

# **Central Lancashire Online Knowledge (CLoK)**

| Title    | Targeted Treatment Protocol in Patellofemoral Pain: Does Treatment Designed According to Subgroups Improve Clinical Outcomes in Patients Unresponsive to Multimodal Treatment?                                                                                                                                                                                                    |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type     | Article                                                                                                                                                                                                                                                                                                                                                                           |
| URL      | https://clok.uclan.ac.uk/id/eprint/29355/                                                                                                                                                                                                                                                                                                                                         |
| DOI      | https://doi.org/10.1177/1941738119883272                                                                                                                                                                                                                                                                                                                                          |
| Date     | 2020                                                                                                                                                                                                                                                                                                                                                                              |
| Citation | Yosmaoğlu, Hayri Baran, Sonmezer, Emel, Ozkoslu, Manolya, Sahin, Ezgi, Çerezci, Senay, Richards, James, Selfe, James and Janssen, Jessie (2020) Targeted Treatment Protocol in Patellofemoral Pain: Does Treatment Designed According to Subgroups Improve Clinical Outcomes in Patients Unresponsive to Multimodal Treatment? Sports Health, 12 (2). pp. 170-180. ISSN 1941-7381 |
| Creators | Yosmaoğlu, Hayri Baran, Sonmezer, Emel, Ozkoslu, Manolya, Sahin, Ezgi,<br>Çerezci, Senay, Richards, James, Selfe, James and Janssen, Jessie                                                                                                                                                                                                                                       |

It is advisable to refer to the publisher's version if you intend to cite from the work. https://doi.org/10.1177/1941738119883272

For information about Research at UCLan please go to <a href="http://www.uclan.ac.uk/research/">http://www.uclan.ac.uk/research/</a>

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the <a href="http://clok.uclan.ac.uk/policies/">http://clok.uclan.ac.uk/policies/</a>

- 1 Targeted Treatment Protocol in Patellofemoral Pain (TIPPs): Does Treatment Designed
- 2 According to Subgroups Improve Clinical Outcomes in Patients Unresponsive to
- **3 Multimodal Treatment?**

- 5 Hayri Baran Yosmaoğlu, Emel Sonmezer, Manolya Ozkoslu, Ezgi Sahin, Senay Çerezci, Jim
- 6 Richards, James Selfe, Jessie Janssen

- 8 **Background**: Targeted intervention for subgroups is a promising approach for the management
- 9 of patellofemoral pain.
- 10 Hypothesis: Treatment designed according to subgroups improves clinical outcomes in
- patients unresponsive to multimodal treatment.
- 12 **Study Design**: A prospective crossover intervention.
- 13 **Level of Evidence:** Level III
- 14 **Methods:** PFP patients (n=61, mean age: 27±9 years) were enrolled. PFP patients received
- standard multimodal treatment three times a week for 6 weeks. Patients not responding to
- multimodal treatment were then classified into one of 3 subgroups "strong", "weak and tight"
- and "weak and pronated foot" using six simple clinical tests. They subsequently were
- 18 administered a further 6 weeks of targeted intervention designed according to subgroup
- 19 characteristics. Visual Analog Scale (VAS), Perception of Recovery Scale (PRS), EQ-5D-5L,
- and S-LANSS were used to assess pain, knee function and quality of life before and after the
- 21 interventions.
- 22 **Results**: 36% of the patients (21 patients) demonstrated recovery following multimodal
- 23 treatment. However, over 70% (29 patients) of these non-responders demonstrated recovery
- 24 after targeted treatment. The VAS, PRS, S-LANSS, and EQ-5D-5L scores improved
- 25 significantly after targeted intervention compared to after multimodal treatment (p<0.001). The

- VAS score at rest was significantly lower in the weak and pronated foot, and weak and tight
- subgroups (p=0.011, p=0.008) respectively. Post-treatment pain intensity on activity was
- significantly lower in the "strong" subgroup (p=0.006).
- 29 Conclusion: Targeted treatment designed according to subgroup characteristics improves
- 30 clinical outcomes in patients unresponsive to multimodal treatment.
- 31 **Clinical Relevance:** Targeted intervention could be easily implemented following six simple
- 32 clinical assessment tests to subgroup patients into one of three subgroups (strong, weak and
- 33 tight, weak and pronated foot). Targeted interventions applied according to the characteristics
- of these subgroups have more beneficial treatment effects than a current multimodal treatment
- 35 program.

37 Key words

**Key words:** Rehabilitation, knee injuries, patella, treatment outcome, pain perception

38

39

36

#### INTRODUCTION

- 40 Patellofemoral pain (PFP) is a chronic musculoskeletal problem that causes persistent anterior
- 41 knee pain. <sup>2,3,6,8,14,15,20,21,25,26,32,33,49</sup> Despite its widespread use in clinics, it is difficult to suggest
- 42 that the current multimodal treatment approach leads to successful outcomes in the majority of
- patients with PFP, only 46% of patients' knees were pain free at discharge. This indicates that
- over half of PFP patients do not respond to treatment and may continue their lives with chronic
- anterior knee pain.
- 46 Identification of the factors leading to these low treatment success rates has consistently been a
- 47 priority of previous International Patellofemoral Pain Research Retreats. 4,10,12,52 The most
- 48 important factor affecting the success of treatment that has emerged is that patients have a
- 49 variety of musculoskeletal and biomechanical differences. The current multimodal treatment,
- 50 therefore, may not affect the heterogeneous PFP patient population with the same efficiency.

Clinically subgrouping PFP patients and delivering targeted treatments has been strongly recommended for future investigations of patellofemoral pain treatment from the International Patellofemoral Pain Research Retreats. An overview of previously published PFP subgroups and the methods used to derive subgroups in PFP identified patients with PFP. They exhibit different anthropometric and biomechanical characteristics and do not form a homogeneous group. There are 3 subgroups in the PFP population: "strong", "weak and tight" and "weak and pronated foot". The purpose of this study was to assess the clinical outcomes of targeted treatments designed according to the characteristics of the three subgroups of PFP patients. The hypotheses were that the assessment and subgroup classification is clinically feasible, and that targeted treatments designed according to the characteristics of the three subgroups of PFP patients would show clinical benefits over and above a multimodal intervention.

#### **METHOD**

# **Design**

A prospective crossover intervention study design was used (Figure 1).

# **Participants**

Patients aged between 18 and 40 attending a physiotherapy outpatient clinic at a University Hospital with a clinical diagnosis of patellofemoral pain were approached for eligibility in this study. Eligibility criteria were based on previously defined PFP criteria. Subjects were excluded if they had any of the following: previous knee surgery, clinical evidence of ligamentous instability and/or internal derangement, a history of patellar subluxation or dislocation, joint effusion, true knee joint locking and/or giving way, bursitis, patellar or iliotibial tract tendinopathy, Osgood Schlatter's disease, Sinding-Larsen Johansson Syndrome, muscle tears or symptomatic knee plicae, serious co-morbidity which would preclude or affect compliance with the assessment, or were pregnant.

77

# **Subgroup Classification Method**

- Quadriceps and Hip Abductor muscle strength <sup>31</sup>, Patellar glide test<sup>44,54</sup>, Quadriceps length<sup>53</sup>,
- Gastrocnemius length<sup>53</sup>, and Foot posture index<sup>36</sup> assessments were performed to classify all
- 80 consenting patients into one of three subgroups (strong, weak and tight, weak and pronated
- 81 foot) using the algorithm derived from the work by Selfe et al.<sup>38</sup>

82

83

84

89

#### Intervention

# **Multimodal Treatment**

- 85 The multimodal treatment program was designed based on the usual exercise and modalities
- 86 used in local clinics. <sup>20,21,32,49</sup> All patients received standard, supervised, 60 min multimodal
- 87 treatment three times a week for 6 weeks. Table 1 shows the details of the multimodal
- 88 rehabilitation program.

# **Targeted Treatment**

- Patients who did not respond to multimodal treatment were assigned to one of the treatment
- groups "strong", "weak and tight", and "weak and pronated foot". They then followed a further
- 92 6 weeks, 45 min targeted intervention program administered three times a week. The targeted
- 93 treatment program was designed according to the key deficits identified in each patient by the
- 94 subgrouping clinical assessment tests. The patients in the "strong" subgroup had no muscle
- 95 strength deficit therefore, the intervention program for this subgroup was targeted at improving
- 96 neuromuscular control and coordination ability using proprioceptive exercises such as
- 97 progressive balance exercises, and knee braces<sup>46,47</sup> which have been shown to offer
- 98 improvements in movement control in patients with PFP,<sup>41</sup> reductions in patellofemoral
- 99 reaction forces<sup>44</sup> and have been shown to reduce pain at 6 and 12 months during a PFP
- rehabilitation program.<sup>48</sup> In the "weak and tight" subgroup, the exercise program consisted of

Closed Kinetic Chain (CKC) muscle strengthening and stretching, and weight management advice, as a larger body mass index was identified as a potentially relevant clinical feature in this subgroup.<sup>38</sup> In the "weak and pronated foot" subgroup, muscle weakness and abnormal foot alignment were identified as the key factors. Therefore, the intervention program included CKC strengthening exercises and foot orthoses.<sup>5,24</sup> Table 2 shows the details of each of the specific targeted intervention programs.

Pain during activity measured using the Visual Analog Scale (VAS) was the primary outcome

#### **Outcome measures**

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

measure of this study <sup>19</sup>. Activity was specified by patients. The Perception of Recovery Scale was measured using a 7-point Likert scale ranging from "completely recovered" to "worse than ever". Patients were classified as "recovered" if they rated themselves as "completely recovered" or "strongly recovered". Patients rating themselves in one of the other five categories from "slightly recovered" to "worse than ever" were categorised as "not recovered". 35 The EQ-5D-5L was used as a self-reported generic measure of health and quality of life. Patients rated their overall health on the day of the interview on a 0–100 hash-marked, vertical visual analogue scale (EQ-5D-5L-VAS). A higher EQ-5D-5L-VAS score indicating better health status.<sup>22</sup> Neuropathic Pain was measured using The Self-Administered Leeds Assessment of Neuropathic Symptoms and Signs (S-LANSS) questionnaire. The S-LANSS comprises a 5item questionnaire regarding pain symptoms and two items for clinical signs involving selfadministered sensory tests for the presence of allodynia and decreased sensation to pinprick. This was used to discriminate the small number of patients who may have neuropathic knee pain from those with nociceptive pain. 42 The possible scores range from 0 to 24, with a score

of 12 or greater considered to be suggestive of neuropathic pain. <sup>28</sup> Finally, a single leg hop test

was used to determine functional performance. Distance was measured from toe to heel and the mean score of three repetitions was recorded.

# Data analysis

A sample size calculation was performed based on the minimal detectable change on the pain VAS. Data from a previous study indicates that the VAS scores in patients with PFP was  $4.3 \pm 1$  cm, with 30% of the maximum score of the VAS-pain considered to be the detectable change, the sample size for each treatment subgroup was determined to be 8 patients to achieve a 90% power at the 0.05 level of significance. Data were not normally distributed when analysed with the Kolmogorov–Smirnov test Consequently, non-parametric tests were indicated. Therefore the "Wilcoxon signed rank test" was used to compare pre and post treatment outcomes with an alpha value of 0.05. In addition, the mean of rank scores, standard errors and Z scores were reported, along with descriptive statistics to describe the general features of the subjects. All statistical analysis was conducted using SPSS 21.0.

# **RESULTS**

Of the 128 patients who were screened, 95 were included in the present study. Of these 61 patients completed the multimodal treatment (Figure 1) (Table 3). Twenty-one patients (36%) demonstrated recovery following multimodal treatment (Phase I) and were discharged. 40 Patients (64%) not responding to multimodal treatment were administered a further 6 weeks of targeted intervention designed according to subgroup characteristics (phase 2). Twenty-nine (72.5%) patients demonstrated recovery following targeted intervention (phase II) and 11 (27.5%) patients did not respond to either of the treatment approaches (Table 4).

Pain intensity (VAS) at rest and during activity, and Perceived Recovery Scale (PRS), were significantly improved after targeted intervention (p<0.001) (Table 5). S-LANSS, EQ-5D-5L and EQ5D-5L-VAS scores were significantly improved following targeted intervention

Within the three subgroups, the findings showed that PRS score was significantly improved after targeted treatment compared to pre-targeted treatment levels in the "strong", "weak and tight", and "weak and pronated foot" subgroups (p=0.005, p=0.001, p=0.004) respectively. VAS pain intensity at rest was also significantly lower after targeted intervention in the "weak and pronated foot" and "weak and tight" subgroups (p=0.011, p=0.008) respectively, however within the "strong" subgroup, no change was seen between pre-treatment and post treatment (p=0.245) (Table 6). However, pain intensity during activity was significantly lower after treatment in the "strong" (p=0.006), the "weak and pronated foot" and "weak and tight" subgroups; although these reductions were not statistically significant (p=0.059, p=0.06) respectively (Table 6).

Other measures including quadriceps length test, S-LANSS, EQ5D-5L, and EQ5D-VAS were significantly improved in the "weak and tight" subgroup. S-LANSS, EQ5D-5L, and patellar mobility were significantly improved in the "weak and pronated foot" subgroup. In the "strong" group only gastrocnemius length was significantly different between pre- and post-targeted

compared to pre-targeted treatment scores (p = 0.001, p < 0.001, p = 0.02), respectively (Table

### **DISCUSSION**

The results of our study suggest that the TIPPs subgroups and the algorithm used to classify PFP patients as "strong", "weak and tight", "weak and pronated foot" <sup>38</sup> is valid and clinically implementable. The findings from this study were in agreement with previous work<sup>13</sup> that reported differential response patterns in outcomes at 12 months in their subgroups. This suggests that targeted interventions based on subgroups, provides an important development in the treatment strategy for patients with PFP.<sup>4,52</sup>

treatment (p=0.03). Results for outcome measures are shown in Table 7.

The "strong" subgroup demonstrated a poor response to multimodal treatment but a a significant improvement after targeted treatment was observed. This finding is consistent with Greuel et al.<sup>18</sup> and Gallina et al.<sup>17</sup> who both reported results confirming that motor control of the quadriceps is problematic in some PFP patients. One explanation for this is improved neuromuscular control in patients classified as "strong". Since these patients already demonstrated relatively high quadriceps muscle torque, targeted intervention was delivered focusing on progressive development of motor control on unstable surfaces instead of conventional muscle strength exercises. Given that quadriceps strength did not change as a result of the targeted intervention, these progressive balance exercises and patellar bracing has improved motor control and stability. 41 In addition, bracing may reduce patellofemoral forces during activities of daily living and sporting tasks<sup>44</sup> and improvements within rehabilitation protocols.<sup>48</sup> This was reflected in the improvement in the other pain related parameters, However, since the average pre-treatment VAS pain level at rest in this subgroup was already low a decrease from 1.8 to 0.7 has minimal clinical relevance. Clinically the "weak and tight" subgroup appeared to be the most responsive group to treatment overall with a relatively even split of 52% responding to multimodal treatment and all of the remaining patients responding to targeted intervention. This finding was not surprising as multimodal treatment routinely includes strengthening and stretching exercises. However, closer analysis of the outcomes in the "weak and tight" subgroup suggest that although patients' perception of recovery improved, the VAS activity pain intensity was not significantly decreased after targeted treatment in this subgroup. Considering muscle weakness is the main issue in this subgroup, the probable cause of this unexpected finding is persistent inability to compensate patellofemoral loads especially during relatively high level activities of daily life such as ascending/descending stairs even after the targeted treatment. Targeted intervention consisting of functional strengthening may still be insufficient for high level activities of daily

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

living which demand considerable muscular activity, although it caused approximately a 30% increase in muscle torque and a significant improvement in perception of recovery in this subgroup. Findings from the "weak and pronated foot" subgroup suggest that targeted treatment including, foot orthoses and pain free strengthening exercises was also successful in terms of perception of recovery and VAS pain on rest. Although the same improvement was not observed in VAS pain during activity. One explanation for this could be the indirect effect of the foot orthoses on the knee as the patients showed no improvement in strength after targeted treatment. Moreover, optimum correction is very difficult to determine during the intervention of foot orthoses. Special single physiotherapy interventions or combining interventions for patellar taping, mobilisation or manual therapy may have beneficial effects on pain related functional symptoms in PFP. 11,30,34 However, the therapeutic effects of these applications remain limited because PFP patients exhibit a wide variety of structural features and biopsychosocial differences. The biomechanical and anthropometric characteristics of patients were not similar. Foot pronation, for example, was noticeably high in some patients, while some had neutral foot alignment. Similarly, quadriceps muscle strength, which is a predisposing factor or a most common symptom in previous studies<sup>8,54</sup> has been high in some patients with the remainder having considerable muscle weakness. Therefore, specific applications such as foot orthoses, knee braces, tape, and even exercises may not be required by every patient. The functional hop test is often used in clinics to measure functional capability.<sup>51</sup> Considering that there was no increase in quadriceps muscle strength in the "weak and pronated foot", and "strong" subgroups, an improvement in the hop test scores was not expected. Due to the methodological design of this study, patients received 6 weeks of multimodal treatment before 6 weeks of targeted treatment with no intervening washout period. This is a study limitation since the cumulative effects of the previous treatment (multimodal) were

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ignored. Therefore, the observed difference in some parameters could be the result of regression

to the mean.

#### 228 **CONCLUSION**

229 Both the TIPPs assessment and subgroup classification algorithm are clinically feasible that

those with PFP are not a homogeneous group, and have biomechanical and structural

differences.

232

230

#### REFERENCES

234

- 1. Bremander AB, Dahl LL, Roos EM. Validity and reliability of functional performance
- tests in menisectomised patients with or without knee osteoarthritis. Scand J Med Sci
- 237 Sports. 2007;17:120-127.
- 2. Brown J. Physiotherapists knowledge of patellofemoral pain syndrome. Br J Ther
- 239 Rehabil. 2000;7:346–353.
- 3. Callaghan MJ, Selfe J. Has the prevalence of patellofemoral pain in the general
- population in the United Kingdom been properly evaluated? Phys Ther Sport.
- 242 2007;8:37-43.
- 4. Callaghan, M., Collins, N., Sheehan F. Patellofemoral pain: proximal, distal, and local
- factors. 2nd International Research Retreat. JOSPT. 2012;42:A1-A20.
- 5. Collins N, Crossley K, Darnell R, et al. Foot orthoses and physiotherapy in the treatment
- of patellofemoral pain syndrome: randomised clinical trial. BMJ. 2008;337:1735.
- 6. Collins NJ, Barton CJ, van Middelkoop M, et al. Consensus statement on exercise
- 248 therapy and physical interventions (orthoses, taping and manual therapy) to treat
- patellofemoral pain: recommendations from the 5th International Patellofemoral Pain
- 250 Research Retreat, Gold Coast, Australia, Br J Sports Med. 2018.

- 7. Cook C, Hegedus E, Hawkins R, et al. Diagnostic accuracy and association to disability
- of clinical test findings associated with patellofemoral pain syndrome. Physiother Can.
- 253 2010;62(1):17-24.
- 8. Cowan SM, Bennell KL, Hodges PW, et al. Delayed onset of electromyographic activity
- of vastus lateralis compared to vastus medialis obliquus in subjects with patellofemoral
- pain syndrome. Arch Phys Med Rehabil. 2000;82:83–89.
- 9. Crossley KM, Bennell KL, Cowan SM, et al. Analysis of outcome measures for persons
- with patellofemoral pain: which are reliable and valid? Arch Phys Med Rehabil.
- 259 2004;85:815-822.
- 10. Crossley KM, van Middelkoop M, Callaghan MJ, et al. Patellofemoral pain consensus
- statement from the 4th International Patellofemoral Pain Research Retreat, Manchester.
- Part 1: Terminology, definitions, clinical examination, natural history, patellofemoral
- osteoarthritis and patient-reported outcome measures. Br J Sports Med. 2016;50:839-
- 264 843.
- 265 **11.** Crossley KM, van Middelkoop M, Callaghan MJ, et al. Patellofemoral pain consensus
- statement from the 4th International Patellofemoral Pain Research Retreat, Manchester.
- Part 2: recommended physical interventions (exercise, taping, bracing, foot orthoses and
- 268 combined interventions). Br J Sports Med. 2016;50:844-852.
- 269 12. Davis I, Powers C. Patellofemoral pain syndrome: proximal, distal, and local factors.
- An International Retreat. JOSPT. 2010;40:A1-48.
- 271 13. Drew BT. Stratification of patellofemoral pain using clinical, biomechanical and
- imaging features [doctoral dissertation]. University of Leeds; 2018.
- 273 14. Dvir Z, Halperin N, Shklar A, et al. Concentric and eccentric torque variations of the
- 274 quadriceps femoris in patello-femoral pain syndrome. Clin Biomech. 1990;5:68–72.

- 275 15. Dvir Z, Halperin N, Shklar A, et al. Quadriceps function and patellofemoral pain
- syndrome. Part I: pain provocation during concentric and eccentric isokinetic activity.
- 277 Isok Exerc Sci. 1991;1:26–30.
- 278 16. Eng JJ, Pierrynowski MR. The effect of soft foot orthotics on three-dimensional lower-
- limb kinematics during walking and running. Phys Ther. 1994;74:836-44.
- 280 17. Gallina A, Hunt MA, Hodges PW, et al. Vastus lateralis motor unit firing rate is higher
- in women with patellofemoral pain. Arch Phys Med Rehabil. 2018;99:907-13.
- 282 18. Greuel H, Herrington L, Liu A, et al. How does pain influence arthrogenic muscle
- inhibition and quadriceps torque in individuals with patellofemoral pain. 5th
- International Patellofemoral Research Retreat. Gold Coast Queensland, Australia 2017.
- 19. Hawker GA, Mian S, Kendzerska T, et al. Measures of adult pain: visual analog scale
- for pain (vas pain), numeric rating scale for pain (nrs pain), mcgill pain questionnaire
- 287 (mpq), short-form mcgill pain questionnaire (sf-mpq), chronic pain grade scale (cpgs),
- short form-36 bodily pain scale (sf-36 bps), and measure of intermittent and constant
- osteoarthritis pain (icoap). Arthritis Care Res. 2011;63(11):240-252.
- 290 20. Heintjes EM, Berger M, Bierma-Zeinstra SMA, et al. Exercise therapy for
- patellofemoral pain syndrome. Cochrane Database Syst Rev. 2003;4.
- 292 21. Heintjes EM, Berger M, Bierma-Zeinstra SMA, et al. Pharmacotherapy for
- 293 patellofemoral pain syndrome. Cochrane Database Syst Rev. 2004;3.
- 294 22. Herdman M, Gudex C, Lloyd A, et al. Development and preliminary testing of the new
- five-level version of EQ-5D (EQ-5D-5L). Quality of life research. 2011;20(10):1727-
- 296 1736.
- 297 23. Hinman, RS, Bowles KA, Payne C, et al. Effect of length on laterally-wedged insoles
- in knee osteoarthritis. Arthritis Care Res. 2008;59:144-147.

- 24. Hossain M, Alexander P, Burls A, et al. Foot orthoses for patellofemoral pain in adults.
- Cochrane Database Syst Rev. 2011;1.
- 301 25. Janssen J. Concepts of patellofemoral pain. In: Selfe J, Janssen J, Callaghan M, eds.
- Patellofemoral Pain an Evidence Based Clinical Guide. Nova Science; 2017:3-13.
- 303 26. Jensen R, Hystad T, Baerheim A. Knee function and pain related to psychological
- variables in patients with long-term patellofemoral pain syndrome. J Orthop Sports Phys
- 305 Ther. 2005;35:594–600.
- 306 27. Keays SL, Mason M, Newcombe PA. Individualized physiotherapy in the treatment of
- patellofemoral pain. Physiother Res Int. 2015;20:22-36.
- 308 28. Koc R, Erdemoglu AK. Validity and reliability of the Turkish self-administered leeds
- assessment of neuropathic symptoms and signs (S-LANSS) questionnaire. Pain Med.
- 310 2010;11:1107-1114.
- 29. Lake DA, Wofford NH. Effect of therapeutic modalities on patients with patellofemoral
- pain syndrome: a systematic review. Sports health, 2011;3(2):182-189.
- 30. Logan CA, Bhashyam AR, Tisosky AJ, Haber DB, Jorgensen A, Roy A, Provencher
- 314 MT. Systematic review of the effect of taping techniques on patellofemoral pain
- 315 syndrome. Sports health. 2017;9(5):456-461.
- 31. Maffiuletti NA. Assessment of hip and knee muscle function in orthopaedic practice
- and research. J Bone Joint Surg Am. 2010;92(1):220.
- 32. Martimbianco AC, Torloni MR, Andriolo BNG, et al. Neuromuscular electrical
- stimulation (NMES) for patellofemoral pain syndrome. Cochrane Database Syst Rev.
- 320 2017;9.
- 321 33. Nordin M, Frankel V. Basic biomechanics of the musculoskeletal system. London:
- 322 Lippincott Williams & Wilkins; 1989:176–202.

- 323 34. Page, P. (2011). Effectiveness of elastic resistance in rehabilitation of patients with patellofemoral pain syndrome: what is the evidence? Sports Health, 3(2), 190-194.
- 35. Rathleff MS, Roos EM, Olesen JL, et al. Lower mechanical pressure pain thresholds in
- female adolescents with patellofemoral pain syndrome. JOSPT. 2013;3(6):414-421.
- 327 36. Redmond AC, Crane YZ, Menz HB. Normative values for the foot posture index. J Foot Ankle Res. 2008;1(1):6.
- 37. Selfe J, Callaghan M, Witvrouw E, et al. Targeted interventions for patellofemoral pain syndrome (TIPPS): classification of clinical subgroups. BMJ open. 2013;3(9): e003795.
- 33. Selfe J, Janssen J, Callaghan M, et al. Are there three main subgroups within the patellofemoral pain population? A detailed characterisation study of 127 patients to help develop targeted intervention (TIPPs). Br J Sports Med. 2016; 50(14):873-880.
- 334 39. Selfe J, Janssen J, Drew B, et al. Anterior knee pain subgroups: the first step towards a personalized treatment. Ann Joint. 2018;3(32).
- 336 40. Selfe J. Exercises supervised by physiotherapists improve pain and function in patients 337 with patellofemoral pain. J Physiother. 2010;56(1):61.
- 41. Selfe et al. 2011. A clinical study of the biomechanics of step descent using different treatment modalities for patellofemoral pain. Gait & posture. 2011;34(1): 92-96.

- 341 42. Selfe 2017. Chapter 4: Red Flags and Rare pathologies in 1.Selfe J, Janssen J,
   342 Callaghan M (2017). Patellofemoral Pain an evidence based Clinical Guide. Nova
   343 Science
- 346 43. Selhorst M, Rice W, Degenhart T, et al. Evaluation of a treatment algorithm for patients 347 with patellofemoral pain syndrome: a pilot study. Int J Sports Phys Ther. 2015;10:178.
- 348 44. Sinclair JK., Selfe J, Taylor PJ, Shore HF, Richards JD. Influence of a knee brace
   349 intervention on perceived pain and patellofemoral loading in recreational athletes. Clin
   350 Biomech 2016; 37: 7-12.

- 351 45. Skalley TC, Terry GC, Teitge RA. The quantitative measurement of normal passive medial and lateral patellar motion limits. Am J Sports Med. 1993;21(5):728-732.
- 353 46. Smith TO, Drew BT, Meek TH, et al. Knee orthoses for treating patellofemoral pain syndrome. Cochrane Database Syst Rev. 2013(5).
- 355 47. Syme G, Rowe P, Martin D, et al. Disability in patients with chronic patellofemoral pain 356 syndrome: a randomised controlled trial of VMO selective training versus general 357 quadriceps training. Man Ther. 2009;14:252-263.
- 48. Uboldi FM, Ferrua P, Tradati D, Zedde P, Richards J, Manunta A, Berruto M. Use of an elastomeric knee brace in patellofemoral pain syndrome: short-term results. Joints. 2018;6(02):85-89.
- 49. Van der Heijden RA, Lankhorst NE, van Linschoten R, et al. Exercise for treating
   patellofemoral pain syndrome. Cochrane Database Syst Rev. 2015;6.
- 50. Weng P, Janssen J, Selfe J, et al. Validity of two clinical knee strength assessments compared to the reference standard. International Journal of Physiotherapy and Research. 2015;11:1264-1270.
- 366 51. Wilk KE, Romaniello WT, Soscia SM, et al. The relationship between subjective knee
   367 scores, isokinetic testing, and functional testing in the ACL-reconstructed knee. JOSPT.
   368 1994;20:60-73.
- 369 52. Witvrouw E, Crossley K, Davis I, et al. 3rd International Patellofemoral Research
   370 Retreat, Vancouver, Canada. Br J Sports Med. 2014;48:411-414.
- 53. Witvrouw E, Lysens R, Bellemans J, et al. Intrinsic risk factors fror the development of
   anterior knee pain in an athletic population: atwo year prospective study. Am J Sports
   Med. 2000;28(4):480-489.

| 374 | 54. Witvrouw E, Werner S, Mikkelsen C, et al. Clinical classification of patellotemoral pain |
|-----|----------------------------------------------------------------------------------------------|
| 375 | syndrome: guidelines for non-operative treatment. Knee Surg Sports Traumatol                 |
| 376 | Arthrosc. 2005;13(2):122-130.                                                                |
| 377 | 55. Yosmaoglu HB, Kaya D, Guney H, et al. Is there a relationship between tracking ability,  |
| 378 | joint position sense, and functional level in patellofemoral pain syndrome? Knee Surg        |
| 379 | Sports Traumatol Arthrosc. 2013;21:2564-2571.                                                |
| 380 |                                                                                              |
| 381 |                                                                                              |
| 382 |                                                                                              |

# Table 1. Multimodal Treatment Program

| 383 |
|-----|
| 384 |
| 385 |

| MODALITY                                                   | APPLICATION TYPE                                  |
|------------------------------------------------------------|---------------------------------------------------|
| Thermotherapy                                              | Cold packs /20 min                                |
| <b>Transcutaneous Electrical Neural Stimulation (TENS)</b> | Conventional mode-20 min                          |
|                                                            | 50-100Hz, 20-60 pulse/sec                         |
| Therapeutic Ultrasound (US)                                | 1 Watt/cm <sup>2</sup> - 5 min/ around knee joint |
| Hamstring/tensor fascia lata/ iliotibial band stretching   | 30sn/5 rep                                        |
| Isometric quadriceps strengthening                         | 10 rep x 3 set                                    |
| Isometric hip adductor strengthening                       | 10 rep x 3 set                                    |
| OKC knee extension exercise                                | 3 sets of patients' 8-10 RM, in painless ROM      |
| OKC Hip adductor exercise                                  | side lying/ 3 sets of patients' 8-10 RM           |
| Home based exercise program*                               |                                                   |

RM: Repetition Maximum, rep: repetition, ROM: Range of motion, OKC: Open kinetic chain \*Home based exercise program included the same applications except TENS, NMES, US

# Table 2. Targeted treatment program

| STRONG SUBGROUP                                   |                                                                 |  |  |  |  |
|---------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|
| Progressive balance/proprioception exercises      | Standing on one leg on wobble board                             |  |  |  |  |
|                                                   | 3 sets of 1 min exercise each leg                               |  |  |  |  |
|                                                   | 1-3 sets per session depending on pain                          |  |  |  |  |
|                                                   | Progression*: Eyes closed, bouncing ball against wall, bouncing |  |  |  |  |
|                                                   | ball against wall on an unstable surface                        |  |  |  |  |
| Patellar bracing**                                | Patient was asked to put on knee brace during ADL               |  |  |  |  |
| Activity modification                             | Activity reduction to fit within envelope of function locally   |  |  |  |  |
|                                                   | determined and negotiated with individual patient               |  |  |  |  |
| WEAK AND TIGHT SUBGROUP                           |                                                                 |  |  |  |  |
| CKC strengthening exercises                       | Plie/lunge/single limb squat                                    |  |  |  |  |
|                                                   | Pain free ROM                                                   |  |  |  |  |
|                                                   | 10 reps per set/ 1-3 sets depending on pain                     |  |  |  |  |
| Gastrocnemius and Quadriceps Stretching exercises | 30 seconds static stretch x 3 reps x 1 per day                  |  |  |  |  |
| Weight management strategies                      | Locally determined and negotiated with individual patient       |  |  |  |  |
| WEAK AND PRONATED FOOT SUBGROUP                   |                                                                 |  |  |  |  |
| CKC strengthening exercises                       | Plie/lunge/single limb squat                                    |  |  |  |  |
|                                                   | Pain free ROM                                                   |  |  |  |  |
|                                                   | 10 reps per set/ 1-3 sets depending on pain                     |  |  |  |  |
| Foot orthoses                                     | Custom made insole supporting medial longitudinal arch of       |  |  |  |  |
|                                                   | foot***                                                         |  |  |  |  |
| Activity modification                             | Improve activity levels locally determined and negotiated with  |  |  |  |  |
|                                                   | individual patient                                              |  |  |  |  |

ADL: Activity of Daily Life CKC: Closed Kinetic Chain

<sup>\*</sup>Progression timing in balance exercise was decided by clinician based on patient pain free achievement

<sup>\*\*</sup> Off the shelf knee support with patellar pad was used (Orthocare© material: 5mm neoprene /SBR /nylon jersey/pk). Brace size was selected by clinician according to patient comfort and patellar coherence (S/M/L/XL sizes were used)

<sup>\*\*\*</sup> Custom Made Insoles are tailored individually based on static and dynamic examination of load distribution on foot. using CAT-CAM free step V.1.3.30

Table 3 Demographic data of patients who participated in the study

| PATIENTS (N=61)             | MEAN | SD |
|-----------------------------|------|----|
| AGE (YEAR)                  | 27   | 9  |
| HEIGHT (CM)                 | 170  | 8  |
| WEIGHT (KG)                 | 65   | 13 |
| TIME SINCE SYMPTOMS STARTED | 24   | 28 |
| (MO)                        |      |    |
| BMI (KG/M2)                 | 22.5 | 3  |

Table 4. Perception of recovery after treatments

|                      | PHA<br>ULTIMODA<br>(N: | ,                          | TARGETED                      | ASE 2<br>TREATMENT<br>=40) |                  |                            |                               |                 |
|----------------------|------------------------|----------------------------|-------------------------------|----------------------------|------------------|----------------------------|-------------------------------|-----------------|
| PRS                  | Overall<br>% (n)       | Weak and<br>Tight<br>% (n) | Weak and<br>Pronated %<br>(n) | Strong<br>% (n)            | Overall<br>% (n) | Weak and<br>Tight<br>% (n) | Weak and<br>Pronated %<br>(n) | Strong<br>% (n) |
| FULLY IMPROVED       | 11 (7)                 | 16 (4)                     | -                             | 9 (2)                      | 7.5 (3)          | 8 (1)                      | -                             | 11(2)           |
| GREAT<br>IMPROVEMENT | 23 (14)                | 36 (9)                     | 29 (4)                        | 9 (2)                      | 65 (26)          | 92 (11)                    | 80 (8)                        | 39 (7)          |
| SOME<br>IMPROVEMENT  | 48 (29)                | 36 (9)                     | 57 (8)                        | 55(12)                     | 17.5 (7)         | -                          | 20 (2)                        | 28 (5)          |
| NO CHANGE            | 16 (10)                | 12 (3)                     | 14 (2)                        | 18 (4)                     | 10 (4)           | -                          | -                             | 22 (4)          |
| A LITTLE WORSE       | 4 (3)                  | -                          | -                             | 9 (2)                      | 0 (0)            | -                          | -                             | -               |

|                                      | Before Targeted<br>Treatment |           | After Targeted<br>Treatment |           |        |         |
|--------------------------------------|------------------------------|-----------|-----------------------------|-----------|--------|---------|
| Outcome Measures (n=40)              | Median                       | Min-Max   | Median                      | Min-Max   | Z      | p       |
| Perception of recovery               | 3                            | 3 - 5     | 2                           | 1 - 4     | -5,034 | <0.001* |
| VAS activity (cm)                    | 4.4                          | 0.1 - 8.8 | 1.8                         | 0 - 7.5   | -4.075 | <0.001* |
| VAS rest (cm)                        | 1.7                          | 0 - 7.4   | 0.5                         | 0 - 7.0   | -3.599 | <0.001* |
| S-LANSS                              | 5                            | 0 - 16    | 0                           | 0 - 24    | -3.449 | 0.001*  |
| EQ5D-5L                              | 7                            | 5 - 10    | 6                           | 5 - 11    | -3.704 | <0.001* |
| EQ5D-VAS                             | 80                           | 30 - 95   | 85                          | 50 - 100  | -2.322 | 0.020*  |
| Quadriceps muscle strength (Nm/kg)   | 1,1                          | 0,5-2,1   | 1,2                         | 0,6-2,3   | -3.644 | <0.001* |
| Hip abductor muscle strength (Nm/kg) | 1,3                          | 0.7 - 2,6 | 1,3                         | 0,6 – 1,9 | -1.456 | 0.145   |
| Patellar mobility test (mm)          | 12                           | 7 - 25    | 11                          | 2 - 18    | -2.062 | 0.039*  |
| Foot posture index                   | 6                            | 0 - 11    | 6                           | 0 - 12    | -0.372 | 0.710   |
| Quadriceps length (0)                | 142.7                        | 115 - 156 | 145.2                       | 128 - 155 | -2.150 | 0.032   |
| Gastrocnemius length (0)             | 19.6                         | 8 - 40    | 20.5                        | 12.3 - 40 | -1.358 | 0.174   |
| Jump (cm)                            | 90.2                         | 30 - 180  | 91                          | 38 - 179  | -1.472 | 0.141   |

\*p<0.05, VAS: Visual Analog Scale, S-LANSS: The Leeds Assessment of Neuropathic Symptoms and Signs, EQ5DL: European Quality 5 Dimension, °: degree

Table 6. Differences in subgroups before and after targeted treatment (n=40)

|                    |                                  | BEFORE T | TREATMENT | AFTER TREATMENT |           | TREATMENT Z P |        |
|--------------------|----------------------------------|----------|-----------|-----------------|-----------|---------------|--------|
|                    |                                  | Median   | Min-Max   | Median          | Min-Max   |               |        |
| VAS IN<br>ACTIVITY | Weak and<br>Pronated (n=10)      | 5.3      | 0.5 – 8.8 | 2.7             | 0.2 - 6.6 | -1.886        | 0.059  |
|                    | Weak and Tight<br>Group (n=12)   | 3.7      | 0.4 - 7.7 | 3               | 0 - 6.5   | -1.883        | 0.060  |
|                    | Strong Group (n=18)              | 5.0      | 0.1- 8.2  | 2.0             | 0 - 7.5   | -2.741        | 0.006* |
| VAS AT REST        | Weak and<br>Pronated (n=10)      | 3.9      | 0 - 7.1   | 0.8             | 0 – 3.4   | -2.547        | 0.011* |
|                    | Weak and Tight<br>Group (n=12)   | 1.0      | 0- 3.5    | 0.68            | 0 – 1.6   | -2.667        | 0.008* |
|                    | Strong Group (n=18)              | 1.8      | 0 - 7.4   | 0.7             | 0 – 7     | -1.161        | 0.245  |
| PRS                | Weak and<br>Pronated (n=10)      | 3        | 3-4       | 2               | 2-3       | -2.887        | 0.004* |
|                    | Weak and Tight<br>Group          | 3        | 3-4       | 2               | 1-2       | -3.213        | 0.001* |
|                    | (n=12)<br>Strong Group<br>(n=18) | 3        | 3-5       | 2.5             | 1-4       | -2.830        | 0.005* |

<sup>\*</sup>p<0.05, VAS: Visual Analog Scale, PRS: Perception of Recovery Scale

Table 7. Outcome measures in subgroups before and after targeted treatment

|                                          | Weak and Tight subgroup (n=12) |                               |        |        | Weak an                        | Weak and Pronated subgroup (n=10) |        |        |                                | Strong subgroup (n=18)    |        |        |
|------------------------------------------|--------------------------------|-------------------------------|--------|--------|--------------------------------|-----------------------------------|--------|--------|--------------------------------|---------------------------|--------|--------|
|                                          | Before<br>Median (Min-<br>Max) | After<br>Median (Min-<br>Max) | Z      | p      | Before<br>Median (Min-<br>Max) | After<br>Median (Min-<br>Max)     | Z      | p      | Before<br>Median (Min-<br>Max) | After<br>Median (Min-Max) | Z      | p      |
| S-LANSS                                  | 5 (0- 11)                      | 0 (0 – 6)                     | -2.716 | 0.007* | 6 (0-11)                       | 0 (0 – 10)                        | -2.410 | 0.016* | 5 (0- 169)                     | 1.5 (0 – 24)              | -0.947 | 0.344  |
| EQ5D-5L                                  | 7.5 (5-10)                     | 6 (5–9)                       | -2.556 | 0.011* | 9 ( 6- 9)                      | 6 (5–11)                          | -2.203 | 0.028* | 6 (5-10)                       | 6 (5–10)                  | -1.613 | 0.107  |
| EQ5D-VAS                                 | 80 (50- 90)                    | 90 (50-95)                    | -2.034 | 0.042* | 80 (50-90)                     | 80 (50-100)                       | -1.027 | 0.305  | 82.5 (30-95)                   | 82.5 (55-100)             | -1.444 | 0.149  |
| Quadriceps muscle<br>strength (Nm/kg)    | 0.84 (0.51.3)                  | 1.05 (0.6 – 1.4)              | -3.061 | 0.002* | 1.06 (0,6-2.1)                 | 1.3 (0.7 – 1.6)                   | -1.887 | 0.059  | 1.2 (0.9 – 1.6)                | 1.2 (0.9 – 2.2)           | -0,893 | 0.372  |
| Hip abductor muscle strength (Nm/kg)     | 0.9 (0.7 – 1.4)                | 1.1 (0.6 –1.6)                | -1,844 | 0.065  | 1.1 (0.7– 1.6)                 | 1.2 (0.9– 1.6)                    | -0.593 | 0.553  | 1.4 (0.9– 2.6)                 | 1.5 (1 –1.9)              | -0.259 | 0.796  |
| Patellar mobility test (mm)              | 10 (7- 15)                     | 10 (8- 15)                    | -0.103 | 0,918  | 15 (11- 22)                    | 12 (2- 18)                        | -2.325 | 0.020* | 12 (8- 25)                     | 11 (7- 17)                | -0.803 | 0,422  |
| Foot posture index                       | 5 (0-9)                        | 5.5 (2-10)                    | -1.725 | 0.084  | 7.5 (4-11)                     | 7.5 (2-12)                        | -0.679 | 0.497  | 5 (0-11)                       | 6 (0-12)                  | -0.178 | 0.859  |
| Quadriceps length (°)                    | 137 (115 – 149)                | 140 (128 -152)                | -2.134 | 0.033* | 140 (118 – 152)                | 146 (130 -155)                    | -1.481 | 0.139  | 147 (117 – 155)                | 148 (128 -155)            | -0.071 | 0.943  |
| Gastrocnemius<br>length ( <sup>0</sup> ) | 18.2 (10-26)                   | 17.4 (12.6-27)                | -1.295 | 0.195  | 21.3 (10-40)                   | 17.3 (12.6-34)                    | -1.244 | 0.214  | 19.6 (8-27)                    | 21.5 (12.3-40)            | -2.120 | 0.034* |
| Jump test (cm)                           | 79.1 (30-115)                  | 81 (38-115)                   | -1.718 | 0.286  | 85.4 (40-149)                  | 84.2 (65-154)                     | -1.718 | 0.086  | 104.5 (49.3-180.6)             | 107.2 (57.3-179.3)        | -0.305 | 0.760  |

<sup>\*</sup>p<0.05, VAS: Visual Analog Scale, LANSS: The Leeds Assessment of Neuropathic Symptoms and Signs, EQ5DL: European Quality 5 Dimension, °: degree