly, in patients with further 
CVID-associated complications, a further increase in 1034 cm−1 peak intensity was observed, significantly segre-
gating this group from the HCs (p < 0.05). This increase may signal the progression of early lung damage to bron-
chiectasis; if so, this marker could be used to identify high risk patients and avoid progression of this irreversible 
complication reported in over 2/3 of CVID patients3. Given the ubiquitous expression of collagen throughout the 
body, biomarker 1034 cm−1 intensity could reflect systemic serological levels, thus, further exploration in patients 
with other fibrotic co-morbidities or respiratory disorders are required to determine disease specificity.

Examination of nucleic acid-associated wavenumbers revealed a number of interesting observations. Three 
significant wavenumbers observed in plasma showed an increased intensity in CVID patients compared to HCs 
(984 cm−1, 1053 cm−1, 1084 cm−1) as did wavenumber 1115 cm−1 in serum. Each of these wavenumbers have been 
assigned to bond vibrations found in molecules containing phosphodiester regions, PO2 and P-O-C bonds, such 
as moieties found in the DNA/RNA sugar phosphate backbone42,44,45,52–58. Wavenumber intensity increases were 
accentuated further in the CVID-complications group compared to those patients without complications; albeit 
not to a statistically significant level (p => 0.05). We postulate that the increased trend in DNA/RNA-associated 
wavenumbers observed in the CVID group may be associated with increased levels of transcription for a number 
of genes involved in immune signalling pathways. Altered cytokine and chemokine profiles have been observed in 
CVID patients by several groups59–65, thought to be driven by a state of chronic immune activation. This has been 
attributed to microbial activation of monocyte-macrophage and granulocyte lineages59 or alternatively a predom-
inance of the Th2 pathway60. CVID-associated profiles include increased serum levels of IL-4 and IL-1060, IL-2 
and IL-1061, IL-6, IL-8, IL-1RA and TNF-a62 and increased IL-10, IL-RA, and TNF-α63. Treatment with IVIg has 
been shown to dampen down this immune activation in CVID patients, although the exact mechanism of action 
remains unclear59. Of note within our study, we found CVID patients with further complications demonstrated a 
further intensity increase in the four DNA/RNA-associated wavenumbers. One suggestion for this could relate to 
poor control of immune activation due to higher requirements of replacement Ig in certain individuals. Further 
investigation into elevated serological levels of chemokines and cytokines in relation to key wavenumber intensity 
is warranted to determine the relationship between these CVID-associated biomarkers.

Surprisingly, wavenumbers 1528 cm−1 (in serum) and 1639 cm−1 (in plasma) were shown to have a decreased 
absorbance intensity in CVID patients compared to HC (p < 0.005 and p < 0.0005, respectively). These wavenum-
bers have been assigned more closely to C=N, C=C and N-H bonds found in nucleotide bases such as guanine, 
adenine, cytosine and thymine37,44,66, as opposed to phosphate-associated moieties as in the previously described 
DNA/RNA-associated wavenumbers. We speculate this may reflect a general decrease in the nucleotide pool in 
CVID patients, and if so may elucidate some of the far-reaching biological and metabolic effects observed within 
this group. Since DNA replication is pertinent to chromosomal replication, amongst numerous other activities, 
these may all be directly or indirectly affected when nucleotide concentrations deviate from a physiologically nor-
mal range67. Unbalanced nucleotide pools have been linked to the activation of p53 and cell cycle arrest in actively 
dividing cells68, therefore similar processes could relate to B cell maturational arrest in CVID.
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The intensity in both wavenumbers 1528 cm−1 and 1639 cm−1 were further decreased in the CVID subgroup 
with further complications, compared to those without complications. Of heightened interest, wavenumber 
1528 cm−1 was the only biomarker of the 18 identified to demonstrate significant differences in absorbance 
intensity between the two CVID subgroups (p < 0.05). This wavenumber could aid further elucidation of disease 
pathophysiology in addition to serving as a potential marker to determine severity of disease and development 
of further complications.

The findings from the first stage of this study are encouraging based on the impact that the translation of FTIR 
spectroscopy into a diagnostic platform for CVID could have on clinical practice. Whilst we have demonstrated 
the ability of this method to correctly classify CVID patients from HCs, diagnostic capabilities must be further 
established in subsequent multi-centre studies.

Within the setting of CVID, the diagnostic efficiency of current laboratory methods and FTIR spectroscopy 
will remain difficult to ascertain until disease-specific features and pathogenic disease mechanisms are further 
elucidated. The low diagnostic specificity of current tests such as serum immunoglobulins, vaccine responses 
and B cell immunophenotyping, and reliance on complex classification criteria for CVID, highlights the clin-
ical requirement for an improved approach. In order to demonstrate the power of biospectroscopy as a novel 
diagnostic tool, the next phase of this study will work towards the validation and verification of the method. 
Test specificity will be addressed through inclusion of additional patient groups, across multiple centres, such as 
patients with other primary- or secondary immune deficiency disorders. Further work to fully determine how 
the identified FTIR biomarkers relate to the molecular and cellular composition of CVID patient samples will 
be a key milestone in determining whether any pathognomonic features can be identified. Until this is achieved, 
it is most likely that FTIR will be used alongside current diagnostic methods in order to add a further level of 
evidence-based criteria to the diagnosis of CVID.

Once achieved, a major advantage of using FTIR over current methods would be the capability for monitoring 
multiple biochemical changes in patient samples over a time-course analysis. The information collected would 
enable clinicians to adapt treatment options and undertake additional investigations in a timely manner. By 
detecting disease-associated complications earlier, before irreversible damage occurs, the life-expectancy of this 
patient group (in which secondary complications have the biggest impact), could potentialy be extended8. In con-
trast to some of the limitations facing FTIR spectroscopy analysis in other high-risk clinical areas such as malig-
nancy, where it is often required as a one-shot investigation, CVID is a chronic, life-long condition and therefore 
would be a more suitable candidate for long-term monitoring.

In conclusion, our study has demonstrated that FTIR spectroscopy is a promising analytical tool for deter-
mining differences between healthy controls and CVID patients. A classification method based on the fingerprint 
region in serum was able to correctly discriminate up to 99% of the spectra representative of controls and 92% 
of spectra representative of disease, and for plasma, 96% of controls and 92% of disease. Several spectral wave-
numbers have been identified as key biomarkers; each demonstrating significant statistical differences in band 
intensities when comparing subjects from the CVID and control groups. These biomarkers have been tentatively 
assigned to bond vibrations found in important biochemical moieties that should be further explored in relation 
to pathophysiological mechanisms causing CVID. This work therefore opens the way for the first application of 
FTIR spectroscopy in a clinical immunology laboratory, which could rapidly translate into a point-of-care device 
to enable ‘while-you-wait’ diagnostic testing in the immunodeficiency clinic.

Materials and Methods
Population.  This study included 21 adult (>18 years old) CVID patients and 30 healthy age-matched controls 
recruited at Royal Preston Hospital. This study was approved by the ethics committee of the NHS Research Ethics 
Committee, Health Research Authority (HRA) (IRAS No. 212518). All samples were collected with informed 
written consent for study participation and all methods were carried out in accordance with relevant guidelines 
and regulations. Double-blinded unbiased acquisition of spectra was performed from all 51 samples following the 
allocation of a randomised unique study number to each subject at the point of recruitment. All patients clinically 
diagnosed with CVID fulfilled the European Society for Immunodeficiencies and the Pan American Group for 
Immunodeficiency (ESID/PAGID) (1999) diagnostic criteria14. The cohort characteristics are shown in Table 1 
and more detailed patient demographics information is shown in Supplemental Table 1 [see Supplementary 
Information].

Immunoglobulin (IG) therapy.  Management of CVID patients with immunoglobulin (IG) replacement 
was noted for the analysis the patient cohort results (see Supplemental Table 1). Serum immunoglobulin lev-
els were measured for all patients and controls on the date of recruitment into the study, (IG-treated patient 
mean = 7.86 g/L, SD2.37; HC mean IgG = 10.48 g/L, SD = 1.72). Pre-treatment mean IgG levels for the patient 
cohort were 2.17 g/L, SD = 2.56.

Clinical sub-groups.  The CVID patient cohort was sub-grouped based on the presence, or absence of 
additional clinical complications using data extracted from individual patient files, clinical notes, and labora-
tory test results. The CVID-complications group consisted of 13 patients in total. Each patient in this group had 
documented clinical history of one or more of the following complications: bronchiectasis (n = 10), autoim-
munity (n = 4), splenomegaly (n = 6), malignancy (n = 5), or gastrointestinal complications (n = 4). The CVID 
complications-free group consisted of 8 patients; review of the available clinical history (clinical letters, patient 
discussion, electronic/paper notes) revealed no indication of any relevant clinical complications.

Sample Collection.  Whole-blood samples were collected into EDTA-treated or serum gel-separator tubes 
and centrifuged at 110 × g for 5 min to separate the plasma or serum supernatant from the cells. Serum and 
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plasma samples were then stored as 0.3 mL aliquots at −80 °C until required. Prior to spectroscopic analysis, 
individual aliquots were thawed; mixed and 50 µL from each aliquot was deposited onto IR-reflective glass slides 
(MirrIR Low-E slides; Kevley Technologies) in duplicate. Slides were left to air dry for up to 8 hours before being 
placed into a desiccator overnight. Once generated, dried blood spot slides were analysed the subsequent day. This 
process was undertaken for both serum and plasma samples.

ATR-FTIR spectral acquisition.  The spectra were obtained using a Tensor 27 FTIR spectrometer with 
Helios ATR attachment (Bruker Optics Ltd) operated by OPUS 5.5 software. The sampling area, defined by the 
internal reflection element (a diamond crystal), was ≈250 × 250 μm. Spectral resolution was 8 cm−1 with two 
times zero-filling, giving a data spacing of 4 cm−1 over the range 4,000–400 cm−1.

The acquisition of an FTIR spectrum involves collecting a ‘single-beam’ spectral measurement at one point 
within a sample. For each study subject, blood spots of both serum and plasma were produced in duplicate; 10 
spectra were collected per 50 µL dried blood spot (total of 20 spectra per biofluid). In order to enlarge the area 
of acquisition and minimize bias associated with sample thickness and molecular heterogeneity, spectra were 
collected from 10 different point locations within each blood spot. In consideration of the well-described ‘coffee 
ring effect’69–71, point spectra from the peripheral edges of the dried blood spots were avoided. The diamond 
crystal was cleaned with distilled water and dried between samples and replicates. Pre-processing of spectra was 
performed according to recommended protocols19,36,72.

Computational Analysis.  The spectra files were pre-processed using the IRootLab toolbox (trevisanj.github.
io/irootlab/), within MATLAB R2017a software (MathWorks). Initially, the 20 replica spectra per sample were 
averaged in order to work with a sample-based classification. Two pre-processing techniques were independently 
tested: (1) rubber-band baseline correction followed by vector normalisation72 and (2) by Savitzky-Golay (SG) 
smoothing (second-order polynomial and nine filter coefficients)73. Once the spectra had been pre-processed, 
two regions of interest were extracted from the spectra; the Fingerprint region, which covers the area between 
wavenumbers 1800–900 cm−1; and the High region, which covers wavenumbers 3700–2800 cm−1.

Principal component analysis linear discriminant analysis (PCA-LDA) was used to observe inter-group dif-
ferences by means of a linear discriminant function applied to the principal component analysis (PCA) scores74. 
PCA is an unsupervised classification technique of exploratory analysis that reduces the spectral dataset into a 
small number of principal components (PCs) responsible for the majority of the original data variance75.

Support vector machine (SVM) is a supervised machine-learning was applied for classifying data. The data 
was pre-processed as above using SG-2nd differential baseline correction and de-noising and vector normalisation. 
We used an SVM algorithm performed in MATLAB, run with an n-fold leave one out, cross validation technique 
(n = 5) to select the best parameters for c and gamma (γ). The parameters (c, γ) for SVM are selected by using a 
grid search function in MATLAB72. To investigate the classification rate, sensitivities and specificities were calcu-
lated for each model tested76. The SVM was trained using 2/3 of the spectral data and tested using the remaining 
1/3. The data set was split using the Kennard-Stone algorithm to achieve uniformity and representativeness within 

CVID patient demographics

Clinical complications n=

Bronchiectasis 10

Splenomegaly 6

AI 4

malignancy 5

ENT 4

GI 4

Passed away 2

Treatment

IVIG 6

SC 13

NONE 2

IgG measurement (g/L)

IgG levels < 6 6

IgG levels > 6 15

Age segregation (yrs)

20–40 6

40–60 8

60+ 7

Sex

Female 9

Male 12

Table 1.  Summary of CVID patient demographics.
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the samples selected for the training set77. This splitting process was performed in a patient basis, where the spec-
tral data assigned to the training and test sets were from different samples, so the training and test groups do not 
contain spectra from the same patient. The models were built using 10-fold cross-validation for optimization. The 
classification percentage calculated from the confusion balls (graphical representation of a confusion matrix) of 
each SVM model designates the rate of correct group assignation when applying the test dataset to the trained 
SVM model. Sensitivity and specificity of each SVM classification was calculated using the accumulative hits 
data (number of true positives, true negatives, false positives, and false negatives) generated from the confusion 
matrices.

Feature extraction was performed on the training dataset to extract potential biomarkers and identify the 
spectral wavenumbers that account for the largest differences between the CVID and HC groups. This was 
undertaken using three methods of biomarker extraction on the training dataset for serum and plasma: Student’s 
T-Test, PCA-LDA and Feature Forward Selection (FFS), for both Fingerprint and High regions of the spectra. The 
six key biomarkers extracted from each method were subsequently investigated for relative increases or decreases 
in absorbance intensity between the classes (subject groups). Wavenumbers not demonstrating significant inten-
sity variance between CVID and HC groups were not taken forward for individual subject level intensity analysis 
(using average intensities of 20 spectral replicates). Extracted wavenumbers within close proximity (10 cm−1) 
of an adjacent biomarker were omitted, as closely associated wavenumbers will be influenced from intensity 
increases or decreases in nearby peaks already identified as biomarkers.

The Student’s T-Test method was performed on the training dataset for both fingerprint and high regions 
of the spectra. The −log10 of the P-value of the T-test for each wavenumber was then plotted to identify the 
potential biomarkers from the T-test. The biomarkers extracted following PCA-LDA were obtained from the 
cluster vector analysis. FFS was applied within IRootLab using the PCA loadings to identify the main biomarkers 
responsible for class segregation by calculating p-values for the variables with larger loadings coefficients78. A 
peak detection algorithm was applied to each method to identify the six most segregating peaks. Extracted wav-
enumbers within 10 cm−1 proximity of an adjacent biomarker were also omitted (n = 2) resulting in a total of 10 
spectral wavenumbers (p =< 0.05).

Statistical analysis.  A student’s t-test (two–tailed, 95% confidence interval (CI)) was performed to calcu-
late statistical significance of spectral variance between groups, with a P-value of less than 0.05 being considered 
significant. A power test based on a two-tailed t-test (data input as mean and standard-deviation of the plasma 
pre-processed spectra in the fingerprint region for each class) indicated a minimum number of samples of 26 HC 
and 15 CVID patients for a power of 80%. The number of samples used herein (HC = 30, CVID = 21) is above this 
minimum. Statistical analysis was carried out on averaged spectra to account for differences between individuals 
and not spectra.

Data deposition.  The data (raw spectra and pre-processed spectra) reported in this paper are available at the 
publicly accessible data repository Figshare (https://doi.org/10.6084/m9.figshare.7751309).

Data Availability
All data (raw and pre-processed spectra) along with appropriate code identifiers will be uploaded onto the pub-
licly accessible data repository Figshare.
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