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Abstract

The use of coliforms and Escherichia coli as indicator species for assessing the quality of water is well
established and a large variety of methods based on -galactosidase (B-GAL) activity, inherent to the
microbes within this classification, have arisen to enable their detection and enumeration.
Chlorophenol red (CPR) is widely used as a chromogenic label, but its capacity for translation to
electroanalytical devices has yet to be fully explored. The CPR moiety is capable of undergoing
oxidation at carbon substrates (+0.7 V) giving rise to a variety of phenolic intermediates.
Electrochemical, XPS and enzymatic techniques were employed to characterise the underpinning
chemistry and the intermediate identified as a 1,2-quinone derivative in which the chlorine
substituent is retained. The latter was found to accumulate at the electrode and, in contrast to the
parent CPR, was found to be detected at a significantly less positive potential (+0.3V). Bacterial
hydrolysis of a CPR labelled substrate was demonstrated with the 1,2-quinone oxidation product
found to accumulate at the electrode and detected using square wave voltammetry. Proof of
concept for the efficacy of the alternative electrode pathway was established through the detection
of E.coli after an incubation time of 2.5 h with no interference from the labelled substrates.

Keywords: Galactosidase; Chlorophenol Red; Coliform; Water Quality; Global Health



1.0 Introduction

Electroanalytical techniques which target the detection of molecular biomarkers have a long
history and there have been many technological advances in past decades [1-6]. It is only recently
however that attention has shifted from small molecular targets to larger moieties such as bacteria
[7-10]. The B-galactosidase (B-GAL) enzyme common to most coliforms offers a versatile route
through which small molecule detection can be still be harnessed to detect the presence of these
larger targets. The B-GAL enzyme, which is encoded by the lacZ gene, catalyzes the hydrolysis of B-
galactosides (such as lactose) into monosaccharides (such as glucose and galactose) and has been
the subject of extensive investigations with a history dating back to the mid 1900’s. Monitoring the
enzyme activity has enabled insights into the genetic regulation of enteric bacteria [11,12] and has
since found use in a host of applications [13]. The prevalence of B-GAL in coliforms and E. coli,
however, has seen the enzyme’s significance move from fundamental science to the development of
low cost field diagnostics for water quality measurements in low and middle income countries.
Coliforms are used as the principal indicator organisms that highlight faecal contamination of water
sources and, at present, B-GAL forms the foundation of a diverse range of assay systems [14-17].
Bigham et al. (2019) recently demonstrated the potential of voltammetric approach with a carbon
fibre system to quantify pH for microbial coliform water quality assessment [18]. Irrespective of the
assay format, the underpinning methodology relies upon the ability of the enzyme to hydrolyse
labelled galactopyranoside substrates vyielding a colorimetric, fluorescent, luminescent or
electrochemical marker [19]. A large variety of molecular species have been used as markers to
enable quantification but chlorophenol red (CPR) has emerged as a more convenient and highly
sensitive substrate from both spectroscopic [13] and electrochemical perspective [20] as indicated in

Schematic 1.
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Schematic 1. Spectroscopic or electrochemical detection of Escherichia.coli through the B-galactosidase (p-
GAL) mediated hydrolysis of chlorophenol red - galactopyranosidase (CPRG).



Electrochemically, CPR has been shown to be capable of direct oxidation at carbon
electrodes and Wutor and colleagues (2007) demonstrated detection limits as low as 1 colony-
forming unit (CFU) / 100 mL [20]. This is widely regarded as the threshold for microbial drinking
water quality required by the Sustainable Developments Goals (SDGs), which were ratified by the
United Nations [21]. Inspection of the CPR molecular structure (highlighted in Schematic 1) reveals
two discrete 2-chlorophenol functionalities, the oxidation of which are attributed to the
electrochemical peak process observed by Wutor and colleagues. The products of the oxidation
process however were unascribed, but it is inevitable that a range of intermediates could arise, and

some tentative pathways are highlighted in Fig. 1.
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Fig. 1. Possible reaction pathways following the oxidation of chlorophenol red (CPR).



For the purposes of mechanistic considerations, the CPR molecule could be simplified to a core
consisting of two 2-chlorophenol (2CP) groups with the remainder of the molecule being a relatively
inert spectator. While there is no mechanistic information on the oxidation of CPR in the literature,
there is an abundance of studies on substituted phenols [22-27]. As indicated in Fig. 1,
electrochemical oxidation would be expected to lead to the generation of the radical cation (I - II)
and therein to a spectrum of products (Il = VI). In simple systems with low steric hindrance, this
tends to result in coupling to form oligomeric and polymeric species directly at the electrode surface.
While similar reactions are inevitable in the oxidation of CPR, the molecular bulk could be a limiting
factor allowing competing process to prevail. The CPR structure, by virtue of the blocked 4-position
and the 2-chloro substituent, is sterically less likely to form polymeric films upon oxidation, however,
the vacant 5-position would be susceptible to attack leading to oligomeric CPR-like aggregations or
the production of discrete 1,2-dihydroxy species (I11 and V). Given that the potential required to
oxidise these intermediates is less than that required to oxidise the parent CPR, it could be
anticipated that their conversion to the corresponding 1,2-quinone (11 — IV, V — VI) should be
immediate upon the imposition of a large positive potential.

Electrochemical signatures pertaining to the intermediates were not reported by Wutor et
al., instead their focus was solely on the direct oxidation of the phenol (I = 1) [20]. As such, a
number of questions remain in terms of the possible pathways highlighted in Fig. 1. The oxidation of
CPR was observed at +0.72 V which can be problematic in complex media where the oxidation of
other components (i.e. humic substances) may lead to ambiguities in ascribing the peak currents and
could give rise to false positives. In contrast to the direct oxidation of CPR, the electrogenerated 1,2-
dihydroxy intermediates could be expected to have redox peak processes at much lower potentials.
Exploiting their redox signature as the analytical signal for B-GAL activity could potentially avoid
interference issues from other species present in the sample. From a more fundamental perspective,
there are two competing pathways in Fig. 1 where the chloro substituent is either retained
throughout the process or is lost through nucleophilic attack during the initial oxidation. As yet, no
investigations into the nature of the electrode products from CPR have been reported. The present
study has attempted to counter this issue, but also examine the possibility of exploiting the
electrogenerated dihydroxy products as a viable diagnostic tool for detecting B-GAL activity and

hence the presence of coliforms.

2.0 Experimental Details

Materials and Instrumentation: All chemicals were obtained from Sigma-Aldrich (Gillingham, UK),

were of the highest grade available and were used without further purification. Toray Carbon Fibre



Paper (TGP-H-30) was purchased from E-TEK (USA) and used as received. Electrochemical analysis
was carried out using an Anapot potentiostat (Zimmer & Peacock, Royston UK) with a standard
three-electrode configuration with either a glassy carbon (3 mm diameter) or Toray carbon fibre mat
(2.5 x 2.5 mm) as the working electrode. Platinum wire served as the counter electrode and a
conventional silver/silver chloride (3 M KCI, BAS Technicol UK) half-cell reference electrode unless
otherwise specified. All measurements were conducted at 22°C + 2°C. Carbon fibre electrodes were
sealed within a polyester laminate as described previously [28] and pre-anodised in 0.1 M NaOH (+2
V, 5 mins) [29]. Electrochemical measurements were conducted in Britton-Robinson (BR) buffer
(acetic, boric and phosphoric acids — each with a concentration of 0.4 M and adjusted to the
appropriate pH through the addition of concentrated sodium hydroxide) unless otherwise specified.
While the pH of treated water can range from pH 6 to pH 9, the electrochemical investigations were
conducted at pH 7 throughout to facilitate comparison of electrode responses. The influence of pH

on the peak responses was however assessed and summarised in the following discussion.

NMR spectra were recorded on a Bruker Avance-Ill 300 MHz spectrometer at ambient temperature.
Chemical shifts are reported in ppm relative to residual protic solvent ("H NMR de-DMSO, 2.500 ppm;
BC NMR de-DMSO, 39.520 ppm). The preparation of 2-chloronaphthoquinone was based on a
method by Neufeind et al.(2011) [30] and is detailed in the Electronic Supporting Information (ESI)

file along with the procedures followed and spectra obtained from the NMR investigations.

A Kratos Axis Ultra DLD Spectrometer was used to quantify surface composition and acquire X-ray
photoelectron spectroscopy (XPS) spectra. Spectra were analysed using monochromated Al Ka X-
rays (hv = 1486.6 electron volts (eV)) with typical operating parameters of 15 kV and 10 mA (150 W).
During analysis, a hybrid lens mode was used (electrostatic and magnetic) with a 300 um x 700 um
analysis area and a take-off angle (TOA) of 90° with respect to the sample surface. Wide energy
survey scans (WESS) were collected across a range of -5 to 1200 eV binding energy (BE), with a pass
energy of 160 eV and step size of 1 eV. High-resolution spectra were collected with a pass energy of
20 eV with a 0.05 eV step size, a scan width of 25 eV, a dwell time of 150 milliseconds and at least 3
sweeps to reduce the signal noise. A Kratos charge neutraliser system with a filament current
between 1.8-1.95 A and a charge balance of 3.3-3.6 V and a filament bias of 1.3 V was used for all
samples. Charging effects on the BE positions were adjusted by setting the lowest BE for the Cls
spectral envelope to 284.8 eV, which is commonly accepted as adventitious carbon surface
contamination. Three measurements were analysed per sample, with a Shirley background

subtracted from each XPS spectra. The peak areas of the most intense spectral lines for each



elemental species were used to determine the percentage atomic concentration. Peak fitting of

high-resolution spectra was carried out using Casa XPS software.

Bacterial Culture: Escherichia coli (K12, CETC 4624 (NCTC 12486)) was grown from an existing stock
(previously stored at -80°C, 25% glycerol) by streaking onto a Tryptic Soy Broth (TSB) agar plate
containing tryptone (17 g/L), soy extract (3 g/L), NaCl (5 g/L), K,HPO, (2.5 g/L), glucose (2.5 g/L) and
agar (15 g/L). A single colony was transferred from the stock plate into 10 mL of LB broth. The latter
was supplemented with 500 uM of isopropyl-f-d-thiogalactopyranoside (IPTG) in accordance with
previous reports [31,32] and the resulting mixture added to a 50 mL falcon tube and incubated at
37°C for 18 h at 150 rpm. Overnight cultures were sub-cultured and grown to an ODgg of 0.4 before

undergoing a 2 fold serial dilution.

Electrochemical Assay: Lysozyme (10 mg/mL) was dissolved within Tris buffer, adjusted to a pH of 8
and added at a 1 mg/mL concentration to each dilution [33]. This was incubated at room
temperature for 20 minutes and then pelleted and the supernatant removed. The pellet was
resuspended in Minimal Media (pH 7) consisting of Na,HPO, (25.6 g/L), NaH,PO, (5.28 g/L), KCl (1
g/L), NH,CI (2 g/L), MgCl, (0.19 g/L) and CaCl, (0.011 g/L). Chlorophenol red galactopyranoside (6
mg/mL) was then added and the mixture incubated at 37°C over a period of 24 hours. Voltammetric
readings were taken at 2.5 h and 24 h. Electrochemical investigations within the resulting E.coli
cultures were conducted through placing the three electrodes (carbon fibre working, 3M Ag/AgCl
reference and Pt counter) within the bacterial culture. Square wave voltammograms (-0.2 V to +1.2

V, Step = 2 mV, Pulse = 20 mV, Frequency 25 Hz) were scanned.

3.0 Results and Discussion

Cyclic voltammograms detailing the response of an anodised carbon fibre electrode towards
100 uM CPR in pH 7 Britton-Robinson (BR) buffer are shown in Fig. 2A. A broad oxidation process
(+0.6 V) is seen on the first scan with the successive decrease in the peak magnitude characteristic of
phenol oxidation. The oxidation peak is slightly less positive than that observed by Wutor et
al.(2007) and could be attributed to the increased edge plane/interfacial oxygen functional group
population associated with anodised carbon fibre [29]. The initial oxidation is irreversible and can be
attributed to the generation of the radical cation which is then expected to undergo the various
structural transformations as indicated in Fig. 1. Rather than being characteristic of a single

electrode process, the breadth and multicomponent structure of the “peak” highlights a multitude



of secondary processes attributed to the consequent oxidation of reaction by-products. Importantly,
a series of new electrode processes are observed on the second scan covering the range: +0.1 V to
+0.4 V and suggests multiple overlapping peak processes. It is important to note that restricting the
scan range on the first scan to +0.5 V - a potential limit insufficient to induce CPR oxidation - does
not lead to the appearance of any secondary redox peak processes. Voltammograms were also
recorded in BR buffers covering the range pH 6 to pH 9 and it was observed that the secondary peak
process exhibited a shift in peak position of 57 mV/pH consistent with a 2 proton / 2 electron

transition.

As the magnitude of the peak process at +0.3 V was found to increase with additional
scanning, irrespective of any time delay between scans, it was hypothesised that the products were
adsorbed onto the electrode surface and this was tested through removing the electrode, rinsing
and placing in fresh pH 7 BR buffer devoid of any solution CPR. The resulting voltammograms are
highlighted in the Inset in Fig. 2A, where it is clear that the electro-oxidation product is retained and
exhibited near-reversible behaviour which was found to be relatively stable with only a 9%
diminution in the peak current after 20 voltammetric cycles. The response to scan rate was also
investigated (Fig. 2B and 2C) with the linearity of the peak current vs scan rate being consistent with

a surface-confined species. Surface coverage (I'.) after 8 scans was estimated from:

n*F*Ar,
| = toy
ART

where I, is the peak height, v is the sweep rate, A is the effective surface area (0.0625 cm?) of the

(1)

carbon fibre electrode and the other symbols have their usual meaning. From the slope of cathodic
peak currents vs. scan rate, the calculated surface concentration of the CPR quinone compound was

found to be 2.49 x 10> mol cm™.
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Fig. 2. A) Cyclic voltammograms detailing the oxidation of 100 uM chlorophenol red (CPR) at a carbon fibre

electrode in pH 7 Britton-Robinson buffer (Scan rate: 50 mV/s). Inset: response of the same electrode in fresh
pH 7 buffer. B) Variation of peak heights with square root of scan rate (B) and scan rate (C).

Surface characterisation of the adsorbed intermediate highlighted in the inset within Fig. 2A
was conducted using high resolution X-ray photoelectron spectroscopy (XPS). Fresh carbon fibre
electrode samples were prepared and cyclic voltammetry performed on 100 uM CPR under the
same conditions as those detailed above. A total of 10 scans were recorded and the electrode then
removed and rinsed thoroughly to remove residual / unoxidized CPR. Representative XPS spectra

detailing the S 2p and Cl 2p regions are shown in Fig. 3. While it could be expected that the oxidation



process would lead to changes in the carbon framework through the incorporation of new C-OH
bonds, the use of the C 1s XPS profile was not used in this instance as the variety of carbon-oxygen
functionality already present in the underlying carbon fibre prevents unambiguous assignment. The
unmodified carbon fibre is however devoid of any sulphur or chlorine moieties and hence, it was
anticipated that the atomic% ratio of S:Cl at the surface could therefore give some insights into the
reactivity of the chlorine substituent. The observed ratio was 0.757 + 0.098 (N = 4). Had the
chlorine been unreactive towards attack, a ratio of 0.5 would have been expected (Pathway | — 11
— Il & 1V, Fig. 1) and conversely, the ratio would be expected to be substantially greater than 1
were the chlorine substituent subject to replacement (Pathway | = Il > V < VI, Fig. 1). As such,
the XPS results indicate that very little of the chlorine is lost (as chloride ion) as a consequence of

both the initial oxidation of the CPR and repeated redox cycling of the adsorbed intermediates.

Corroborating evidence for the retention of the chlorine substituent was obtained through
examining the electrochemical responses of 2-chloro-1,4-naphthoquinone, 1,4-naphthoquinone and
2-hydroxy-1,4-naphthoquinone as models for the intermediates highlighted in Fig. 1. Repetitive
cycling of the chloro-naphthoquinone-hydroquinone system in pH 7 BR buffer did not lead to any
significant change in the peak profiles and no transition to the 2-hydroxy analogue was observed,
indicating that attack by water does not occur to any appreciable extent. Similarly, a range of NMR
experiments (1H, 1H1H COSY, 13C and 135-DEPT) were undertaken to determine if nucleophilic
substitution occurs at the 2-chloro-1,4-naphthoquinone in aqueous solution. Detailed spectra for the
2-chloro-naphthoquinone and the 2-hydroxynaphthoquinone are detailed in Fig. S1 along with the
investigative protocol followed. In summary, the substitution can be judged by the proton singlet at
the 3rd position on both naphthoquinone molecules which occurs at 6.16 ppm for the 2-hydroxy-
1,4-naphthoquinone and 7.50 ppm on the 2-chloro-1,4-naphthoquinone. It could be anticipated that
were nucleophilic substitution to occur at the 2-chloro derivative as a consequence of attack from
water, the 6.16 ppm singlet, characteristic of the 2-hydroxy product, would be observed. The
emergence of the latter was not observed after 10 mins exposure of the 2-chloro-naphthoquinone

to water.
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Fig. 3. X-ray photoelectron spectra of the S 2p (A) and Cl 2p (B) regions of a carbon fibre electrode confirming
the presence of adsorbed CPR oxidation products

Evidence supporting the proposition that the intermediate is, in fact, a 1,2-quinone type

redox species was acquired through employing a tyrosinase assay with CPR as the enzyme substrate.
Tyrosinase is widely used for the quantitative analysis of phenols where it first converts the latter to
the 1,2-dihydroxy analogue and then oxidises it to the corresponding 1,2-quinone. The enzyme has
been used in a number assays for the detection of coliforms where phenol-galactopyranoside was
employed as the bacterial / B-GAL substrate [34]. In the present case, tyrosinase (23.5 kU/mL) was
employed to convert 25 uM CPR directly to its 1,2-dihydroxy variant as indicated in Fig. 4A. Square
wave voltammetry was used to periodically monitor the reaction in the expectation that the
enzymatically produced 1,2-dihydroxy analogue of the CPR molecule would adsorb onto the carbon
fibre electrode. The switch to the square wave format was employed to harness the greater
discrimination of Faradaic processes from the background thereby improving both detection

sensitivity and peak definition. Voltammograms comparing the response of carbon fibre electrodes



to the enzymatically generated 1,2-quinone and the adsorbed intermediate arising from the electro-

oxidation of CPR are shown in Fig. 4B.
OH
Cl

A

1.2

1.0 1

0.8 1

ATVAN

0.6 -

0.4 -

Electrode / CPR
0.0 0.1 0.2 0.3 0.4 0.5
E/V (vs. Ag/AgCl)

Fig. 4. A) Tyrosinase — CPR reaction scheme and B) Square wave voltammograms comparing the response of a
carbon fibre electrode towards the products arising from the electrochemical and
enzymatic oxidation of CPR in pH 7 Britton-Robinson buffer.

While the responses indicated in Fig. 4B are not definitive, the close similarity of the peak
positions combined with the knowledge of both the enzyme mechanism and the XPS data would
suggest that the predominant product in the electro-oxidation of CPR is the 1,2-dihydroxy species in

which the chlorine substituent is retained.



3.1 Preliminary Bacterial Assays

The overarching aim was to determine if the adsorbed electrode products arising from the
CPR oxidation could themselves be used as a diagnostic handle through which to detect B-GAL
activity. The standard coliform assay involves incubating the bacteria in the presence of a labelled
galactose substrate. It is commonplace to introduce polymyxin B and lysozyme to enable the release
of the B-GAL enzyme into the extracellular assay medium and thereby enhancing the rate at which
the labelled substrate is hydrolysed[35]. In the case of chlorophenol red galactopyranoside (CPRG),
there is a distinct colorimetric signal upon the B-GAL enzyme cleaving the CPR label with the latter
providing a magenta colouration (Amax 575 nm). Achieving electrochemical distinction between the
labelled substrate and the hydrolysed label however is much more difficult as the oxidation
potentials of the two can be similar. Inspection of the structure of CPR in Schematic 1 reveals that
the galactose is tethered to only one of the two phenolic functional groups. The remaining phenol is
therefore capable of being oxidised at the electrode before any interaction with the B-GAL enzyme
and could give rise to a false positive. This possibility was confirmed when comparing the square

wave voltammograms highlighted in Fig. 5.
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towards (A) 10 LM chlorophenol red (CPR) and (B) its galactopyranoside
derivative (CPRG) in pH 7 Britton-Robinson buffer.



Both CPR and CPRG exhibit similar oxidation profiles on the first sweep and would,
ordinarily, negate the possibility of exploiting the direct electrochemical oxidation of CPR as a
diagnostic for B-GAL activity. The CPRG is normally supplied in excess as the enzyme substrate and
thus differentiation between the hydrolysed CPR and its parent is not possible under these
conditions. Wutor and colleagues used various metallophthallocyanine modified glassy carbon
electrodes to discriminate between the CPR and CPRG, though the mechanism through which the
selectivity was achieved is unclear. Examination of Fig. 5 however, reveals a possible solution where
repetitive scanning of CPR leads to the generation of 1,2-quinone species which adsorb to the
electrode. This is consistent with the responses discussed earlier but is of particular significance here
when compared to the results obtained with CPRG where no accumulation was observed.

It is possible that upon oxidising CPRG, it too follows the transition pathway | — 11 — IlI
highlighted in Fig. 1. It is possible that the oxidation of the free phenolic group in the CPRG molecule
gives rise to a 1,2-quinone system not unlike that proposed for the CPR molecule. The absence of
any accumulation at the electrode could be attributed to the solubilising effect of the attached
galactose substituent — allowing diffusion away from the electrode and hence prevents detection.
Thus, while direct oxidation is clearly impractical as a diagnostic marker at simple carbon electrodes
in the presence of both CPR and CPRG, the products of the oxidation could offer an alternative
approach and enhanced selectivity.

The applicability of the approach was tested through following a conventional
galactopyranosidase assay format in which E. coli were incubated in combination with isopropyl-$3-d-
thiogalactopyranoside (IPTG) to increase expression of the B-GAL enzyme [31,32]. Thereafter, the
bacteria were harvested (10° CFU / mL), lysozyme (1 mg / mL) and (500 pM) CPRG added and the
mixture incubated at 37°C. Square wave voltammograms were recorded after 2.5 h and 24 h and the
responses obtained at the carbon fibre electrode are detailed in Fig. 6. After 24 h, repetitive
scanning (-0.2 V to +1 V) leads to the gradual accumulation of the adsorbed electrogenerated
product. It is noteworthy that there is no peak at +0.3 V on the first scan but the 1,2-quinone
product emerges on the 2" and subsequent scans. A critical point to note is that the adsorbed
quinone, after 5 scans, presents a peak magnitude that is greater than the CPR / CPRG oxidation
process initially observed on scan 1. The main challenge to coliform detection is the acquisition of a
test result in as short a time as possible. Square wave voltammograms detailing the response
obtained after 2.5 h are shown in the Inset within Fig. 6. Again, the accumulation of the
electrogenerated quinone can be seen and follows much the same trend as that observed with the

24h sample.
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in a lysed E.coli (10° CFU / mL) solution containing 500 LM CPRG following
incubation for 24 h. Inset: Scans obtained after 2.5 h. Scans conducted in pH 7 Minimal Media buffer.

A large number of electrochemical assays exploiting B-GAL have been developed in recent
years and have exploited: p-nitrophenol (PNP) [36], p-aminophenol (PAP), 1-aminonaphthol (AN)
[37], 8-hydroxyquinoline[38] and chlorophenol red (CPR) [20]. The use of PAP labelled galactose is
the most common approach and can be attributed to the low oxidation potential (typically +0.1 V to
+0.3 V) required to detect the PAP released [31,39-41]. The detection of the PAP is not however
without problems as the low oxidation potential can also create issues over the stability where the
presence of oxygen, particularly at prolonged incubation periods, will inevitably lead to the oxidation
of both PAP and can result in the degradation of the target marker. In contrast, CPRG is much more
stable as indicated by the more positive potential required for its direct oxidation but it is the ability
to accumulate the oxidation product that could inform future designs.

The carbon fibre substrate has served as a conductive matrix through which to monitor the
various molecular transformations and, being relatively inexpensive, could point the way towards
simple disposable electrode systems. Attempting to detect 1 CFU / 100 mL however presents a

considerable challenge — especially where the emphasis is on short incubation periods. It is



inevitable that some form of preconcentration will be required, followed by incubation with a
labelled galactose substrate. In such scenarios it is still critical to preconcentrate the released label in
order to improve detection limits. It could be envisaged that the macro porous nature of the carbon
fibre employed here could serve as a conductive filter acting as both generator-collector of the 1,2-
guinone species. The passage of the initially preconcentrated bacterial solution through the carbon
fibre mesh would enable the oxidation of the CPR released by the action of B-GAL to the quinone
(generation) which subsequently accumulates at the same fibre (collection). The key advantage here
would be that rather than relying on diffusion limited transport of CPR to the electrode and hence a
slow accumulation of the product, the imposition of flow through the conductive fibre would enable
rapid accumulation of most of the available CPR and greatly improve detection response times and
sensitivity. Pursuit of such a system is beyond the scope of the present investigation, but the
responses highlighted here effectively demonstrate the proof of principle and highlight an avenue

for further exploration.

4.0 Conclusions

Chlorophenol red has been used extensively in the development of colorimetric assays but
has been largely ignored in electrochemical assays. This could be attributed to the fact that the large
positive potentials needed to acquire a signal are unattractive from an analytical perspective where
interference from other matrix constituents can be problematic and where the electrode fouling
commonly associated with phenol oxidation can compromise reproducibility. The results presented
here highlight an innovative approach to the detection of the label where the exploitation of
qguinone type intermediates offer routes through which enhanced selectivity and sensitivity can be
obtained with inexpensive substrates. The electrochemical generation of the 1,2-quinone
intermediate and its subsequent accumulation at the surface of the carbon electrode is readily
detected at +0.3V which stands in marked contrast to the conventional oxidation potential required
for the parent phenol (+0.7V). No interference was observed when conducting the assay in bacterial
culture containing E.coli with a clear, unambiguous oxidation peak process. A critical advantage is
that the accumulation of the quinone reaction product with successive scanning offers a means of

amplifying the signal which could significantly reduce the time required for incubation.
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Highlights

e Electrochemical characterisation of chlorophenol red and galactopyranoside analogue
e Elucidation of oxidative mechanisms and identification of intermediates

e Development of an analytical pathway via accumulation of adsorbed redox products
e Demonstration of rapid E.coli detection through exploitation of adsorbed products



