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Abstract

Macadamia kernels are visually sorted based on the presence of quality defects
by specialized labors. However, this process is not as accurate as non-destructive
methods such as near infrared spectroscopy (NIRS) and nuclear magnetic resonance
(NMR). Thus, NIRS and NMR in combination with chemometrics have become
established non-destructive method for rapid assessment of quality parameters in the
food and agricultural sectors. Therefore, the quality of macadamia nuts was assessed by
NIRS and NMR using chemometric tools such as PCA-LDA and GA-LDA to evaluate
kernel defects. Macadamia kernels were classified as: 1=good, marketable kernels
without defects; 2=kernels with discoloration; 3=immature kernels; 4=kernels affected
by mold; and 5=kernels with insect damage. Using NIRS, the GA-LDA resulted in an
accuracy and specificity of 97.8 % and 100 %, respectively, to classify good kernels. On
the other hand, PCA-LDA technique resulting in an accuracy higher than 68 % and
specificity of 97.2 % to classify immature kernels. For NMR, PCA-LDA resulted in an
accuracy higher than 83% and GA-LDA resulted in an accuracy of 100%, both to
classify kernels with insect damage. NIRS and NMR spectroscopy can be successfully
used to classify unshelled macadamia nuts based on the defects. However, NIRS out-

performed NMR based on the higher accuracy results.

Keywords: Macadamia integrifolia Maiden & Betche, TD-NMR, PCA-LDA, GA-

LDA, chemometrics.
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1. Introduction

Macadamia (Macadamia integrifolia Maiden & Betche) nut growers are keen
to continuously improve nut quality as this is the main characteristic required by the
final consumers. Nogueira (2008) mentioned that the quality of macadamia fruit is
associated with favorable climatic conditions, planning and orchard management,
varieties, pest control, plant nutrition, harvest and post-harvest practices. All these
factors are decisive for macadamia development and nut quality.

According to O’Hare et al. (2004), the main defects that can be observed in
macadamia nuts are immaturity; small nuts; cracks in the shell that allow the occurrence
of biological and chemical contamination; lipids oxidation, which result in unpleasant
odor and taste; bruises, and high moisture. Guthrie et al. (2004) reported other defects
that may be considered, as such: fungal growth, decomposition, germination, and
discoloration of macadamia nuts. Therefore, sound and/or good macadamia nuts must
have light cream color, no signs of mold, decay, insect scars, blemishes, hollow centers,
dark centers, shriveling, off-odors, adhering shells, and loose of extraneous material
(Wall, 2013).

Macadamia industry has developed various parameters of quality standards.
The Southern African Macadamia Growers’ Association (SAMAC) classifies
macadamia nuts into three classes: first grade, commercial grade, and local market.
These classes are established based on kernel color, flavor and odor, kernel dust, insect
infestation, foreign material. A limit of 1.5 % is used reject the nuts based on the
presence of insect damage, discoloration, and immaturity (SAMAC, 2018). On the other
hand, the United Nations Economic Commission for Europe (UNECE) has a higher

tolerance (5 %) for the presence of these defects (UNECE, 2010).
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The sorting process of macadamia kernels in the industry can be carried out
manually (Piza, 2005) or electronically (France, 2007), but both present flaws, since
manual sorting of defective kernels can decrease dramatically with the use of inadequate
lighting and untrained personnel, and the electronic selection uses color to sort kernels,
which may lead to improper selection, since immature kernels can only be identified
based on the deformed, wrinkled, and shrunken kernel (SAMAC, 2018).

The increasing requirements of consumers, regulatory agencies, and
competitors have been an impulse for the development of more accurate quality
assessment techniques in the food industry. In this regard, near infrared spectroscopy
(NIRS) in combination with chemometric modelling have become an established
method for rapid assessment and non-destructive quality parameters in the food and
agricultural sectors (Abbott, 1999; Jensen et al., 2001), since it is fast, safe, relatively
inexpensive technique and provides automation of quality control processes in products
of agroindustry (Pasquini, 2003).

NIRS has been used to evaluate macadamia nut quality. Guthrie et al. (2004)
developed modified partial least squares regression (MPLS) models for oil content
determination in intact macadamia kernels with a root mean square error of calibration
(RMSEC) of 2.4 % and discriminated intact kernels with brown centers or rancidity
from each other and from sound kernels using PCA. Canneddu et al. (2016) developed
models for predicting peroxide value (PV) and acidity index (Al) using PLSR and
classification models to discriminate defects present on shelled macadamia nuts using
FT-NIR. The best model for PV prediction resulted in a coefficient of determination
(Rp?) of 0.72, and for Al prediction a SEP of 0.14 % and a Rp? of 0.80. Adequate
classification models (93.2 %) for defects was possible using principal component

analysis linear discriminant analysis (PCA-LDA). Carvalho et al. (2017) classified
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intact macadamia nuts according to cultivars using PCA-LDA and genetic algorithm
with linear discriminant analysis (GA-LDA), reporting an accuracy higher than 94.4 %
and a value of 82.7 % for sensitivity using GA-LDA, respectively. The better
performance of GA-LDA can be due to that GA algorithm selects several wavenumbers
in a single band, due to collinearity problems. Carvalho et al. (2019) evaluated the
oxidative stability in intact macadamia nuts during drying process and reported a SEP
of 0.55 meqg.kg* and R2c of 0.57 for PV prediction, and SEP of 0.14 % and Rc of 0.29
for Al prediction. These results demonstrate that NIRS can be used to assess the
oxidative stability of intact macadamia nuts.

Nuclear magnetic resonance (NMR) has also been stated as an alternative
method among non-destructive techniques to evaluate fruit quality (Abbott, 1999). TD-
NMR has wide applications for qualitative and guantitative in food analysis (Conalgo,
1996). In this regard, Pedersen et al. (2000) combined low-field nuclear magnetic
resonance (LF-NMR) and PCA to classify rape and mustard seeds according on the
type of seed, obtaining two distinct groups and 100 % of explained variance. This
technique was also applied to evaluate the efficacy of hydrophobic coatings as a barrier
to the oxidation of macadamia nuts (Colzato et al., 2009).

Although some results can be found regarding the use of NIRS to assess
macadamia quality defects (Canneddu et al., 2016), this study was performed evaluating
the macadamia in nut not the kernel (unshelled), and no reports were found on using
NMR to evaluate macadamia kernel defects. Therefore, the objective of this study was
to develop NIRS and NMR calibration models to evaluate macadamia kernels based on
the most common defects aiming to improve the quality control process in the

macadamia industry.
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2. Material and Methods
2.1. Plant material

Macadamia (Macadamia integrifolia Maiden & Betche) kernels were obtained
in a commercial orchard located in Dois Corregos, Sao Paulo, Brazil (22° 37' S, latitude,
48° 38' W, longitude, 753 m altitude) in 2017 harvest season. Nuts were harvested three
times during the season (April, June, and August) and kernels were visually sorted by
the industry personnel based on their quality attributes, as such: 1=good, marketable
kernels without defects; 2=kernels with discoloration; 3=immature kernels; 4=kernels
affected by mold; and 5=kernels with insect damage. (Figure 1). These quality attributes
represented the five studied classes (model). It is important to state that the nuts were
dried by the processing industry and used in the analyses without any previous
treatment.
2.2. NIR spectra acquisition
On the surface of each macadamia kernel two Fourier Transformed (FT) NIR
reflectance spectra (11,544 — 3,952 cm™, nm, resolution of 16 cm™, and 64 scans) were
collected using a Bruker NIR spectrometer (Tango, Ettlingen, Germany) after
temperature stabilization at ~25°C. The two replica spectra measured per nut were
averaged, so the model is made on a sample basis. Samples were collected in three
different harvests, where 20 nuts were sorted and used for spectra acquisition for each
defect class. This resulted in a total of 300 measured samples (20 nuts x 5 classes x 3
harvests).
2.3. Time domain (TD) NMR measurements

TD-NMR measurements of macadamia kernels (n=100) were carried out at 22
°C in a 0.27 T (11.3 MHz for *H) benchtop SLK200 Spinlock instrument (Spinlock

Magnetic Resonance Solutions, Cordoba, Argentina). The measurements were
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performed using the standard CPMG sequence to obtain the exponential decay signal
that is governed by the transverse relaxation time (T2). The sequence used n/2 and = of
11.6 and 19.6 pus, respectively, an echo time of 600 us, 4 scans and 1500 echoes.
Samples harvested in June 2017 were used and for each defect class 20 nuts were sorted
and used for spectra acquisition, totaling 100 spectra. The mass of the samples ranged
from 14 to 24 g depending on the sample density. The samples were the same used to
collect the NIRS spectra, but the spectra were collected on different days.

2.4. Chemometrics

Data analysis of NIR and TD-NMR were performed within MATLAB R2014b
environment (MathWorks Inc., USA) using PLS Toolbox version 7.9.3 (Eigenvector
Research Inc., USA) and lab-made routines. Three different pre-processing methods
were applied to test the averaged sample spectrum (average of 10 spectra per sample):
(1) only mean-centering; (2) standard normal variate (SNV) followed by mean-
centering; (3) Savitzky-Golay second derivative (window of 5 points, 2" order
polynomial function) followed by mean-centering. The data was split into training (70
%, 210 samples), validation (15 %, 45 samples) and test (15 %, 45 samples) sets using
the Kennard-Stone sample selection algorithm (Kennard and Stone, 2012). The training
and validation sets were used for model construction and internal optimization,
respectively; while the test set was used to evaluate the final predictive performance of
the classification models built towards external samples.

Multivariate classification was performed by means of principal component
analysis linear discriminant analysis (PCA-LDA) and genetic algorithm linear
discriminant analysis (GA-LDA). PCA-LDA performs a feature extraction using
principal component analysis (PCA) followed by a linear discriminant classifier (LDA)

(Morais and Lima, 2018) For this, PCA is applied to the pre-processed data reducing
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the original number of variables (i.e., wavelengths) to a few number of principal
components (PCs) accounting for the majority of the original data variance. Each PC is
composed by scores and loadings, where the first represents the variance between the
samples and the latter the variance on wavelength direction (Bro and Smilde, 2014).
LDA is applied to the PCA scores in a non-Bayesian form as follows (Dixon and

Brereton, 2009; Wu et al, 1996).

L(x;) = (x; — ik)TCl;éoled (x; — Xg) 1)
where L(x;) represents the LDA classification scores for sample i; x; is the input vector
(i.e., the PCA scores) for sample i; X is the average vector of class k; Cpqq1e4 IS poOled

covariance matrix; and T represents the matrix transpose operation.

GA-LDA is feature selection technique followed by an LDA classifier. Initially,
a genetic algorithm (GA) is applied to reduce to the spectral data into a few number of
variables based on an evolutionary process (Bro and Smilde, 2014); then LDA is
applied to these variables according to Eq. 1. These variables are in the same scale of
the original spectral data and are selected according to the lowest risk of miss

classification G. G is calculated in the validation set as (Carvalho et al. 2017).

1 ,
G =1-2nl10n @

where N, is the number of validation samples and g,, is defined as:

1'2{:xn-mﬁnjj (3)

Gn =

: 2
MmNy imy=I(n) T {.xn-mﬂmj)
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in which the numerator is the squared Mahalanobis distance between sample x,, (of

class index I(n)) and the mean m;,, of its true class; and the denominator represents

the squared Mahalanobis distance between sample x, and the mean my,,, of the

closest wrong class. GA was performed through 100 generations, having 200
chromosomes each. Cross-over and mutation probabilities were set at 60% and 1%,

respectively. The algorithm was repeated three times and the best result was chosen.

2.5. Figures of merit

The classification performance of each algorithm was evaluated according to
the quality parameters of accuracy (total number of samples correctly classified
considering true and false negatives), sensitivity (proportion of positives correctly
identified) and specificity (proportion of negatives correctly identified). These

parameters are calculated as follows (Morais and Lima, 2017):

TP+TN

Accuracy (%) = rrprTnamn < 100 (@)
Sensitivity (%) = TPZPFN x 100 (5)
Specificity (%) = —— x 100 (6)

where TP stands for true positives; TN for true negatives; FP for false positives; and FN

for false negatives.

3. Results and Discussion
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3.1. NIR spectra

The raw FT-NIR spectra obtained from all macadamia kernels and the average
spectra from each quality attribute class can be seen in Figure 2. It was not possible to
observe spectral differences between the quality attributes when all macadamia kernels
were assessed (Figure 2A). On the other hand, the mean spectra were quite different for
each defect category (Figure 2B), especially at the wavelength 1,900 nm to 2,500 nm.

The FT-NIR spectra presented absorption bands at 1,200 nm, which are related
to CH stretch second overtone (Cozzolino et al., 2005), while those at 1,700 — 1,800 nm
are associated to the first overtones of CH stretching vibrations of —-CH3s, -CH>— and —
HC=CH (Armenta and La Guardia, 2007). Absorption bands at 1,350 — 1,600 nm and
1,950 nm and 2,100 nm are related to the presence of glucose, sucrose, and fructose
(Lanza and Li, 1984) and immature kernels have higher sucrose and reducing sugar
contents than fully mature kernels (Wall, 2013). In Figure 2B can be seen that at 1,350
— 1,600 nm the immature kernels exhibit a higher absorption intensity, since maturity is
inversely related to sugar content (Ripperton et al., 1938).

The wavelength region situated at 2,200 — 2,500 nm is mainly related to the
oxidation and hydrolytic degradation of lipids (Cozzolino et al. 2005). It is possible to
observe that the immature kernels, classified as kernel which is misshapen, abnormally
small or partially aborted, including shriveled and shrunken kernels (SAMAC, 2016)
present a lower absorption band (2,200 nm - 2,500 nm) (Figure 2B). This result might
be due to the fact that maturity is correlated with oil content (Cavaletto, 1985),
consequently with less lipid degradation.

3.1.1. Model development
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To correlate the FT-NIR spectra to the quality categories, discriminant
classifications based on PLS-DA and GA-LDA were used and compared and evaluated
in terms of sensitivity, specificity, accuracy, separately for each category.

Regarding pre-processing, SNV lead to best results using PCA-LDA, resulting
in an accuracy of 68 % and a specificity of 97 % for immature kernels (Table 1). The
accuracy shows the proportion of samples correctly grouped, while specificity
represents the probability of a sample without the desired characteristic to be given a
negative test result (Amodio et al., 2017). However, the sensitivity presented low
values (67 %), and this parameter describes the model ability to correctly recognize
samples belonging to a class (Ballabio and Consonni, 2013). For example, if none of
the marketable kernels were classified as other class (FN is equal to zero), the
sensitivity for the marketable kernels class would have been equal to 100 %.

Cannedu et al. (2016) classified marketable macadamia kernels in relation to
non-marketable kernels using PLS-DA and reported percentages of 88 % for calibration
and 87 % for prediction. These results were inferior than what we obtained, probably
because we used more samples (n = 300) than Cannedu et al. (2016) (n = 100).
Therefore, the inclusion of more data into the dataset improved the robustness and
increase the classification accuracy.

Marketable kernels and kernels with defects (immature, insect damage, mold,
and discoloration) could be discriminated from each other using GA-LDA (Figure 3).
The accuracy and specificity of GA-LDA for marketable kernels achieved a value of
97.8 % and 100 %, respectively (Table 2).

To perform the GA-LDA, some of the wavelengths were selected (Table 3).
This selection was based on compounds of particular interest, e.g., 1,020 nm and 1,173

nm, representing the C—H groups from lipids; 1,485 nm and 1,789 nm, related to the
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first overtone of stretching and anti-symmetric O—H bond and second overtone of
stretching O—H bend, respectively. Absorption bands at the wavelength near 1,450 and
1,940 nm are related to the presence of water in foods (Moscetti et al., 2014) and this
explains why the wavelengths 1,485 nm, 1,975 nm and 1,987 nm were selected by GA.
It is possible to observe that the kernels with discoloration had a higher
moisture content than the others (Figure 2B), and these moisture contents correspond to
water activities (aw) greater than 0.8 at which browning reaction rates are high (Wall,
2013), and maintaining nuts-in-shell at high moisture content can cause discoloration
(Walton et al., 2013).
3.2. TD-NMR

The typical curves of the CPMG decays for the different defects found in
macadamia kernels can be seen in Figure 4. It can be observed that kernels with insect
damage presented a faster settling time compared to the others, whereas the kernels with
presence of fungi (moldy) showed the slower signal decay (Figure 4).

The intensity of the TD-NMR signals from relaxation (our case) and diffusion
measurements is related to the water content related to water status, water
compartmentalization and molecular mobility in the food sample (Kirtil et al., 2017). In
order to evaluate the influence of the water content on the nutrient content of the food, it
is important to note that there are variations in the moisture content of the kernels, since
these moisture contents correspond to water activities at which microbial growth rates
are high (Wall, 2013). This explains the fact that moldy kernels have a higher moisture
content.

In Figure 5 it is possible to observe that there was not a clear separation
between the defect classes. However, in Figure 5A there was a tendency of separation

between the good and immature kernels. Probably because there are differences in the



282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

13

decay time between these classes (Figure 4), with showed that the most rapid decay is
due to solid components, mainly composed of proteins and carbohydrates (Prestes et al.,
2007) and immature kernels present a higher carbohydrate concentration, represented by
sucrose and fructose higher than mature kernels (Wall, 2013).
3.2.1. Model development

The best TD-NMR classification models were obtained using the PCA-LDA and
GA-LDA without pre-processing the signals (Table 4). Using PCA-LDA, it was
possible to achieve 86 % accuracy for the training set and 83.3 % for the validation set
to classify kernels with insect damage. On the other hand, the GA-LDA analysis
obtained 64 % for the calibration set and 100 % for the validation set, allowing the use
of this model to classify kernels with insect damages.

TD-NMR has been used to classify other oleaginous produces including nuts.

Di Caro et al. (2017) studying not damaged and moldy hazelnuts kernels highlighted
that NMR might be used to discriminate oils extracted from both kernel classes. Di Caro
(2018) also reported that using NMR was possible to obtain values of 97 % for
sensitivity and 81 % for specificity to classify in-shell damaged hazelnuts. Therefore,
NMR might be a useful analytical tool for quality control in nut industry.
3.3. NIRS versus TD-NMR

The results obtained from both techniques for the development of the
classification models for macadamia kernels quality defects can be seen in Table 1, 2,
and 4. Overall, the NIRS showed better classification capability as higher values of
accuracy were obtained using GA-LDA models. The lower performance of the
classification models developed using the TD-NMR signals might be related to the

number of samples, as just the kernels harvested in June 2017 were used.
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NIRS and TD-NMR present many similarities as they are fast non-destructive
analytical methods, do not need sophisticated sample preparation, and the results can be
collected, processed, and stored directly in a microcomputer (Colnago, 1996; Pasquini,
2003). However, when it comes to NMR spectroscopy, high cost is normally considered
as one of the most serious drawbacks and this technique requires special skills to
interpret the spectra acquisition (Xu et al., 2015). Another limitation of NMR
spectroscopy is the insensitivity to minor fat component detection (Kucha et al., 2018).
These suggest that, due the fact that NIRS is useful for detecting components with up to
0.1 % concentration (Xu et al., 2015) and NMR presents lower sensitivity, NIRS models

presented more satisfactory results.

4. Conclusions

NIRS and TD-NMR combined with chemometric methods proved to be
powerful tools to classify macadamia kernels based on their quality defects. However,
NIRS out-performed TD-NMR based on the higher accuracy results.

NIRS and TD-NMR spectroscopy can be successfully used to evaluate the
quality of unshelled macadamia nuts and have potential to improve the existing

postharvest techniques used in the macadamia industry.
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Table 1. Values of accuracy, sensitivity and specificity to classify macadamia kernels

based on quality defects using PCA-LDA and NIRS.

Classes 1 2 3 4 5

Pre-Processing

Raw AC(%) 889 84.4 75.6 82.2 75.6
SENS(%) 88.9 66.7 44.4 44.4 22.2
SPEC(%) 88.9 88.9 83.3 91.7 88.9

SNV AC(%) 80.0 68.9 88.9 75.6 75.6
SENS(%) 66.7 55.6 55.6 11.1 333
SPEC(%) 83.3 72.2 97.2 91.7 86.1

2d Derivative  AC(%)  82.2 733 86.7 88.9 75.6
SENS(%) 66.7 44.4 77.8 66.7 11.1
SPEC(%) 86.1 80.6 88.9 94.4 91.7

SNV= standard normal variate; AC= accuracy; SENS= sensitivity; SPEC= specificity.

1=good, marketable kernels without defects; 2=kernels with discoloration; 3=immature

kernels; 4=kernels affected by mold; and 5=kernels with insect damage.
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Table 2. Values of accuracy, sensitivity and specificity to classify macadamia kernels

based on quality defects using GA-LDA and NIRS.

Classes 1 2 3 4 5

Pre-Processing

Raw AC(%) 86.7 82.2 86.7 86.7 82.2
SENS(%) 66.7 66.7 55.6 66.7 55.6
SPEC(%) 91.7 86.1 94.4 91.7 88.9

SNV AC(%) 97.8 84.4 88.9 91.1 84.4
SENS(%) 88.9 88.9 55.6 77.8 55.6
SPEC(%) 100 83.3 97.2 94.4 91.7

2" Derivative AC(%) 91.1 75.6 84.4 86.7 68.9
SENS(%) 66.7 44.4 44.4 55.6 55.6
SPEC(%) 97.2 83.3 94.4 94.4 72.2

SNV= standard normal variate; AC= accuracy; SENS= sensitivity; SPEC= specificity.

1=good, marketable kernels without defects; 2=kernels with discoloration; 3=immature

kernels; 4=kernels affected by mold; and 5=kernels with insect damage.



21

449
450

451  Table 3. Selected variables for GA-LDA to classify macadamia kernels using different

452  pre-processing.

Pre-processing Selected variables (nm)

Raw 882; 886; 946; 990; 1171; 1395; 1429; 1511; 1622; 1664, 1942,

1979; 2075; 2187; 2260; 2328

SNV 866; 1020; 1173; 1280; 1485; 1578; 1789; 1975; 1987; 2083,

2170; 2277; 2300; 2388; 2451

2nd Derijvative 894: 898: 1078; 1251; 1335; 1436; 1488; 1952: 1964; 2126;

2328; 2356

453 SNV=standard normal variate

454
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455

456  Table 4. Values of accuracy to classify macadamia kernels based on quality parameters

457  using PCA-LDA, GA-LDA and TD-NMR spectroscopy.

Classes 1 2 3 4 5

Pre-Processing

PCA-LDA
Training (%) 643 357 429 857 643

Validation (%) 16.7 33.3 16.7 66.7 83.3
Nil

GA-LDA
Training (%) 643 500 357 643 500

Validation (%) 66.7 16.7 66.7 66.7 100

458  1=good, marketable kernels without defects; 2=kernels with discoloration; 3=immature

459  kernels; 4=kernels affected by mold; and 5=kernels with insect damage.

460
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Figures

Discolored

Figure 1. Macadamia kernels quality defects: 1=good, marketable kernels without
defects; 2=kernels with discoloration; 3=immature kernels; 4=kernels affected by mold;

and 5=kernels with insect damage.
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471  Figure 2. Raw NIR spectra (a) and average NIR spectra (b) of macadamia kernels.
472  1=good, marketable kernels without defects; 2=kernels with discoloration; 3=immature

473  kernels; 4=kernels affected by mold; and 5=kernels with insect damage.

474
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478  Figure 3. Discriminant function (DF) plot of PCA-LDA and GA-LDA with raw NIR
479  spectra of macadamia kernels, SNV and 2" derivative Savitzky-Golay. 1=good,
480  marketable kernels without defects; 2=kernels with discoloration; 3=immature kernels;

481  4=kernels affected by mold; and 5=kernels with insect damage.

482
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483
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485  Figure 4. Typical CPMG decay curves of macadamia kernels with different quality
486  defects. 1=good, marketable kernels without defects; 2=kernels with discoloration;

487  3=immature kernels; 4=kernels affected by mold; and 5=kernels with insect damage.

488
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495  Figure 5. Discriminant function (DF) of PCA-LDA (A) and GA-LDA (B) with raw
496  TD-NMR spectra of macadamia kernels. 1=good, marketable kernels without defects;
497  2=kernels with discoloration; 3=immature kernels; 4=kernels affected by mold; and
498  5=kernels with insect damage.
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