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Introduction

Raman

spectroscopy provides

Determination of meningioma brain tumour grades using Raman
microspectroscopy imaging

Camilo L. M. Morais,** Taha Lilo,>® Katherine M. Ashton,® Charles Davis,® Timothy P. Dawson,°
Nihal Gurusinghe® and Francis L. Martin*?

Raman spectroscopy is a powerful technique used to analyse biological materials, where spectral markers such as proteins
(1500-1700 cm'Y), carbohydrates (470-1200 cm™) and phosphate groups of DNA (980, 1080-1240 cm?) can be detected in a
complex biological medium. Herein, Raman microspectroscopy imaging was used to investigate 90 brain tissue samples in
order to differentiate meningioma Grade | and Grade Il samples, which are the commonest types of brain tumour. Several
classification algorithms using feature extraction and selection methods were tested, in which the best classification
performances were achieved by principal component analysis-quadratic discriminant analysis (PCA-QDA) and successive
projections algorithm-quadratic discriminant analysis (SPA-QDA), resulting in accuracies of 96.2%, sensitivities of 85.7%
and specificities of 100% using both methods. A biochemical profiling in terms of spectral markers was investigated using
the difference-between-mean (DBM) spectrum, PCA loadings, SPA-QDA selected wavenumbers, and the recovered
imaging profiles after multivariate curve resolution alternating least squares (MCR-ALS), where the following
wavenumbers were found to be associated with class differentiation: 850 cm™ (amino acids or polysaccharides), 1130 cm™
(phospholipid structural changes), the region between 1230 — 1360 cm™ (Amide Ill and CH, deformation), 1450 cm™ (CH.
bending), and 1858 cm™ (C=0 stretching). These findings highlight the potential of Raman microspectroscopy imaging for
determination of meningioma tumour grades.

wavenumber range. The hyperspectral image data are represented
by three-dimensional (3D) arrays, where the spatial coordinates are
present in the x- and y-axis while the spectral information is in the
z-axis. A major advantage of Raman imaging is that it can be non-

sensitive spectrochemical

signatures of materials based on their molecular polarisability
changes.! Raman is based on an inelastic scattering
phenomenon that occurs in less than 1% of the absorbed
photons by a molecule. This inelastic scattering is composed of
Stokes and anti-Stokes scattering: the former occurs when the
molecule emits a photon with less energy than the absorbed
incoming radiation, and the latter happens when the molecule
emits a photon with higher energy than the absorbed
incoming radiation.2 At room temperature, the Stokes
scattering is more frequent, thus most instruments filter the
elastic and anti-Stokes scattering and record the Stokes
scattering signal as the final Raman spectrum.
Microspectroscopy Raman imaging allows one to obtain
microscopically spatially distributed spectral data, where each
position in the image is composed of a Raman spectrum in a specific
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destructive depending on the incident laser frequency, has
minimum water interference, and has a relatively low cost in
comparison with other analytical techniques.

Raman imaging has been used in a wide range of applications,
including pharmaceutical analysis,? forensic investigations,* food
quality control,® and to analyse biological materials.® In the latter,
cancer detection plays an important role, where Raman imaging has
been successfully applied to investigate breast,” cervical,® lung,?
skin,® ovarian,1® and brain cancer.!?

Most of brain cancers are gliomas or meningioma tumours.12
Gliomas are more aggressive types of tumours and have been
widely investigated using Raman spectroscopy,’215 while
meningiomas remain to be intensively investigated using vibrational
spectroscopy. Meningiomas represent 20% to 35% of all primary
intracranial tumours.’® The majority of them occur in a
supratentorial location; however, a few of them can arise in the
posterior cranial fossa and, more rarely, as extracranial
meningiomas.® It usually manifests as single or sporadic lesions,
causing symptoms such as sensory and motor deficits and gait
disturbance; while multiple meningiomas are often associated with
neurofibromatosis type 11.17 Meningiomas can be divided into WHO
Grade |, Grade Il and Grade Ill. Grade | meningiomas are the
commonest type of tumours, with slower growth and lower
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likelihood of recurrence; Grade Il meningiomas also have a slower
growth but higher likelihood of recurrence; and Grade |l
meningiomas are a very rare type of tumour with fast growing rate
and much higher likelihood of recurrence. Surgical outcomes and
treatment are dependent on the meningioma grade and histological
subtypes.l’

In this paper, Raman microspectroscopy imaging is applied to
distinguish Grade | and Grade Il meningiomas via the application of
several chemometric approaches, including combination of feature
extraction and selection methods with discriminant analysis
techniques, and multivariate curve resolution alternating least
squares (MCR-ALS) for profiling and differentiation of Grade | and
Grade Il tumour tissues.

Materials and methods

Samples

Ninety brain tissue samples (66 meningiomas WHO Grade |, 24
meningiomas WHO Grade Il) were analysed by a Renishaw InVia
Basis Raman spectrometer coupled to a confocal microscope
(Renishaw plc, UK). All samples were sourced from the Brain
North West (BTNW) biobank (NRES14/EE/1270). All
experiments were performed in accordance with the STEMH

Tumour

(Science, Technology, Engineering, Medicine and Health) Guidelines
at the University of Central Lancashire, and approved by the ethics
committee at the University of Central Lancashire (STEMH 917).
Informed consents were obtained from human participants of this
study. Formalin-fixed paraffin-embedded (FFPE) tissue specimens
(10-um-thick) were placed onto aluminium-covered glass slides for
spectroscopy measurement. Microspectroscopy imaging was
performed with an acquisition area of approx. 100 x 50 um (50x
magnification, 785 nm laser, 50% laser power (150 mW), 0.1 s
780-1858
StreamHR™ imaging technique (high-confocality mode) with a grid
area of 42 x 28 pixels, resulting in 1176 spectra for each image (1

exposure time, cm? spectral range) using the

cm! data spacing). The laser power was set relatively high to ensure

a good signal-to-noise ratio. To minimize any potential
photodamage to the sample, the laser exposure time was set to
only 0.1 s. Moreover, no damage was visually observed in the
samples after measurement. The imaging acquisition time was

approx. 8 min for each sample.

Computational analysis

The Raman images were converted into suitable .txt files using the
Renishaw WIRE software, and processed using MATLAB R2014b
(MathWorks, Inc., USA) with lab-made routines. All the samples’
images were pre-processed by cosmic rays (spikes) removal,
2" order

baseline

Savitzky-Golay smoothing (window of 15 points,
polynomial fitting), and asymmetric squares
correction. The window size in the Savitzky-Golay smoothing was

least
determined visually by testing different window sizes, where the

smallest window size that removed random noise and kept the
same spectral shape and intensity without smoothing-out relevant

2| J. Name., 2012, 00, 1-3

spectral peaks was chosen. MCR-ALS was applied to the image data
using the HYPER-Tools toolbox in MATLAB.18

First-order classification. Each pre-processed image with size 42 x
28 x 1015 was averaged into a single spectrum (1 x 1015) as the
classification was performed on a sample basis. Initially, an outlier
detection test was performed by a Hotelling T2 versus Q residuals
test.1® The remaining samples after outlier removal were split into
training (60%), validation (20%) and test (20%) sets using the MLM
sample selection algorithm.20.21 All data were mean-centred before
further analysis.

For feature extraction and classification, principal component
analysis combined with linear discriminant analysis (PCA-LDA),
quadratic discriminant analysis (PCA-QDA) and support vector
machines (PCA-SVM) were applied to the pre-processed data. PCA
reduces the pre-processed spectral variables to a small number of
principal components (PCs) responsible for the majority of the
original data-explained variance. Each PC is orthogonal to each
other and is generated in a decreasing order of explained variance,
where the first PC explains most of the data variance, followed by
the second PC, and so on. The PCs are composed of scores and
loadings, the scores representing the variance on the sample
direction, thus being used to identify similarities and dissimilarities
between the samples; and, the loadings represent the variance on
the wavenumber direction, being used to identify possible spectral
markers associated with class differentiation.22 PCA decomposition
takes the form:22

X=TPT+E (1)

where X is a matrix containing the mean-centred pre-processed
spectral data; T is a matrix containing the PCA scores for a
determined number of PCs; P is a matrix containing the PCA
loadings for a determined number of PCs; E is a residual matrix; and
the superscript T represents the matrix transpose operation.

In PCA-LDA, PCA-QDA and PCA-SVM, a PCA model is applied to
the pre-processed data and then a LDA, QDA or SVM classifier is
applied to the PCA scores, respectively. LDA and QDA are
discriminant analysis methods based on a Mahalanobis distance
calculation. LDA assumes classes having similar variance structures,
therefore using a pooled covariance matrix to calculate the
classification score for each class, while QDA assumes classes having
different variance structures, therefore using the variance-
covariance matrix for each class individually when calculating the
classification score.?324 The LDA (L;;) and QDA (Q;) classification

scores can be calculated in a non-Bayesian form by: 23,24

Lie = (% = %) "Chootea (Xi — Xi) (2)
Qi = (xi — %) "Ci ' (x; — %) (3)

where X; is a vector containing the input classification variables

(e.g., PCA scores) for sample i; X; is the mean vector of input
classification variables for class k; Cpooleq is the pooled covariance

This journal is © The Royal Society of Chemistry 20xx



matrix; and Cy is the variance-covariance matrix of class k. Cygolea
and Cy, are calculated as follows:2*

1
Cpooled = ;Z§=1 1y C (4)

Ce = 7y T (% — X — %)" (5)

in which n is the total number of samples in the training set; K is
the total number of classes; and n; is the number of samples in
class k.

SVM is a binary linear classifier with a non-linear step called the
kernel transformation.> A kernel function transforms the input
data space into a feature space by a applying a mathematical
transformation which is often non-linear. Then, a linear decision
boundary is fit between the closest samples to the border of each
class (called support vectors), where each class is defined. SVM
classification is performed as follows:25.26

f(x) = sign(Ts a;yid(xi,2;) + b) (6)

where Xx; and z; are vectors containing sample measurement
vectors (e.g., PCA scores); Ngy is the number of support vectors; a;
is the Lagrange multiplier for sample i; y; is the class membership
of sample i (1); §(x;,z;) is the kernel function; and b is the bias
parameter.

SVM was performed using a radial basis function (RBF) kernel,
which is defined by:26

o(x;.2)) = exp (—y|x; - z|°) (7)

where y is the kernel parameter that determines the RBF width.
Cross-validation venetian blinds with 10 data splits was performed
to optimise the bias and kernel parameter.

Some feature selection techniques were used to analyse the
image spectral data. Successive projections algorithm (SPA)?7 and
genetic algorithm (GA)28 were used coupled with LDA, QDA and
SVM. SPA is a forward feature selection method which operates by
minimising the co-linearity of original pre-processed spectra; thus,
selecting wavenumbers whose information content is minimally
redundant.?’ GA is an iterative algorithm inspired by Mendelian
genetics, where the pre-processed spectral data is reduced to a set
of selected wavenumbers based on an evolutionary process.28 For
this, a set of variables is randomly chosen to go through
combinations, cross-overs and mutations until the best set of
variables reaches the minimum of a pre-defined cost function.228
The optimum number of variables for SPA and GA is obtained by
minimizing the average risk G of misclassification in the validation
set:29,30

1
G= N_VZZEI In (8)

where Ny is the number of samples in the validation set and g, is
defined by:

This journal is © The Royal Society of Chemistry 20xx

r? (Xn»ml(n))

mingmyern) 72 (XnMiany)

9n = (9)

where rz(xn, m,(n)) is the squared Mahalanobis distance between
sample x, of class I(n) and the centre of its true class (m,(n)); and
rz(xn, m,(m)) is the squared Mahalanobis distance between object
X, and the centre of the closest incorrect class (m;(my)). The GA
routine was carried out using 100 generations containing 200
chromosomes each. Cross-over and mutation probabilities were set
to 60% and 1%, respectively. The algorithm was repeated three
times, starting from different random initial populations, and the
best solution in terms of fitness value was employed.

MCR-ALS. Multivariate curve resolution alternating least squares
(MCR-ALS) assumes a bilinear model that is the multi-wavelength
extension of the Beer-Lambert’'s law. It decomposes an
experimental matrix D into concentration and spectral profiles as
follows:31
D=CST+E (10)
where C is a matrix containing the concentration profiles for a
determined number of pure components in D; S is a matrix
containing the spectral profiles for the pure components in D; and
E is a residual matrix.

MCR-ALS can remove noise and physical/chemical interferences
from the spectral matrix D, and allow one to recover the pure
concentration and spectral profiles of the components that make
the spectral matrix D. MCR-ALS is very useful to handle image data
since it allows the reconstruction of image maps based on the
recovered concentration profiles, where one can identify spatial
and chemical differences between the samples being imaged.32

Model validation. The models were validated by calculating some
quality parameters such as accuracy, sensitivity, specificity, and F-
score. Accuracy represents the total number of samples correctly
classified considering true and false negatives; sensitivity represents
the proportion of positives that are correctly classified; specificity
represents the proportion of negatives that are correctly classified;
and, F-score measures the model performance considering
imbalanced data.33 The equations to calculate these parameters are

depicted in Table 1.

Table 1. Quality parameters for model validation. Where: TP stands
for true positive, TN for true negative, FP for false positive, and FN
for false negative.

Parameter Equation
9 TP + TN
Accuracy (%) ( ) % 100
TP + FP + TN + FN
Sensitivity (%) ( TP )
— %1
p+ Fn) <100
Specificity (%) ( TN )
T~ + Fp) = 100
F-score 2 X Sensitivity x Specificity

Sensitivity + Specificity

J. Name., 2013, 00, 1-3 | 3
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In addition, the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve was evaluated to assess model
quality. AUC values between 0.7 and 0.8 are considered acceptable,
between 0.8 and 0.9 are considered excellent, and above 0.9 are
considered outstanding.34

Results and discussion

Ninety brain tissue samples (66 meningiomas Grade |, 24
meningiomas Grade Il) were analysed by Raman
microspectroscopy imaging. The median microscopic and
Raman image for meningiomas Grade | and Grade Il are
depicted in Figures 1la—1d (the colour figures represent the
mean response (average Raman intensity between 780-1858
cml) of the median image for each group). Notably, each
image presents different visual features due to the different
distributions of chemicals on the sample surface, but their
spectrochemical profile are very similar as shown in Figure 1e
and 1f, indicating that chemical differences between
meningiomas Grade | and Grade Il are not visually clear.

The pre-processed spectra from the images acquired in the

a.

400
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300

Raman Intensity

250

5 10 15 20 25
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e. Raw spectra
300 Grade |
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2250
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=
QL
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200
150

800 1000 1200 1400 1600 1800

Raman shift (cm‘1)

Journal Name

spectral range between 780-1858 cm™ (Figure 1f) were used
for further analysis. This spectral region includes the Raman
fingerprint region, hence, encompassing spectrochemical
signals of the main biomolecules present in the tissue
samples.! The assignment of the main peaks of the pre-
processed Raman spectrum is depicted in Figure 1f. These
include C-C stretching [v(C-C);] in amino acids or
polysaccharides at 850 cm™1, C-C stretching [v(C-C),] in proteins
at 890 cm?, C-C stretching [v(C-C)s] in amino acids at 930 cm,
C-C stretching [v(C-C)s] in phenylalanine at 1003 cm,
phospholipid structural changes at 1130 cm-, Amide IIl peak at
1265 cm’l, CH, bending [6(CH3)1] in lipids at 1296 cm,
CH3/CH;, deformation modes in DNA/RNA at 1336 cm, CH;
bending [6(CH3)2] in malignant tissues at 1450 cm™, NH;
bending [6(NH3)] in cytosine at 1610 cm, and Amide |
absorption at 1665 cm'1.3> Some of these peaks are
discriminant features between the samples and some of them
are common amongst the tumour types. The identification of
relevant distinguishing spectral features between Grade | and
Grade Il samples are achieved by chemometric techniques.
Initially, outlier detection was performed by a Hotelling T2
versus Q residuals test, where 4 samples (2 meningiomas

d.
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g £
o 300 §
30 €
250 g
40 200
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f. Pre-processed spectra
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20 2=
= o
= S T
2 5
15} o
£ 10 <
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Figure 1. Median Raman miscrospectroscopy images. (a) Microscopic image of Grade | meningioma tissue; (b) microscopic image of Grade Il meningioma tissue; (c) median raw

image for meningioma Grade | samples; (d) median raw image for meningioma Grade Il samples; () median raw spectra for meningiomas Grade | and Grade II; (f) median pre-

processed spectra (Savitzky-Golay smoothing and asymmetric least squares baseline correction) for meningiomas with a tentative assignment of the main Raman peaks. Grade |

and Grade Il. Colour bar: Raman intensity. v: stretching vibration, &: bending.




Grade |, 2 meningiomas Grade |lI) were removed (see
Electronic Supplementary Information (ESI) Figure S1). First-
order algorithms were used to analyse the pre-processed
spectral data after outlier removal.

Feature extraction and classification by means of PCA-LDA,
PCA-QDA and PCA-SVM; and feature selection and
classification by means of SPA-LDA, SPA-QDA, SPA-SVM, GA-
LDA, GA-QDA and GA-SVM, were applied to distinguish
meningiomas Grades | and Il on sample basis. Amongst the
PCA-based algorithms (using 8 PCs, 98.94% explained variance,
see ESI Figure S2), the best performance was obtained with
PCA-QDA (96.2% accuracy, 85.7% sensitivity, 100% specificity,
and F-score = 92.3%). Also, SPA-QDA was the best algorithm
amongst SPA-based methods, with the same performance of
PCA-QDA. GA-based methods showed poorer
performance, where the best algorithm (GA-QDA) achieved
73.1% accuracy but 0% sensitivity, indicating that GA-based
models are most likely overfitted. More details about the
predictive performance of each of these algorithms are
provided in Table 2.

The ROC curve for PCA-QDA and SPA-QDA models are
shown in Figure 2, where the AUC value was found at 0.929
indicating an outstanding classification performance for both
algorithms.

overall

Table 2. Quality parameter for distinguishing Grade | and
Grade Il meningiomas in the test set.

Algorithm Accuracy Sensitivity Specificity F-score
PCA-LDA 46.2% 85.7% 31.6% 46.2%
PCA-QDA 96.2% 85.7% 100% 92.3%
PCA-SVM 61.6% 28.6% 73.7% 41.2%
SPA-LDA 57.7% 100% 42.1% 49.3%
SPA-QDA 96.2% 85.7% 100% 92.3%
SPA-SVM 34.6% 71.4% 21.1% 32.5%
GA-LDA 61.5% 57.1% 63.2% 60.0%
GA-QDA 73.1% 0% 100% 0%
GA-SVM 42.3% 42.9% 42.1% 42.5%

QDA-based algorithms exhibit superior performance in
comparison with LDA- and SVM-based methods. Usually, for
complex biological data, QDA outperforms LDA since QDA-
based algorithms model each class variance individually, while
LDA assumes classes having similar variance structures.?* This
occurs because the performance of QDA ultimately depends
on the variance structure of the data. QDA is expected to work
better than LDA for most biological applications, since quite

This journal is © The Royal Society of Chemistry 20xx

commonly biological samples are composed of complex
chemical matrices with different variances structures for each
class. For example, diseases’ samples can have a smaller
variance distribution than healthy control samples, since the
latter can be composed of individuals with different life habits,
while patients with a same specific disease usually have a
similar life-style. The same can occur with different tumour
grades, where one class can assume a different variance
distribution in comparison with the other. The only situation
where QDA underperforms LDA is when the number of
samples in the dataset is small,3® since the variance of each

] AUC =0.929
0.8}
=06}
=
.*0—_0‘
=
[}
D04
0.2F
0
0 0.2 0.4 0.6 0.8 1
1 - Spedcificity

Figure 2. Receiver operating characteristic (ROC) curve for PCA-QDA and SPA-QDA.
AUC: area under the curve.

group might not be totally covered by QDA hence increasing
the degree of extrapolation needed and commonly leading the
model to overfitting.

SVM-based models seem to be highly overfitted, since the
training performance for these algorithms are excellent (see
ESI Table S1), with near 100% correct classification rates;
however, test performance is highly affected as demonstrated
in Table 2. SVM classification performance would probably
improve by adding more samples to the training set, thus
creating a most representative training model. Nevertheless,
PCA-QDA and SPA-QDA performance are both excellent in the
test set, indicating that these algorithms are robust to provide
a satisfactory prediction towards external samples.

J. Name., 2013, 00, 1-3 | 5
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Figure 3. PCA loadings and SPA-QDA selected variables. (a) Difference-between-mean (DBM) spectrum (+ values: higher intensity in meningioma Grade | samples; - values: higher

intensity in meningioma Grade |l samples); (b) PCA loadings on PC1; (c) average training set spectrum and SPA-QDA selected variables (red circles) with their tentative assignment.

v: stretching vibration, &: bending.

The difference-between-mean (DBM) spectrum, PCA
loadings on PC1 (56.64% explained variance), and SPA-QDA
selected variables are shown in Figure 3. The PCA loadings
indicate higher coefficients at ~850 cm, ~1003 cm-l, ~1130
cml, ~1337 cm-1, ~1450 cm1, ~1665 cml, and ~1858 cm1;
and the SPA-QDA selected variables are: ¥850 cm™, ~1130 cm~
1, ~1245 cm, ~1337 cm, ~1450 cm?, and ~1858 cm-L. Only
the variable at 1245 cm-! selected by SPA-QDA does not have a
high PCA loadings, while the other variables selected by SPA-
QDA are very close or are a perfect match with the ones
observed in PCA-QDA. The list of PCA and SPA-QDA selected
variables and tentative assignment according to Movasaghi et
al.3> are shown in Table 3. The Raman shift at 1858 cm™ is
unknown based on this reference, but this wavenumber has
been associated to C=0 stretching in other literature.3” The
peak at around 850 cm! has been previously detected in
meningioma samples as belonging to tyrosine,3® an a-amino
acid that constitute important structures in proteins
responsible for signal transduction processes;3° and the peaks
at 1003 cm! (phenylalanine) and 1450 cm™ (CH, bending in
DNA) have also been reported as biomarkers of meningioma
tumours.3840 Phospholipids (1130 cm-), Amide IIl (1245 cm™1)
and Amide | (1665 cm) have been reported for brain tumours
in general.12.40

6 | J. Name., 2012, 00, 1-3

Table 3. Tentative assignment of PCA and SPA-QDA selected
variables to distinguish meningiomas Grade | and Grade Il
DBM: difference-between-mean spectrum, where 1
represents higher intensity in meningioma Grade | samples,
and ¢ represents higher intensity in meningioma Grade Il

samples.

Peak Algorithm Assignment DBM

850 cm? PCA/SPA-QDA Amino acids or M
polysaccharides

1003 cm™? PCA C-Cin phenylalanine ™

1130 cm™? PCA/SPA-QDA  Phospholipid N
structural changes

1245cm  SPA-QDA Amide Il ™

1337 cm™? PCA/SPA-QDA Amide 1l and CH, 71
wagging vibrations

1450 cm™? PCA/SPA-QDA  CH;bending T

1665 cm™! PCA Amide | ™

1858 cm-1  PCA/SPA-QDA C=0 stretching ™

MCR-ALS was employed to resolve the median Grade | and
Grade Il meningioma images in order to identify
spectrochemical changes associated with tumour
aggressiveness. MCR-ALS was performed with 4 components
selected by singular value decomposition (99.99% explained
variance, 0.21 lack of fit, non-negativity in concentration
mode). The recovered concentration and spectral profiles of
the 4 components are depicted in the ESI Figure S3. The 1st
component of MCR-ALS was found to be associated with
Grade |l appearance (Figure 4a), once it is clearly present in

This journal is © The Royal Society of Chemistry 20xx
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the Grade Il tissue sample. The spectral profile of the 1st
component (Sopt 1) indicates distinguishing features at the
region between 1230 cm and 1360 cm™ in comparison with
the spectral profiles for other components (see ESI Figure S3),
where three peaks (1265 cm1, 1296 cm™ and 1336 cm) are
presents. These peaks are associated with Amide Ill, CH;
deformation in lipids, and CH,/CHs twisting in polynucleotide
chains, respectively.3®> This region encompasses the
wavenumber at 1337 cm (amide Ill and CH, wagging
vibrations) in Table 3. Similarly to Figure 1f, the peaks at 850
cm™ [v(C-C);, amino acids or polysaccharides], 890 cm [v(C-
C),, proteins], 930 cm™ [v(C-C)s;, amino acids], 1003 cm™! [v(C-
C)s, phenylalanine], 1130 cm™ (phospholipids), 1265 cm
(Amide 111), 1296 cm™ [8(CH,)s, lipids], 1336 cm [6(CHs/CH2),
DNA/RNA], 1450 cm! [§(CH3),, malignant tissue], and 1665 cm-
1 (Amide 1) are also present. In addition, other peaks at 1060
cm™ [v(POy’), DNA/RNA], 1100 cm [v(C-C)s, lipids], and a small
arm at 1459 cm [8(CH,)s, deoxyribose]3> are observed as
distinguishing features in the MCR-ALS Sopt 1 profile.

a. 290.58
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=
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c
o
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= 2
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Figure 4. MCR-ALS results. (a) Recovered image using the MCR-ALS concentration
profile for the 15t component; (b) MCR-ALS spectral profile for the 15t component with
its tentative spectral markers assignment. Colour bar: relative concentration.

Bury et al.’> have recently used Raman spectroscopy to
discriminate meningioma Grade | brain tissue among different
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brain pathologies (low-grade glioma, high-grade glioma,
metastasis, lymphoma, and no-tumour) with 94.8% accuracy,
63.9% sensitivity and 97.1% specificity using PCA-LDA with
smear-based samples; and, meningioma Grade | brain tissue
among low-grade glioma, high-grade glioma, metastasis and
lymphoma with 90.8% accuracy, 91.7% sensitivity and 90.8%
specificity using PCA-LDA with FFPE samples. Mehta et al.3®
have recently used Raman spectroscopy to discriminate
healthy controls and meningioma patients based on serum
using PCA-LDA. Seventy patients (35 controls, 35
meningiomas) were analysed, resulting in 70% accuracy to
distinguish meningiomas versus controls in an independent
test set; 72% accuracy to distinguish meningiomas Grade |
versus controls; and 80% accuracy to distinguish meningiomas
Grade Il versus controls. The results reported herein (96.2%
accuracy, 85.7% sensitivity, 100% specificity) are very
promising to distinguish meningioma tissue grades, which is
critical to delineate patient treatment; and also evidences the
potential of Raman spectroscopy to investigate brain tumour
tissues.

Conclusion

Ninety meningioma brain tissue samples (66 meningiomas
Grade |, 24 meningiomas Grade IlI) were investigated using
Raman microscpectroscopy imaging. Several chemometric
algorithms were applied to distinguish the samples according
to the tumour grade, where PCA-QDA and SPA-QDA were
found to have to best classification performance at 96.2%
accuracy, 85.7% sensitivity and 100% specificity (AUC = 0.929).
Spectral bio-markers at 850 cm1, 1130 cm-, 1337 cm1, 1450
cm® and 1858 cm'! were found in common using both PCA-
QDA and SPA-QDA, and a further analysis using MCR-ALS
indicated distinguishing features at the region between 1230 —
1360 cm! associated with increases in the WHO meningioma
tumour grade. The classification results found by PCA-QDA and
SPA-QDA are very promising, and show the potential of Raman
microspectroscopy to distinguish meningioma tissue grades,
thus aiding clinicians to delineate patient treatment.
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