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1  INTRODUCTION

The study of sums of squares has a long history. In the context of the integers, Fermat, Euler, Lagrange and many others studied
which integers are a sum of a certain number of square integers. The possibly most famous result in this direction is Lagrange’s
Four Squares Theorem [13, Thm. 369] that every nonnegative integer is the sum of four squares. In fact, earlier Euler had proved
a version of this theorem for Q: every nonnegative rational number is the sum of four square rational numbers. A comprehensive
history of these theorems may be found in [6, Chapter VIII]. In the other direction, for both Z and Q there exist nonnegative
numbers that cannot be written as a sum of three squares. The Pythagoras number x(F) of a field F is the smallest n such that

{x%+ +x,2n | xi,....x, € F,me N} = {x%+ +x5 | x.....x, € F}
Using this terminology, Euler’s theorem becomes the statement that 7(Q) = 4. The following generalization of Euler’s theorem
was conjectured by Hilbert and proven by Siegel in [25], cf. [20, Ch. 7, §1, 1.4]:
Theorem 1.1 (Siegel). For all number fields F, n(F) < 4.

The study of the Pythagoras number of a field is intimately related to the study of the orderings on that field, since by a
theorem of Artin and Schreier the sums of squares are precisely the totally positive elements. In a number field F, these can be
described simply as those elements that are mapped to R, by every embedding of F into R, cf. [20, Ch. 3 and 7].

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited and is not used for commercial purposes.

© 2020 The Authors. Mathematische Nachrichten published by Wiley-VCH Verlag GmbH & Co. KGaA

1434 www.mn-journal.org Mathematische Nachrichten. 2020;293:1434-1451.


https://orcid.org/0000-0002-9930-2804
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmana.201900173&domain=pdf&date_stamp=2020-06-08

ANSCOMBE ET AL. MATHEMATISCHE 1435

We define and study a p-adic version of the Pythagoras number, namely the p-Pythagoras number x,(F) of a field F, or more
generally the (p, 7)-Pythagoras number, see Section 2.2 for the definition. Just like the Pythagoras number gives information on
the set of totally positive elements, the p-Pythagoras number relates to the set of totally p-integral elements, which in a number
field F can be described simply as those elements that are mapped to Z, by every embedding of F into @,. Our main result is
an inexplicit analogue of Siegel’s theorem:

Theorem 1.2. Let p be a prime number. There exists N, € N such that n,(F) < N, for every number field F.

This result will be deduced from the more general Theorem 4.9. We also give some general results on fields F with finite (p, 7)-
Pythagoras number and prove in Theorem 5.9 that the growth of the (p, 7)-Pythagoras number is bounded in finite extensions.
As an application, we show in Corollary 6.5 that for every open-closed subset of the p-adic spectrum of F, the associated
holomorphy ring is diophantine. A further application can be found in the forthcoming work [2], in which we use the results of
this paper to show that rings of formal power series over number fields are Z-diophantine in their quotient fields.

2 | THE (p,7)-PYTHAGORAS NUMBER

2.1 | p-valuations

A (Krull) valuation v on a field F is a p-valuation if it has a finite residue field F, of characteristic p and value group v(F>)
such that the interval (0, v(p)] is finite. A (finite) prime P of a field F is an equivalence class of p-valuations on F (for the usual
notion of equivalence of valuations), for some prime number p. We write vy for a representative of B which has Z as smallest
non-trivial convex subgroup of the value group. See [22] for basics regarding p-valuations, and [10] for details on this notion of
prime and some of the following definitions.

Example 2.1. The primes of a number field K correspond precisely to the finite places in the usual sense and we will identify
them. If K = Q and p is a prime number then v, denotes the usual p-adic valuation, and we denote the corresponding prime
also by p.

For the rest of this work we fix a triple (K, p, 7), where K is a number field, p is a finite prime of K, and 7 is a pair of natural
numbers (e, f) € N2, We denote by fpa uniformizer of Ups i.e. an element with Uy (tp) = 1, we let g denote the size of the residue
field K”p'

For a field extension F /K with 8 a prime of F lying above p, the relative initial ramification is e(|B|p) := vﬁ;(tp), the

relative residue degree is f(B|p) := [Fum : Kvp], and the pair (e(*B|p), f(P|p)) is the relative type of P over p. We say P
is of relative type at most t if e(B|p) is no greater than e, and f(P|p) divides f. Likewise, for 7’ = (¢/, /') we write ¢ < 7/
ife<e and f | f'. We denote by S(F) the set of primes of F, by S;(F) C S(F) the set of those primes P of F lying above
p, and by 5; (F)C S;(F ) the subset of those primes 8 of F which are of relative type at most = over p. The corresponding
holomorphy ring is

R(F) := ﬂ Oy,
PeSI(F)
where Oy is the valuation ring of *B, and
T . a T
T(F) := {—1 el beo, [yp’tp(F)], 1+1,b # 0}
is the corresponding Kochen ring, where
e
s
. 1 x¢ - x
yPJp(X) ==

| (x¢ —x)* -1

is the Kochen operator. Here and in what follows, if y € F(X) is a rational function, we mean by y(F) the image of y on
F \ {poles of y}. Note that F;(F ) does not depend on the choice of 7, since the quotient of two uniformizers of vy, is an
element of (9;. Recall that R;(F ) is the integral closure of I ;(F ), with equality in the case e = 1, see [22, Cor. 6.9] and the
subsequent discussion for more details.
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Example 2.2. If p is any place of the number field K, we denote by K|, the completion of K with respect to p. If p is a finite
place, then K|, is a non-archimedean local field and p extends to a unique prime P of K|, of the same type, so R;( Kp) =

R;] D (KP) = Og. In fact, any non-archimedean local field E of characteristic zero carries a unique prime, whose valuation ring
we denote by O, cf. [22, Thm. 6.15]. We say that an extension of non-archimedean local fields is of relative type at most 7 if
this is true for the respective primes.

The real holomorphy ring of F is the intersection of the positive cones of the orderings on F, i.e. the set of elements that
are nonnegative under every ordering on F. By the theorem of Artin and Schreier it can alternatively be described as the set of
sums of squares, and the classical Pythagoras number may be seen as a measure of the complexity of this description in terms
of squares. The holomorphy ring R;(F ) is defined above as an intersection of the valuation rings of certain p-valuations, and
it also equals the integral closure of I’ ;(F ). Thus a p-adic analogue of the Pythagoras number should somehow measure the
complexity of the description of R;(F ) in terms of the rational function y;’ ty We now define such a p-adic analogue.

2.2 | The (p, 7)-Pythagoras number

Let F/K be an extension. For g € Op [X] yeens X,,], we write

T .- a
R, (F) 1= { —

a,be g(y;,,p(F), ,y;,,p(F)>, L+1,b+# 0},

tpb

and forn > 1

T LR—
Ry o n(F) 1= {x EF

—1 _ .
X"+ a, X"+ +ag=0withl <m<n,a,...,a, | € R;,g’lp(F)}.

We denote by PM the finite set of those g € Op [X . ¢ n] of degree and height at most » (cf. [4, Def. 1.6.1]). We write

R :=J R} o1 nF):

Iy 8€Py,

where 7, varies over those (finitely many) elements of the ring of integers O which are uniformizers for p of minimal height.

. o . .
Then (Rp’n(F ))HeN is an increasing chain of subsets of F and

Ri(F) = U R} (F).

neN
The (p, 7)-Pythagoras number ﬂ;(F ) of F is the smallest # such that

R(F) = R; (P,

and we write 7[; (F) = oo if there is no such n. In other words,
n;(F) :=inf {n eN ‘ R;(F) = R;’n(F)} eNU {}.

In the case K = Q, p=p and 7 = (1, 1), we write R,(F) and x,(F), omitting the relative type (1,1), and we speak of the

p-Pythagoras number. We also write y,, := y[(,}l;l), and note that the only two uniformizers (of the prime p) in Z of minimal

an _

height are p and —p, with y,” ) =

in Remarks 3.11 and 3.12.

—7,- We discuss some possible variations of our definition of the (p, 7)-Pythagoras number

Example 2.3. Since C is algebraically closed and carries no p-valuation, we have
R,(C)=C =7,(©),

in particular x,(C) = 1.

Example 2.4. It follows easily from Hensel’s lemma that
R,(Q,) =Z,=7,(Q,),

in particular ﬂp(Qp) =1, see [22, Thm. 6.15].
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Example 2.5. In [11, Lem. 3.02] it is shown that every so-called pseudo p-adically closed field F (where pseudo p-adically
closed means that a certain geometric local-global principle holds for varieties over F) satisfies

R,(F) = y,(F) +v,(F) + v,(F),

hence 7,(F) < 3. This applies for example to the field QY of totally p-adic algebraic numbers by a result of Moret-Bailly [17],
where the local-global principle takes the following simple form: If V' is a geometrically irreducible smooth variety over Q'
which has a Q -rational point for every embedding of QY into Q »» then it has a Q' -rational point.

It is known that there are fields F with z(F) = oo, for example F = R(xl s X, . ) see [15, Ch. XI, Example 5.9(5)]. On the
other hand, we do not know if z,(F) = co for any field:

Question 2.6. Is 7,(Q(X, X5, ... )) = c0?

2.3 | Explicit bounds and uniformity in p

We now prove a few rather elementary statements about x,(Q). We will drop the relative type = = (1, 1) from all notation. Let
¢ be a prime number distinct from p.

Lemma 2.7. We have y,(Q) C Z ) if and only if neither X? — X + 1 nor X? — X — 1 has a zero in [,.

Proof.  Let x € Q, recall that y,(x)= %((xp - x) — (x” - x)_l)_l and denote by v, the ¢-adic valuation. If
vy (xP = x) <0 or v (xP —x) >0, then vy (y,(x)) > 0. If v, (x? — x) =0, then x € Z ), and v,(y,(x)) < 0 if and only if
(x” - x) - (x” - x)_l =0 mod ¢, which means that x? — x = +1 mod 7. O

Proposition 2.8. Z[y,(Q)| & Z,.

Proof. There exists a prime number £ # p such that Z[y[,(@_)] is contained in Z;, by Lemma 2.7: specifically, the criterion
given there is satisfied by £ = 2 if p is odd and by £ = 17 for p = 2. O

Lemma 2.9. If¢ — 1| p—1theny,(Q) C£Z,,
Proof. It ¢ — 1|p — 1, then x? — x = 0 for all x € F,. Thus v, (yp(x)) > 0 for all x € Q, where v, is the #-adic valuation. []
Proposition 2.10. For every finite set P C Q [X 1> Xo, ... ], there exist some p and € # p with
U Ry p(@ € Z,,.
g€P
In particular, sup, ,(Q) = oo.

Proof. Choose ¢ > |P| + 1 such that P C Z,[ X}, X5, ... |. There exists a € Z such that a £ 0 (mod ¢) and a # g(0, ..., 0)
(mod ?) for every g € P. By Dirichlet’s theorem on primes in arithmetic progressions (see [18, VII, (13.2)]), there exist infinitely
many primes p > £ withp=1 (mod # — 1) and p = —a~! (mod #). Then

g(7,(Q), ..., 7,(@) C g(0,...,0) + £Z,,

p’g,p(@) C Z forevery g € P.

By the integral closedness of Z this implies R, ,,(Q) C Z, for every n. Note that R,, _, ,(F) = =R, . , ,(F),
where g* (Xl, ,Xn) = - ( - X, —Xn) has the same height as g. Therefore, applying the above to the set P of all
feQ [Xl, ,Xn] of degree and height at most n, we obtain ¢ and p > £ with

by Lemma 2.9, hence 1 + pg(yp(Q), cees yp(Q)) Cc Zz}) by the choice of a and p. Thus R

U (Rp,g,p,n(F) U Rp,g,—p,n(F)) < U Rp,g,p,n(F) c Z(f)’

8EP, , pEP

and therefore 7z,(Q) > n. O

2.4 | The Kochen operator

For later use, we explore several simple properties of the Kochen operator. Let F /K be any extension.
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Lemma 2.11. Let B € S;(F) and suppose that x € F is not a pole ofy;’,p. Then

—eqfvsn(x) —Ugp (tp) if U;B(x) <0,
eUsB(X) - Usn (IP) lf Usn(x) > 0,
Uq‘(ypstp(x)) = evgy (x"f — x) — U;B<tp) if U;n(x) =0and Usg (xqf — x) >0,

2
—evsp<(xqf -x) - 1) —vgp(ty) if vyp(x) = 0and U;B(xqf -x)=0.
Proof. This is a matter of calculating valuations. |

Lemma 2.12. Let B € S;(F). Suppose that x € F is not a pole ofy; y and satisfies either

(i) 0 < (e+ Dug(x) < vg(ty), or
(ii) vp(x) =0and [[Fq( ressn(x)) : [Fq] t f, where resgy(x) is the residue of x.

Then

: 1
Us (yp’tp(x)> < by 1Usn(tp) < 0.
Proof. In case (i), Lemma 2.11 gives that
. _ 1
o (775,09 = eop0) - vy (1) < ——0g1y).

In case (ii), the residue of x is not a root of x - X, and so

s 2 1
o (77, 0) = —evp ((x =) = 1) = vg(ry) < —vp(t,) < ——vp(1y).
also by Lemma 2.11. O
Lemma 2.13. Let B € S;‘(F), let and x,y € F, and suppose that x is not a pole ofy;’tb, and Usg (7;,1,, (x)) <0.Ifopgx—y) =
Us (tp), then also y is not a pole ofy;’tp, and vy (y;’tp (y)) < 0.
Proof. 1f vg(x) <0, then in particular vg(x) < vg(1,), while if v,(x) >0, then vy (y;tp (x)) = evgy(x) — vy (1,) by

Lemma 2.11, hence Usg (y;’tp (x)) < 0 implies that um(x) < Usp(tp) also in this case. Therefore, in either case we conclude

from vgg(x — y) > vy (tp) that vgg(x) = vgs(y). We make a case distinction:
Suppose first that vg;(x) # 0. By Lemma 2.11, in this case, Usg <y; y (x)) depends only on U;n(x). Therefore Us (y;’tp (y)> =

vy (y;’tp(x)> <0.

Suppose now that vgg(x) = 0. As x — y divides xt’ - yqf in Oy, we have that vy (yqf -y- xt + x> = vgglx —y) > U%(tp)-
If Usg (xqf - x) = 0, then in particular Usg (x‘lf - x) < U;B(tp), while if Usg (xqf - x) > 0, then Usn()/;’tp (x)) < 0 implies that
U (x"f - x) < %U;D(tp) < vg(1,,) by Lemma 2.11. Thus vg (y"f - y) = vy (x"f - x) in both cases. If vy (x"f - x) =0,
then Lemma 2.11 gives immediately that U$(7;,zp (y)) < 0, while if U;B<x‘7f - x) > 0, then Lemma 2.11 shows that

Us (y;’tp(x)> depends only on vm<x"f - x), hence um(;/;’lP (y)> = U;p<y;’tp(x)) <0. O

3 | DIOPHANTINE FAMILIES

A diophantine subset of a field F is the image of the F-rational points of some F-variety V' under a morphism V' — A}:. As we
want to discuss questions of uniformity we use the following slightly more sophisticated notion: An n-dimensional diophantine
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family over K is a map D from the class of field extensions F of K to sets which is given by finitely many polynomials
fis- . fr € K[Xl, s X Y, ,Ym], for some m, in the sense that

D(F)={x€ F"|3ye F": fi(x,y) =0,..., f(x,y) =0}
for every extension F /K. In this case, we say that the polynomials fi, ..., f, define D. Note that if E/F is an extension, then
D(F) C D(E).

Remark 3.1. From the point of view of algebraic geometry, an n-dimensional diophantine family D over K is given
by a morphism of (not necessarily irreducible) K-varieties ¢ : V — A7< in the sense that D(F) = @(V (F)) for every
extension F /K.

Remark 3.2. From the point of view of model theory, an n-dimensional diophantine family D over K is given by an existential
formula (p(xl e x,,) in the language of rings with free variables among x4, ..., x,, and parameters from K, in the sense that for
every extension F /K, D(F) is the set defined by ¢ in F, i.e. the set of @ € F™ such that F F ¢(a). Such a formula is equivalent
(modulo the theory of fields) to a formula of the form

p
Ay, .oy, /\fi(xl,...,xn,yl,...,ym) =0
i=1

with 1, ..., [, € K[X|, ..., X,.Y},....Y,].
Most of the usual constructions for diophantine sets (see e.g. [24]) go through for diophantine families:

Lemma 3.3. If D, D, are n-dimensional diophantine families over K, then there are n-dimensional diophantine families
D, U Dy and D, N D, over K suchthat (D; U D,)(F) = D|(F)U Dy(F)and (D, n D,)(F) = D|(F) N D,(F) forevery F /K.

Proof. Suppose that the polynomials f|, ..., f, € K[Xl, D G P ,Ym] define D, and that the polynomials g, ..., g, €
K [X 1,...,X,,,Zl,...,Zl] define D,. We may assume that the variables Y; and Z; are distinct. We observe that

1

fiseees frs 815 & define Dy N D,. Slightly less trivially, we have that f,g, ..., fig;, ..., f,&; define D; U D,. O

Lemma 3.4. Suppose that D, and D, are n,- respectively n,-dimensional diophantine families over K. Then there is an
(nl + nz)-dimensional diophantine family D, X D, over K such that (Dl X D2)(F) = D(F) X D,(F) for every F /K.

Proof. Suppose that the polynomials f4, ..., f, € K[Xl, ,X,,] LY, ... ,Ym] define D; and that the polynomials g, ..., g, €

1

K [X;, e X:/az’ Ziy..., Z,] define D,. This time, we suppose that all the variables X, X!, Y;, Z; are distinct. Then the polyno-

mialsfl,...,f,,gl,..-,gsdefineDlXDZ. D

Lemma 3.5. Let D be an n-dimensional diophantine family over K and let f = (i—‘ y ey i—" ) be a tuple of rational functions with
1 k

g-h €K [X Lo X n] such that for every i the polynomials g; and h; are coprime. Then there is an k-dimensional diophantine

family f D with

g1 (%) gk(x)>
D)(F) = e, ———
(f D)(F) {(hl(x)’ h )

x € D(F),hj(x) #0 forall i}

for every F /K.
Proof. Let fi,... ., f, € K[X,,...,X,.Y|,... ,Y,,] define D. Then a tuple (z, ... ,z;) € F* is an element of the right hand
side if and only if there exists (X, ... , X, ¥1s.ev s Yy Wi, ..o s Wy ) € F™™F such that
1. g,-(xl,... ,xn) —z,-hi(xl,... ,xn) =O0foralli=1,... ,k,
2. wihi(xy,... ,x,) =1foralli=1,...,k, and
3. fj(xl,... Xy Visee s Yy) =0forallj=1,...,r.
Each of these conditions is the vanishing of a polynomial in the variables Wy, ..., W, X, ..., X, Y},....Y,and Z|, ..., Z,
over K. |

Remark 3.6. Perhaps the most trivial 1-dimensional diophantine family over K is the one assigning the set F to every field F /K.
As described above in Section 2.1, given a rational function y € K(X) and a field F /K, we write y(F) to mean the image under
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y of F \ {poles of y}. By this small abuse of notation, y may be identified with the map which sends a field F /K to its image
y(F) under y. Then by Lemma 3.5, y is a 1-dimensional diophantine family over K. This applies in particular to the Kochen
operator y; .

Lemma 3.7. If D is an n-dimensional diophantine family over K and a = (al, ey a,) € K', r < n, then there is an (n — r)-
dimensional family D, over K with

D,(F)={x€ F""|(x,a) € D(F)}

for every F /K.
Proof. Again, let f|,.... f, € K[X|,...,X,.Y;,...Y,| define D. We write

(X1 X, YY) = (X Xy, a, YL LY,
Then the polynomials gj,...,g, € K[X|,....X,_.Y},....Y,| define the (n—r)-dimensional diophantine family
D, over K. L

Example 3.8. Each of the R; , 18 a 1-dimensional diophantine family over K.

Proposition 3.9. Ler D, D, D,, ... be n-dimensional diophantine families over K. If D(F) C |J
F /K, then there exists N such that D(F) C Ufil D, (F) for every extension F /K.

ien Di(F) for every extension

Proof. In light of Remark 3.2, this is a direct consequence of the compactness theorem of model theory, see for example [16,
Thm. 2.1.4]. [l

Proposition 3.10. Let D be a I-dimensional diophantine family over K and let K be a class of extensions of K. If

(i) D(L) = R;(L)for every L € K, and
(i) D(E) C O for every finite extension E /K, of relative type at most t,

then there exists N such that TE;(L) < N forevery L € K.

Proof. Let F be any extension of K. For g € S; (F) let (F’,$B’) denote a p-adic closure of (F, P) (see [22, §3]). By the p-adic
Lefschetz principle, the assumption (ii) implies that D(F’) C Ogy» in particular D(F) C Og N F =0Og. (In model-theoretic
terms, F’ is elementarily equivalent, in the language of valued fields, to a finite extension E of K, of relative type at most
7. More precisely, if F, denotes the algebraic part of F’, then both FyK, and F " are elementary extensions of Fj by [22,
Thm. 5.1].) In particular, D(F) C ﬂ’BES;(F) Oy = R;(F). So since R;(F) = U;’;l R;’n(F), by Proposition 3.9 there exists N

such that D(F) C UN T ,(F) for every F/K. In fact (R; ”(F))neN is an increasing chain, so D(F) C R; N(F). Thus for
L € K, (i) implies that R} (L) D(L) C RT (L), which shows that nT(L) < N. O

Remark 3.11. We also have the following converse: If nT(L) <N forall L € K, then D = R; is a diophantine family sat-
isfying both conditions. This indicates that while our def1n1t10n of ”p depends on the construction of the height function on
polynomials over O,,, the property of a class K to have bounded (p, 7)-Pythagoras number is a very robust notion and does not
depend on the details of the height function.

Remark 3.12. The notion that a class K has bounded (p, 7)-Pythagoras number is robust in a further sense: under taking a suitable
alternative for the Kochen operator. Consider a rational function 6 € K(X) and suppose that R;(F ) is the integral closure in F
of the ring

’ . a
R\(F) := {1+tpb a,be (QP[(S(F)], 1+tpb¢0},

for every extension F/K. We introduce a new 1-dimensional diophantine family R/ over K, by defining R/ (F) in terms of &
exactly as R,, ,(F) is defined in terms of y; . Then

R(F) = L_Jl R/(F),
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for all F/K. Simply adapting the proof of Proposition 3.10, a class K of extensions of K has bounded (p, 7)-Pythagoras number
if and only if there is M € N such that R;w (L) = R; (L), for all L € K. Also note that at least in the case 7 = (1, 1), the Kochen
operator y; y is universal in the sense that every such 6 is in fact a rational function in y; - see [22, Cor. 7.12].

4 | THE (p,7)-PYTHAGORAS NUMBER OF NUMBER FIELDS

Introduced by Poonen ([21]), and subsequently used and developed by others including Koenigsmann ([14]) and the second
author ([7]), the following diophantine predicates behave well in local fields, and satisfy a strong local-global principle. They
are defined from central simple algebras. For further details about central simple algebras, the Brauer group, and associated
local-global principles, see [19, Sect. 6.3].

Let A be a central simple algebra of prime degree £ over a field F. Following [7, Sect. 2], we let

S,(F) = {Trd(x) | x € A, Nrdeo) = 1} CF,

where Trd and Nrd are the reduced norm and reduced trace, see [12, Construction 2.6.1] for details. We also define

[ SuF) ife > 2,
Talk) i= {SA(F)—SA(F) ife =2.

If A is a central simple algebra over F and E/F is any extension, we view A := A @ E as a central simple algebra over
E and write S4(E) := SAE(E) and T4(E) := TAE(E).
Lemma 4.1. Both S, and T4 are 1-dimensional diophatine families over F.
Proof. This is shown in [7, Lem. 2.12] and the subsequent discussion. O

Recall that A is split if it is isomorphic to a matrix algebra over F, and A splits over E if Ay is split. The behaviour of .S,
and T4 in a completion F of a number field L is determined by whether or not A splits over F, and the behaviour of .S, and T4
in L is controlled by a local-global principle, which leads to the following:

Proposition 4.2 ([7, Prop. 2.9]). Let L be a number field and A a central simple algebra over L of prime degree ¢ which splits
over all real completions of L. Then

TA(L) =)0,
p

where the intersection is over the finitely many finite primes p of L such that A does not split over Ly,

Proposition 4.3 (see [7, Prop. 2.6]). Let F be a non-archimedean local field of characteristic zero and let A be a central simple
algebra over F of prime degree €. If A is non-split then T (F) = Op.

Note that [7, Prop. 2.6] is stated for central division algebras of prime degree, but a non-split central simple algebra of prime
degree is a division algebra.

Recall that above we fixed a number field K, a finite place p of K, and a pair 7 = (e, f) € NZ2. Given this data (K, p,7), we
now describe a choice of algebras A, B over K.

Proposition 4.4. For every prime number ¢ there exist central simple algebras A, B of degree ¢ over K such that
1. neither of them splits over K,,

2. for every finite place q # p of K, at least one of them splits over K,
3. for every infinite place q of K, both of them split over K.

Proof. The Brauer equivalence classes [A] of central simple algebras A over a field F form the Brauer group Br(F) of F, see
[19, (6.3.2) Def.]. For an extension F /K, there is a group homomorphism Br(K) — Br(F) given by [A] + [A]. Moreover,
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the local Hasse invariant is an isomorphism

Q/7Z  if qis finite,
inVKq : Br(Kq) — %Z/Z if q is infinite and K, =~ R, 4.1)
0 if q is infinite and Kq ~ C,

and so A splits over K if and only if inv K, ([AD) = 0. There will be no ambiguity if we write inv K, ([AD = inv K, ( [A Kq] ) Note
that each of the local Hasse invariants inv K, takes its values in Q/Z.
The Albert-Brauer—Hasse—Noether Theorem ([19, (8.1.17) Thm.]) gives the exact sequence
0— Br(K)—— @D Br(K,)——— @/Z—0, 4.2)
qeS(K)

where S(K) is the set of (finite and infinite) places of K, and invg is the sum of the local invariant maps inv Ky

Fix two distinct finite places q;.q, # p of K. We define two sequences (a,) and (b,) of rational numbers,

qES(K)
indexed by the places of K, by

qES(K)
®a,= bp =71,

°a, =(/— ¢~ and by, =0,

g =0and by, = -1,

e a, = b, =0, for every other place q.

® a

Note that only finitely many of the elements of these sequences are nonzero. Thus, by applying the inverses of the local Hasse
invariants from (a), the sequences (a )q and (b, ) , correspond to elements of the direct sum @, Br(K,). We also note the sums

Y ag= ) by=0 inQ/Z

9€S(K) 9€S(K)

q

By the exactness of the short exact sequence (4.2), we get (unique) equivalence classes [A] and [B] in Br(K) such that
il‘lVKq([A]) =a,+ Z and ianq([B]) = bq + Z, for all q € S(K). Thus both [A] and [B] are of period . As K is a number
field, this implies that they are also of index ¢ ([23, 32.19]), which means that if A and B denote the unique division algebras
in [A] respectively [ B], then these are of degree . O

Proposition 4.5. Let £ be a prime number with € > ef. If A and B are algebras as in Proposition 4.4, then
(i) for all finite extensions E /K, of relative type at most t,

Ty(E) + TR(E) = O;
(it) and for all number fields L/ K,

Ty(L)+Tp(L)2 ) Oy
PeS;L)

Proof. First, suppose that E/K,, is a finite extension of relative type at most . Thus [E : Kp] <ef < ?¢,sosince A and B do
not split over Ky, they also do not split over E by [12, Cor. 4.5.9]. Therefore we may apply Proposition 4.3 to obtain

To(E)+Tg(E) =0+ 0O =Op.

Next, let L/K be any number field and let Q be a prime of L which lies over a prime q of K. If q # p, then at least one of A
and B splits over K and therefore also over the completion Lg by construction. Hence

TW(L)+Te(L)= () Og+ [] Og= N 0z2 ) Oy

QeS(L) QES(L) QeS(L) PESH(L)
ALQ not split BLQ not split ALD and BLQ not split
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where the first equality is Proposition 4.2 and the second equality follows from weak approximation (see e.g. [9, 1.1.3]). O

As before, fix a uniformizer 7, € K of p. For central simple algebras A, B over K and an extension F/K we define
D;JP,A’B(F) as

X
{m x’yeTA(F)+TB(F)’LUEY;JP(F)’ 1+1Pwe+1y;é0}.
P

Lemma 4.6. D; . ap is a I-dimensional diophantine family over K.
£l pa >

Proof. We have seenin Lemma4.1 that T, and T are 1-dimensional diophantine families over K. The claim follows by applying
Lemma 3.5 to the 5-dimensional diophantine family 7y X Tp X T4y X T X y; r, OVer K (Lemma 3.4) and the rational function

(X, +2X) (1+ 1, X (X5 + X)) 7 ]

Proposition 4.7. If A, B are K-algebras as in Proposition 4.4, then
D;JP’A’B(E) COg

for every finite extension E /K, of relative type at most t.

Proof. By Proposition 4.5(i), we have T,(E)+ Tg(E) = Q. Since also 7;,p(E) COp and 1+1,0p CO¥, we have
D;,IP,A,B(E) C Oy, as required. -

Proposition 4.8. If A, B are K-algebras as in Proposition 4.4, then
D;,tv,A,B(L) = R;(L)

for every number field L containing K.

Proof. By Proposition 4.7, D;,zp,A,B<L‘13) C Oy, for every B € S;(L), hence

Dy, s C N Oy, NL= | Oy =Ry L.
Pesg(L) Pesg(L)

To show the other inclusion, let r € R;(L). Since L/K is finite, the set S‘;(L) of primes of L over p is finite. Write
PBi,.... P € S; (L) for the primes over p of relative type < 7, and K, ..., Q; for the primes over p not of relative type < 7.
Foreachi € {1,...,/}, by Lemma 2.12 there exists z; such that

1
UQ,' <y;,tp(zi)> S _e + 1 UQ,’(IP)’

-1
ie. vg <(Tp7; ; (z))t! ) > > 0. By weak approximation and continuity of rational functions, there exists z € L such that
1 > P
0

-1
g, <<tpy;,tp(z)e+l> > >0 for each i € {1,...,1}. By another application of weak approximation there exists y € L such
that

-1
UD,~<(tp?’;,rp(Z)e+l> + y> > max{O,—uQi (rtpy;,tp(z)e“) } i=1,...1,
v (M 20, i=1,....k

In particular, y € ﬂsnes;(L) Ogpandx := "(1 + lp}’;,,p(z)”ly) satisfies vg, (x) > O foreachi € {1,....1}. As B; € S{(L),
we have r, 1, y;’tp(z), y € (9;13[, hence Umi(x) >0foralli € {1,...,k}. Thus x € ﬂ‘:l}es;(L) Og. As

O C TA(L) + Tg(L)
Pes; (L)
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by Proposition 4.5(ii), we get that

-1
r= x(l FprE, (! y) e Dy, 4 5L

as required. O

Theorem 4.9. For every finite place p of a number field K and every t© € N?, there exists N € N such that n'; (L) £ N for
every number field L containing K.

Proof. We choose algebras A and B over K according to Proposition 4.4, and we apply Proposition 3.10 to the class K of

finite extensions L/K and the diophantine family D = D; . 4> Where the two assumptions of Proposition 3.10 are verified in
El ps ]

Proposition 4.8 and Proposition 4.7, respectively. O
Remark 4.10. Given an arbitrary field F D K there is no obvious relation between ﬂ; (F) and ﬂ';,(F ) for 7 # ©’. For example if

7 < 7/ then we have R;(F )2 R;, (F), but also y; #* y;,. Likewise, there is no reason to suspect that the bounds N in Theorem 4.9
should be related for different choices of .

S | THE (p,7)-PYTHAGORAS NUMBER IN FINITE EXTENSIONS

The growth of the classical Pythagoras number is bounded in finite extensions E/F by
n(E) <[E : F]-z(F),

see [20, Ch. 7, Prop. 1.13]. We now combine ideas from the proof of Theorem 4.9 with techniques for p-valuations on general
fields to prove an (inexplicit) analogue of this for the (p, 7)-Pythagoras number.

As before fix K, p and 7 = (e, f) and let F /K be an extension. We equip S; (F) with the constructible topology, which by
definition has a basis consisting of the sets

Sy(Fia) := {P € S{(F) | vy(a) 20}, a€F,

and their complements. In [1], we studied approximation theorems for spaces of localities, i.e. valuations, orderings, and absolute
values, on a given field. We now deduce an approximation theorem in the setting of the space S; (F).

Theorem 5.1. Let Sy,...,S, C S;(F) be disjoint and closed, let x|, ..., x, € F, and let z|, ..., z, € F*. Assume that, for any
B, € S; and *B; € S, if the valuation w is the finest common coarsening of Usp, and U then w(xi — xj) > w(z;) = w(zj).
Then there exists x € F with

vo(x —x;) > vg(z) forall Q€ S, fori=1,...,n.

Proof. Corollary 5.5 of [1] is a similar statement in which S;(F) is replaced by a space S¢(F), for # € F* and e € N, By
definition (see [1, Example 2.4]), S¢ (F) is the space of equivalence classes of valuations v on F with value group I',, which has Z
as a convex subgroup and 0 < v(x) < e. We note that S; (F)C Sfp (F), and if we equip Sfp (F) with its own constructible topology

(see [1, Sect. 2]) then Sg(F) is a closed subspace: By [22, Lem. 6.2], S;(F) is the intersection over all sets {UG Sfp(F) :

v(a) > O} fora € O,u y; tp(F ). Therefore, each .S; is also a closed subset of Sfp(F ) and so we may obtain the required element
x € F by an application of [1, Cor. 5.5]. O

Lemma 5.2. Let v < 7/ € N2. There is a rational function (OB @(tp)(X) such that vg(w, +(x)) > 0 for all x € F and
B e S;,(F), and moreover vy (com/(x)) = 1ifvyg(x) = 1 and P is of exact relative type T over p.

Proof. Write ¢/ = (¢/, f'). By Dirichlet’s theorem on primes in arithmetic progressions there exists k € N such that £ := 1 + ke
is a prime number and £ > ¢’. Let f(X) = t;ka. For every 8 € S;/(F) and x € F we have vg(B(x)) = Cogp(x) — kusn(tp),
which is non-zero (since £ > llc and 7 > e > Uss (tp) imply ¢ ¢ kvsn(tp)), and equals 1 if vp(x) =1 and vy (t,',) = e. Thus
w, (X)) = (BX)+ pX)~!) " satisfies the claim. O
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Lemma 5.3. There is a rational function p, € Q(X) such that for all °B € S;(F) and all x € F we have

=0, if vp(x)=0,
v (p-(x)) {> 0. if vg(x) #0,

and if vm(x) = 0 then ressp(pf(x)) = res;n(x).

-1
Proof. Write p.(X) = X (X' =X +1) . Let$p € S(Fandletx € F.If oy (x) < Othen o (x = x +1) = ¢/ vy(x) <0,
and so vg(p.(x)) = (1 — qf)vsn(x) > 0. On the other hand, if v (x) > 0 then vy (xqf —-x+ 1) = 0,50 vy(p,(x)) = vy(x) > 0.
Finally, if Usg (x) = 0 then

resm<x"f - x+ 1) = resm(x)qf —resp(x) +1=1#0,

and in particular Usg <x"f -x+ 1) = 0. Therefore vq;(pf(x)) =0and res;n(p,(x)) = ressp(x). O

Proposition 5.4. Let <t/ = (¢/, ') and let S, denote an open-closed subset of S;, (F) such that S; (F) C S, There exists
y € F such that

. G[O,e’eqf], if P €Sy,
”‘13<yr,tp(y)){< 0, if P e S\ S,

Proof. For each P € S;/ (F)\ Sy, we choose vy € F as follows. First, if the relative type of *P is exactly =", '
with e’/ > e, then let Iy be a uniformizer of Uss and set Yo =W o (t’B)' By Lemma 5.2, U;B(y;n) = 1; and by Lemma 2.12,

vy (y;’tp (ym)> <0. Also, forall Q € S;,(F) we have vg (yy) > 0. In particular, yy € R;,(F).

On the other hand, if the relative type of B is exactly 7/ = (¢”’, ") with f”’ } £, then let ag; with vy (ag;) = 0 and resg (ag)
a generator of Fug, and set ygy = p,s(ag;). By Lemma 5.3, vgy () = O and resg (g ) is a generator of Fugy. By Lemma 2.12,

we have vm<y;’1p (ysl;)> < 0. Also, forall Q € S;'(F) we have vg (yy) > 0, i.e. yg € R;,(F).

In either case, we have chosen Yy € R;’(F ) such that Us <y; y ( y;n)) < 0. Next we make use of the compactness of S;,(F ).
For y € F, we let

S,={BesyE®|om(r,»)<o}.
Each S is an open-closed subset of S;/(F ). By our choice of the elements yg;, the family

{Sygp \S, : Pe s;’(F)\SO}

is an open covering of S;,(F) \ Sy- So by compactness there exist P, ..., B, € S;, (F)\ S, such that with Si’ = Sy’ni , We
have
7’ _ l ’

Sy (F)=S8yuS u-US,.
Choose open-closed sets .S; C S{, ...»S, € 8/ such that

Sy (F)=SyusS u--us,
is a partition. We seek to apply Theorem 5.1 to the sets S, S, ...,.S,, the elements x, = t;l, X| =Yoo X =V, and
zp = ty, ..., z, = ty,. To verify that the hypothesis of the theorem holds, we argue as follows: let w be any valuation on F that

is a common coarsening of valuations vy and vg corresponding to primes B € S; and Q € S, for i # j. Note that w is a
proper coarsening of these valuations since S; and S; are disjoint and vy, vg are incomparable. Then w(z;) = w(z j) =0and
w(x; —x j) > 0. Therefore, by Theorem 5.1, there exists y € F such that

Ugn(y - Xi) > ng(tp),
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for each *B € S; and each i. In particular, for B € .S, we have that v(y) = —vgp (tp) < 0, hence

o (5, 0) = ea’ vy (1) = v 1,) = (ea” = 1)y (5,) € {0..... e’}

cf. Lemma 2.11. On the other hand, for Q €.5;, with i >0, we get that UQ(y_y’Bf) > UD(tp). Since we have
ug<y; . (ymi)> <0, then ug<y;, (y)) < 0 by Lemma 2.13. O

Fix n,m € Nand let 7’ = (¢/, f'), where e’ = me and f’ = m!f. Let € be the class of fields E which contain some F /K with
[E : F]=mand n;(F ) = n. We adapt the arguments of Section 4 in order to show that n;(E ) is bounded by a function of m, n.
We let

DIV (F):={x € F|3a,...

pmn

Sy € RY (F) 1 X"+, X"~ 4 + a5 =0},

and

T(2) a 7,(1) T T e
D) (F) := {—1 TR | P PP Y P 00 F e L 0 b2 0}.
5tp

7,(1) 7,(2) . . . . .
Lemma 5.5. Both Dp,m,n and Dp,m,n are 1-dimensional diophantine families over K.

Proof. This is very similar to Lemma 4.6. This time we use the fact that R; , 18 a 1-dimensional diophantine family over K,

7.(1)

as seen in Example 3.8. From this is immediately follows that D is a 1-dimensional diophantine family over K. To see

p.m,n

that DT (2) is a 1-dimensional diophantine family over K we now apply Lemma 3.5 to the 3-dimensional diophantine family
-1

Dy Ei)n X D; 2)" X 7, and the rational function X (1+ thngz) : O

Proposition 5.6. For every E D K we have D;Z(j?n(E) C RY(E).

Proof. Since R? (E) is integrally closed in E and RT J(E) C RT(E) we have D= (E) C R;(E). Let P € S;(E). Then

p.m,n
v (,) > 0. Furthermore, for y € E and b € R{(E), we have U;B<ym ()¢ ) > 0, hence vm(l + tpy;’tp(y)e’b> = 0. There-
L\l
fore elements of the form a(l + tpy; y )¢ b) are contained in RT(E) where a,b € DT A1) (E) and y € E. This establishes
DY (E) C Ri(E). O

p m,n
Lemma 5.7. For every E € £ we have R;,(E) C D;’gj)n(E).

Proof. Choose F such that [E : F] = m and n;(F ) = n, although the choice of F will not matter. Let .S be the set of primes

of E (of arbitrary type) lying over elements of 5; (F). By our choice of 7/, we have S C S;/(E). If we denote by A the integral
closure of R;(F )in E, then A is the holomorphy ring corresponding to .S and we have

R;’(E) C A C Ri(E).

Since nT(F) = n, we have RT(F) = T (F)' and trivially RT L) C RT L(E). As the degree of the extension E/F is m,
D" (l)n(E) contains the integral closure of RY (F ) in E, which is A In partlcular RT (E) C DY D (E). O

p,m,n

Proposition 5.8. For every E € £ we have pr@ (E) = R;(E).

p.m,n

Proof. In view of Proposition 5.6, it only remains to show that RT(E) C DT 2) (E) Let x € RT(E) In fact, we aim to find
be R; (E) and y € E with

x(l + tpy;’tp(y)e,b> € RY(E),
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which we will do by applying Theorem 5.1. As R;’(E) c D;(rj)” by Lemma 5.7, this will show that x € D;:Ei)n(E). We define
the sets

Sy = {PB € S;(E) | vy(x) >0}
and S, = 5;/(15) \ S

Note that Sy and S| are open-closed in S;, (E)and S| N S; (E) = 8. We find a suitable element y € E by a direct application
of Proposition 5.4: we obtain y € E such that

. € [0,¢/eq’|, if PeS,,
”‘1‘<yv’fp(y)){< 0, if Pes,.

We obtain a suitable b € E by solving a more straightforward approximation problem: By Theorem 5.1, there exists b € R;/(E)
such that

0y (6) 2 0, it e s,
and oy (b+1lys, ) 2ep (x5, 07, it Pes,.

Indeed, if a valuation w on E coarsens Us and vg for B € S; and Q € S, vm(x) > 0 and vg(x) < 0 imply that w(x) =0,
and U;B()/;JP (y)> € [0, e’eqf] implies that w(y;’tp (y)) = 0. Therefore also w(’ﬂ;,tp(y)e,> =0 and w(xtpy;’tp(y)e') =0.1In
particular, the hypothesis of the theorem is satisfied, and the b € E so obtained lies in R;,(E ).
-1 —e
For B € .S, we have U;n(tp y;’tp(y) € ) < 0, hence

1.z o .
U‘B("}-, yp’tp(y) ¢ >’ lf 5’13 € SO’

um<b+t;1y;,,p(y)“’ ) I
ZUSB<x t]J Ymp(Y) >, lfs‘BGSI,

i.e.
1 +1,77. () ) —0, if ,
op(1+1,75, b)) =0, if Pes,
vsn<x(l + tpy;’tp(y)e,b)> >0, if Pes,.
Since vgy(x) 2 0 for 9B € S, we obtain that x<l + tpy;’tp(y)e/b) € Ry (E). O

Theorem 5.9. There is a function a; : N XN — N such that
7y (E) < ap (z;(F),[E : F1),
for every field extension E/F with ﬂ;(F) < 0.

Proof. Let m,n € N. We apply Proposition 3.10 to the class £ and the diophantine family D;’(ﬁ)n , where the two assumptions
of Proposition 3.10 are verified in Proposition 5.8 and Proposition 5.6, respectively. Thus there exists N such that 77.'; (E)XN
for every E € &£, so we can choose a;(n, m) = N. O

Remark 5.10. Beyond the statement of the theorem, we are unable to say much about the behaviour of the (p, 7)-Pythagoras
number in finite extensions:

For example, it is known that the classical Pythagoras does not increase in finite extensions of number fields, cf. [20, Ch. 7,
Example 1.4 (2) and (3)], but we don’t expect this to happen for the (p, 7)-Pythagoras number.

In fact, it is known that there are finite extensions of infinite algebraic extensions of Q in which the classical Pythagoras number
increases, see for instance [5, Example on p. 432], and one may expect that similar examples exist for the (p, 7)-Pythagoras
number. For example, if F is the closure of Q under adjoining preimages of Yp» ONE trivially has Rp(F )y=F = yp(F ), hence
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7,(F) = 1. One can then deduce from a theorem of Weissauer [26, Satz 9.7] that in any proper finite extension E of F one has
Rp(E) # yp(E), and one might suspect that in fact 7rp(E) > 1, although this seems not easy to prove.

6 | DIOPHANTINE HOLOMORPHY RINGS OF p-VALUATIONS

By definition, in any field F with finite (p, 7)-Pythagoras number the holomorphy ring R; (F) is a diophantine subset. In this
section we generalize this observation, by showing in Corollary 6.5 that the same applies to the holomorphy rings associated to
arbitrary open-closed subsets of S;(F ). Theorem 6.4 is a uniform version of this fact.

As a technical tool, it turns out to be useful to extend some of the ideas from diophantine families over fields to commutative
algebras which are finite-dimensional vector spaces over fields. To this end, we introduce a small piece of notation. Write
X = (Xl, ,Xn) and Y = (Yl, . Ym). For fi,.., f, € K[X,Y] and for any commutative (unital, associative) F-algebra B,
we write

P s (B):= {xeB"|3Iye B" : fi(x,y) = = f,(x,y) =0}.

The following lemma is straightforward, but we include it for lack of a suitable reference.

Lemma 6.1. Let f|,..., f, € K[X,Y]and let! € N. Then

F'n Py i(B)= ﬂ (F"n Py (B/m)),
meMaxSpec(B)

for all extensions F /K, and all commutative F-algebras B of dimension at most . Here F is identified with its image in B
and B/m.

Proof. Let B be a commutative F-algebra which has dimension at most / as an F-vector space. As B is finite dimensional,
it is Artinian, hence the Jacobson radical j of B is nilpotent ([3, Prop. 8.4]), and therefore more precisely j/ = 0. Then for all
s € {1,...,r}, all extensions F/K,alla € F,x € F", and y € B", we have

fix, ) =0&= f(x,y+{) =0

= f(x,y+m) =0, forall m € MaxSpec(B).

The result now follows from the Chinese Remainder Theorem. O

Lemma 6.2. Let f|, ..., f, € K[X,Y] and let k € N. There exists an (n + k)-dimensional diophantine family D over K such
that

.....

for all extensions F /K, and where B, denotes the commutative F-algebra

k—1
F[T]/<Tk +y z,T").
i=0

Proof. In a more advanced way, this construction can be described through the Weil restriction of the affine variety cut out by
the polynomials fi, ..., f,, along the family of schemes described by the B,, fibred over the parameter space A, Alternatively,
from a model-theoretic standpoint, one can prove the statement by a quantifier-free interpretation of B, in F, uniformly in the
parameter tuple z. We give an elementary description instead.

We introduce two new tuples of variables Z = (Z;) and U = (U,

i»j)0§i<k,1§j§m' We write

0<i<k

k—1
g(Z.T):=T"+ ) ZT' e K[Z,T]
i=0
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and, foreach s € {1,...,r}, we let

k—1 k—1
fi(x,U,T) = fS<X, DULT, LY U,-’mT">.
i=0 i=0

Choose d € N to be the maximum of the degrees of the polynomials fs in the variable T', and introduce a new tuple of variables

W = (W) 0<1<q- Then, for each s, we consider the polynomial

d
(X, Z,UW.T) = f{(X,U,T)-g(Z,T) Y WT'
=0

Note that fs(x, z,u, w,T) = 0 for some w if and only if g(z, T) divides fs(x, u,T) in F[T]. By taking coefficients with respect
to the variable T', we obtain a family of polynomials hs,, eK[X,Z, U W], forl <s<rand0 <! <d + k, such that

d+k
f(X,Z,U,W,T)= Y h(X,Z,UW)T'.
1=0
We may define the required (n + k)-dimensional diophantine family D over K by writing

D(F)={(x,z) € F"x F* | Jue F*", we F™*" : hy,(x,z,u,w) =0forall 5,1},

for F/K. L

Lemma 6.3. For every field extension F /K and every a € F, we have

Sy(Fia) = U res g, jmy/r (Sp(Ba/m)),
meMaxSpec(B,)

where resp /F denotes restriction of primes from E to F, and B, is the commutative F -algebra

F[T]/ <tpa”<<qu —T)Z - 1) - (qu —T)).

Proof. Denote MaxSpec(B,) = {ml, s mr} and E; = B,/m;. Let

8= rpae<<T‘1" —T>2 - 1> (17 -1) e FiT|

and note that g, is closely related to y; -
First let B € S; (E;) for some i. If 6 denotes the residue of T in E;, we have y; y @) e (951; and therefore Um(gqf _ 9) >

2
Usp <<0‘1f - 0) - 1) , so since g,(0) = 0 we necessarily have U;B(tpae) > ( and therefore vgp(a) = 0.

Conversely, let B € S;(F ;a). Then g, € Om[T] has a simple zero T = 0 modulo the maximal ideal of (9;13, which implies
that there exists some i and Q € S;(Ei) with B = resEi/F(D): Indeed, if (F’,v') is a henselization of (F, Usp), then v/ = Ugy
for a prime P’ of F’, and Hensel’s lemma in the form [9, Thm. 4.1.3(4)] shows that g, has a zero in F’, which induces an
F-embedding E; — F’, and one can take Q = resF,/E’_(iB’). O

Theorem 6.4. For every N € N there exists a 2-dimensional diophantine family D; N over K such that

D;’N(F) = {(x,a) € F? ’ vp(x) 2 0 for every B € SS(F;a)}

for every extension F /K with ﬂ;(F) <N.
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Proof. Let | =2q/. By Theorem 5.9 there exists N’ such that for all E/F/K with [E : F] <1 and ﬂ;(F) < N, we have
n;(E) < N/, and so

RP(E) = Rp’N,(E). (6.1)

By Example 3.8, R; N is a 1-dimensional diophantine family over K, and so we may choose polynomials f|,..., f, €
K[X,Yl,...,Ym] such that

Ry i (F) = {xeF|IyeF": filx,y) == f(x,9)=0} (6.2)

for all F/K. For each F/K with ﬂ;(F) < N, and each a € F, we have

FnPp /(B,) = (Fn P ;(B,/m)) byLemma6.l,
meMaxSpec(B,)
= (Fn R (B,/m)) by (6.1) and (6.2), 63)
meMaxSpec(B,)
= ﬂ O‘D by Lemma 6.3,
s‘IKES;(F;a)
where B, is the /-dimensional algebra from Lemma 6.3.
By Lemma 6.2, we may define a 2-dimensional diophantine family D over K satisfying
p(F)={(x.a) € F*|xe Py (B,)}
e r
for every extension F /K. By (6.3), for every F /K with 7[; (F) £ N we in fact have
D(F) = {(x,a) eF’|xe ﬂ %}’
PeSI(Fia)
proving the claim. [

Corollary 6.5. If ﬂ;(F ) < oo, then for every open-closed set S C S; (F), the holomorphy ring ﬂme s Oy is diophantine in F.

Proof. As S is open-closed, it is of the form S; (F;a) for some a € F, see [10, Lem. 10.4, 10.5]. Hence the claim follows from
Theorem 6.4 and Lemma 3.7. O

By Example 2.5 this applies in particular to pseudo p-adically closed fields like @', although for such fields there are in fact
simpler ways of establishing Theorem 5.9.
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