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Determination of meningioma brain tumour grades using Raman 
microspectroscopy imaging 

Camilo L. M. Morais,*a Taha Lilo,a,b Katherine M. Ashton,c Charles Davis,a Timothy P. Dawson,c 
Nihal Gurusingheb and Francis L. Martin*a 

Raman spectroscopy is a powerful technique used to analyse biological materials, where spectral markers such as proteins 

(1500-1700 cm-1), carbohydrates (470-1200 cm-1) and phosphate groups of DNA (980, 1080-1240 cm-1) can be detected in a 

complex biological medium. Herein, Raman microspectroscopy imaging was used to investigate 90 brain tissue samples in 

order to differentiate meningioma Grade I and Grade II samples, which are the commonest types of brain tumour.  Several 

classification algorithms using feature extraction and selection methods were tested, in which the best classification 

performances were achieved by principal component analysis-quadratic discriminant analysis (PCA-QDA) and successive 

projections algorithm-quadratic discriminant analysis (SPA-QDA), resulting in accuracies of 96.2%, sensitivities of 85.7% 

and specificities of 100% using both methods. A biochemical profiling in terms of spectral markers was investigated using 

the difference-between-mean (DBM) spectrum, PCA loadings, SPA-QDA selected wavenumbers, and the recovered 

imaging profiles after multivariate curve resolution alternating least squares (MCR-ALS), where the following 

wavenumbers were found to be associated with class differentiation: 850 cm-1 (amino acids or polysaccharides), 1130 cm-1 

(phospholipid structural changes), the region between 1230 – 1360 cm-1 (Amide III and CH2 deformation), 1450 cm-1 (CH2 

bending), and 1858 cm-1 (C=O stretching). These findings highlight the potential of Raman microspectroscopy imaging for 

determination of meningioma tumour grades. 

Introduction 

Raman spectroscopy provides sensitive spectrochemical 

signatures of materials based on their molecular polarisability 

changes.1 Raman is based on an inelastic scattering 

phenomenon that occurs in less than 1% of the absorbed 

photons by a molecule. This inelastic scattering is composed of 

Stokes and anti-Stokes scattering: the former occurs when the 

molecule emits a photon with less energy than the absorbed 

incoming radiation, and the latter happens when the molecule 

emits a photon with higher energy than the absorbed 

incoming radiation.2 At room temperature, the Stokes 

scattering is more frequent, thus most instruments filter the 

elastic and anti-Stokes scattering and record the Stokes 

scattering signal as the final Raman spectrum. 

Microspectroscopy Raman imaging allows one to obtain 

microscopically spatially distributed spectral data, where each 

position in the image is composed of a Raman spectrum in a specific 

wavenumber range. The hyperspectral image data are represented 

by three-dimensional (3D) arrays, where the spatial coordinates are 

present in the x- and y-axis while the spectral information is in the 

z-axis. A major advantage of Raman imaging is that it can be non-

destructive depending on the incident laser frequency, has 

minimum water interference, and has a relatively low cost in 

comparison with other analytical techniques. 

Raman imaging has been used in a wide range of applications, 

including pharmaceutical analysis,3 forensic investigations,4 food 

quality control,5 and to analyse biological materials.6 In the latter, 

cancer detection plays an important role, where Raman imaging has 

been successfully applied to investigate breast,7 cervical,8 lung,8 

skin,9 ovarian,10 and brain cancer.11 

Most of brain cancers are gliomas or meningioma tumours.12 

Gliomas are more aggressive types of tumours and have been 

widely investigated using Raman spectroscopy,12-15 while 

meningiomas remain to be intensively investigated using vibrational 

spectroscopy. Meningiomas represent 20% to 35% of all primary 

intracranial tumours.16 The majority of them occur in a 

supratentorial location; however, a few of them can arise in the 

posterior cranial fossa and, more rarely, as extracranial 

meningiomas.16 It usually manifests as single or sporadic lesions, 

causing symptoms such as sensory and motor deficits and gait 

disturbance; while multiple meningiomas are often associated with 

neurofibromatosis type II.17 Meningiomas can be divided into WHO 

Grade I, Grade II and Grade III. Grade I meningiomas are the 

commonest type of tumours, with slower growth and lower 
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likelihood of recurrence; Grade II meningiomas also have a slower 

growth but higher likelihood of recurrence; and Grade III 

meningiomas are a very rare type of tumour with fast growing rate 

and much higher likelihood of recurrence. Surgical outcomes and 

treatment are dependent on the meningioma grade and histological 

subtypes.17 

In this paper, Raman microspectroscopy imaging is applied to 

distinguish Grade I and Grade II meningiomas via the application of 

several chemometric approaches, including combination of feature 

extraction and selection methods with discriminant analysis 

techniques, and multivariate curve resolution alternating least 

squares (MCR-ALS) for profiling and differentiation of Grade I and 

Grade II tumour tissues. 

Materials and methods 

Samples 

Ninety brain tissue samples (66 meningiomas WHO Grade I, 24 

meningiomas WHO Grade II) were analysed by a Renishaw InVia 

Basis Raman spectrometer coupled to a confocal microscope 

(Renishaw plc, UK). All samples were sourced from the Brain 

Tumour North West (BTNW) biobank (NRES14/EE/1270). All 

experiments were performed in accordance with the STEMH 

(Science, Technology, Engineering, Medicine and Health) Guidelines 

at the University of Central Lancashire, and approved by the ethics 

committee at the University of Central Lancashire (STEMH 917). 

Informed consents were obtained from human participants of this 

study. Formalin-fixed paraffin-embedded (FFPE) tissue specimens 

(10-μm-thick) were placed onto aluminium-covered glass slides for 

spectroscopy measurement. Microspectroscopy imaging was 

performed with an acquisition area of approx. 100 x 50 μm (50× 

magnification, 785 nm laser, 50% laser power (150 mW), 0.1 s 

exposure time, 780–1858 cm-1 spectral range) using the 

StreamHRTM imaging technique (high-confocality mode) with a grid 

area of 42 x 28 pixels, resulting in 1176 spectra for each image (1 

cm-1 data spacing). The laser power was set relatively high to ensure 

a good signal-to-noise ratio. To minimize any potential 

photodamage to the sample, the laser exposure time was set to 

only 0.1 s. Moreover, no damage was visually observed in the 

samples after measurement. The imaging acquisition time was 

approx. 8 min for each sample. 

 

Computational analysis 

The Raman images were converted into suitable .txt files using the 

Renishaw WiRE software, and processed using MATLAB R2014b 

(MathWorks, Inc., USA) with lab-made routines. All the samples’ 

images were pre-processed by cosmic rays (spikes) removal, 

Savitzky-Golay smoothing (window of 15 points, 2nd order 

polynomial fitting), and asymmetric least squares baseline 

correction. The window size in the Savitzky-Golay smoothing was 

determined visually by testing different window sizes, where the 

smallest window size that removed random noise and kept the 

same spectral shape and intensity without smoothing-out relevant 

spectral peaks was chosen. MCR-ALS was applied to the image data 

using the HYPER-Tools toolbox in MATLAB.18  

 

First-order classification. Each pre-processed image with size 42 x 

28 x 1015 was averaged into a single spectrum (1 x 1015) as the 

classification was performed on a sample basis. Initially, an outlier 

detection test was performed by a Hotelling T2 versus Q residuals 

test.19 The remaining samples after outlier removal were split into 

training (60%), validation (20%) and test (20%) sets using the MLM 

sample selection algorithm.20,21 All data were mean-centred before 

further analysis. 

 For feature extraction and classification, principal component 

analysis combined with linear discriminant analysis (PCA-LDA), 

quadratic discriminant analysis (PCA-QDA) and support vector 

machines (PCA-SVM) were applied to the pre-processed data. PCA 

reduces the pre-processed spectral variables to a small number of 

principal components (PCs) responsible for the majority of the 

original data-explained variance. Each PC is orthogonal to each 

other and is generated in a decreasing order of explained variance, 

where the first PC explains most of the data variance, followed by 

the second PC, and so on. The PCs are composed of scores and 

loadings, the scores representing the variance on the sample 

direction, thus being used to identify similarities and dissimilarities 

between the samples; and, the loadings represent the variance on 

the wavenumber direction, being used to identify possible spectral 

markers associated with class differentiation.22 PCA decomposition 

takes the form:22 

 

𝐗 = 𝐓𝐏T + 𝐄              (1) 

 

where 𝐗 is a matrix containing the mean-centred pre-processed 

spectral data; 𝐓 is a matrix containing the PCA scores for a 

determined number of PCs; 𝐏 is a matrix containing the PCA 

loadings for a determined number of PCs; 𝐄 is a residual matrix; and 

the superscript T represents the matrix transpose operation. 

 In PCA-LDA, PCA-QDA and PCA-SVM, a PCA model is applied to 

the pre-processed data and then a LDA, QDA or SVM classifier is 

applied to the PCA scores, respectively. LDA and QDA are 

discriminant analysis methods based on a Mahalanobis distance 

calculation. LDA assumes classes having similar variance structures, 

therefore using a pooled covariance matrix to calculate the 

classification score for each class, while QDA assumes classes having 

different variance structures, therefore using the variance-

covariance matrix for each class individually when calculating the 

classification score.23,24 The LDA (𝐿𝑖𝑘) and QDA (𝑄𝑖𝑘) classification 

scores can be calculated in a non-Bayesian form by: 23,24 

 

𝐿𝑖𝑘 = (𝐱𝑖 − 𝐱̅𝑘)
T𝐂pooled

−1 (𝐱𝑖 − 𝐱̅𝑘)        (2) 

𝑄𝑖𝑘 = (𝐱𝑖 − 𝐱̅𝑘)
T𝐂𝑘

−1(𝐱𝑖 − 𝐱̅𝑘)         (3) 

 

where 𝐱𝑖  is a vector containing the input classification variables 

(e.g., PCA scores) for sample 𝑖; 𝐱̅𝑘  is the mean vector of input 

classification variables for class 𝑘; 𝐂pooled is the pooled covariance 



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3  

Please do not adjust margins 

Please do not adjust margins 

matrix; and 𝐂𝑘  is the variance-covariance matrix of class 𝑘. 𝐂pooled 

and 𝐂𝒌 are calculated as follows:24 

 

𝐂pooled =
1

𝑛
∑ 𝑛𝑘𝐂𝑘
𝐾
𝑘=1            (4) 

𝐂𝑘 =
1

𝑛𝑘−1
∑ (𝐱𝑖 − 𝐱̅𝑘)(𝐱𝑖 − 𝐱̅𝑘)

T𝑛𝑘
𝑖=1         (5) 

 

in which 𝑛 is the total number of samples in the training set; 𝐾 is 

the total number of classes; and 𝑛𝑘 is the number of samples in 

class 𝑘.  

 SVM is a binary linear classifier with a non-linear step called the 

kernel transformation.25 A kernel function transforms the input 

data space into a feature space by a applying a mathematical 

transformation which is often non-linear. Then, a linear decision 

boundary is fit between the closest samples to the border of each 

class (called support vectors), where each class is defined. SVM 

classification is performed as follows:25,26 

 

𝑓(𝑥) = sign(∑ 𝛼𝑖𝑦𝑖𝛟(𝐱𝑖 , 𝐳𝑗) + 𝑏
𝑁𝑆𝑉

𝑖=1 )        (6) 

 

where 𝐱𝑖  and 𝐳𝑗  are vectors containing sample measurement 

vectors (e.g., PCA scores);  𝑁𝑆𝑉 is the number of support vectors; 𝜶𝒊 

is the Lagrange multiplier for sample 𝑖; 𝑦𝑖 is the class membership 

of sample 𝑖 (±1); 𝛟(𝐱𝑖 , 𝐳𝑗) is the kernel function; and 𝑏 is the bias 

parameter.  

 SVM was performed using a radial basis function (RBF) kernel, 

which is defined by:26 

 

𝛟(𝐱𝑖 , 𝐳𝑗) = 𝐞𝐱𝐩 (−𝛾‖𝐱𝑖 − 𝐳𝑗‖
2
)         (7) 

 

where 𝛾 is the kernel parameter that determines the RBF width. 

Cross-validation venetian blinds with 10 data splits was performed 

to optimise the bias and kernel parameter. 

 Some feature selection techniques were used to analyse the 

image spectral data. Successive projections algorithm (SPA)27 and 

genetic algorithm (GA)28 were used coupled with LDA, QDA and 

SVM. SPA is a forward feature selection method which operates by 

minimising the co-linearity of original pre-processed spectra; thus, 

selecting wavenumbers whose information content is minimally 

redundant.29 GA is an iterative algorithm inspired by Mendelian 

genetics, where the pre-processed spectral data is reduced to a set 

of selected wavenumbers based on an evolutionary process.28 For 

this, a set of variables is randomly chosen to go through 

combinations, cross-overs and mutations until the best set of 

variables reaches the minimum of a pre-defined cost function.2,28 

The optimum number of variables for SPA and GA is obtained by 

minimizing the average risk 𝐺 of misclassification in the validation 

set:29,30 

 

𝐺 =
1

𝑁𝑉

∑ 𝑔𝑛
𝑁𝑉
𝑛=1              (8) 

 

where 𝑁𝑉 is the number of samples in the validation set and 𝑔𝑛 is 

defined by: 

 

𝑔𝑛 =
𝑟2(x𝑛,𝑚𝐼(𝑛))

min𝐼(𝑚)≠𝐼(𝑛) 𝑟
2(x𝑛,𝑚𝐼(𝑚))

          (9) 

 

where 𝑟2(x𝑛, 𝑚𝐼(𝑛)) is the squared Mahalanobis distance between 

sample x𝑛 of class 𝐼(𝑛) and the centre of its true class (𝑚𝐼(𝑛)); and 

𝑟2(x𝑛, 𝑚𝐼(𝑚)) is the squared Mahalanobis distance between object 

x𝑛 and the centre of the closest incorrect class (𝑚𝐼(𝑚)). The GA 

routine was carried out using 100 generations containing 200 

chromosomes each. Cross-over and mutation probabilities were set 

to 60% and 1%, respectively. The algorithm was repeated three 

times, starting from different random initial populations, and the 

best solution in terms of fitness value was employed. 

MCR-ALS. Multivariate curve resolution alternating least squares 

(MCR-ALS) assumes a bilinear model that is the multi-wavelength 

extension of the Beer-Lambert’s law. It decomposes an 

experimental matrix 𝐃 into concentration and spectral profiles as 

follows:31 

 

𝐃 = 𝐂𝐒T + 𝐄              (10) 

 

where 𝐂 is a matrix containing the concentration profiles for a 

determined number of pure components in 𝐃; 𝐒 is a matrix 

containing the spectral profiles for the pure components in 𝐃; and 

𝐄 is a residual matrix. 

 MCR-ALS can remove noise and physical/chemical interferences 

from the spectral matrix 𝐃, and allow one to recover the pure 

concentration and spectral profiles of the components that make 

the spectral matrix 𝐃. MCR-ALS is very useful to handle image data 

since it allows the reconstruction of image maps based on the 

recovered concentration profiles, where one can identify spatial 

and chemical differences between the samples being imaged.32 

 

Model validation. The models were validated by calculating some 

quality parameters such as accuracy, sensitivity, specificity, and F-

score. Accuracy represents the total number of samples correctly 

classified considering true and false negatives; sensitivity represents 

the proportion of positives that are correctly classified; specificity 

represents the proportion of negatives that are correctly classified; 

and, F-score measures the model performance considering 

imbalanced data.33 The equations to calculate these parameters are 

depicted in Table 1. 

 

Table 1. Quality parameters for model validation. Where: TP stands 

for true positive, TN for true negative, FP for false positive, and FN 

for false negative. 

Parameter Equation 

Accuracy (%) 
(

TP + TN

TP + FP + TN + FN
) × 100 

Sensitivity (%) 
(

TP

TP + FN
) × 100 

Specificity (%) 
(

TN

TN + FP
) × 100 

F-score 2 × Sensitivity × Specificity

Sensitivity + Specificity
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 In addition, the area under the curve (AUC) of the receiver 

operating characteristic (ROC) curve was evaluated to assess model 

quality. AUC values between 0.7 and 0.8 are considered acceptable, 

between 0.8 and 0.9 are considered excellent, and above 0.9 are 

considered outstanding.34 

Results and discussion 

Ninety brain tissue samples (66 meningiomas Grade I, 24 

meningiomas Grade II) were analysed by Raman 

microspectroscopy imaging. The median microscopic and 

Raman image for meningiomas Grade I and Grade II are 

depicted in Figures 1a–1d (the colour figures represent the 

mean response (average Raman intensity between 780–1858 

cm-1) of the median image for each group). Notably, each 

image presents different visual features due to the different 

distributions of chemicals on the sample surface, but their 

spectrochemical profile are very similar as shown in Figure 1e 

and 1f, indicating that chemical differences between 

meningiomas Grade I and Grade II are not visually clear.  

 The pre-processed spectra from the images acquired in the 

spectral range between 780–1858 cm-1 (Figure 1f) were used 

for further analysis. This spectral region includes the Raman 

fingerprint region, hence, encompassing spectrochemical 

signals of the main biomolecules present in the tissue 

samples.1 The assignment of the main peaks of the pre-

processed Raman spectrum is depicted in Figure 1f. These 

include C-C stretching [ν(C-C)1] in amino acids or 

polysaccharides at 850 cm-1, C-C stretching [ν(C-C)2] in proteins 

at 890 cm-1, C-C stretching [ν(C-C)3] in amino acids at 930 cm-1, 

C-C stretching [ν(C-C)4] in phenylalanine at 1003 cm-1, 

phospholipid structural changes at 1130 cm-1, Amide III peak at 

1265 cm-1, CH2 bending [δ(CH2)1] in lipids at 1296 cm-1, 

CH3/CH2 deformation modes in DNA/RNA at 1336 cm-1, CH2 

bending [δ(CH2)2] in malignant tissues at 1450 cm-1, NH2 

bending [δ(NH2)] in cytosine at 1610 cm-1, and Amide I 

absorption at 1665 cm-1.35 Some of these peaks are 

discriminant features between the samples and some of them 

are common amongst the tumour types. The identification of 

relevant distinguishing spectral features between Grade I and 

Grade II samples are achieved by chemometric techniques. 

Initially, outlier detection was performed by a Hotelling T2 

versus Q residuals test, where 4 samples (2 meningiomas 
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Figure 1. Median Raman miscrospectroscopy images. (a) Microscopic image of Grade I meningioma tissue; (b) microscopic image of Grade II  meningioma tissue; (c) median raw 

image for meningioma Grade I samples; (d) median raw image for meningioma Grade II samples; (e) median raw spectra for meningiomas Grade I and Grade II; (f) median pre-

processed spectra (Savitzky-Golay smoothing and asymmetric least squares baseline correction) for meningiomas with a tentative assignment of the main Raman peaks. Grade I 

and Grade II. Colour bar: Raman intensity. ν: stretching vibration, δ: bending.  
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Grade I, 2 meningiomas Grade II) were removed (see 

Electronic Supplementary Information (ESI) Figure S1). First-

order algorithms were used to analyse the pre-processed 

spectral data after outlier removal. 

 Feature extraction and classification by means of PCA-LDA, 

PCA-QDA and PCA-SVM; and feature selection and 

classification by means of SPA-LDA, SPA-QDA, SPA-SVM, GA-

LDA, GA-QDA and GA-SVM, were applied to distinguish 

meningiomas Grades I and II on sample basis. Amongst the 

PCA-based algorithms (using 8 PCs, 98.94% explained variance, 

see ESI Figure S2), the best performance was obtained with 

PCA-QDA (96.2% accuracy, 85.7% sensitivity, 100% specificity, 

and F-score = 92.3%). Also, SPA-QDA was the best algorithm 

amongst SPA-based methods, with the same performance of 

PCA-QDA. GA-based methods showed overall poorer 

performance, where the best algorithm (GA-QDA) achieved 

73.1% accuracy but 0% sensitivity, indicating that GA-based 

models are most likely overfitted. More details about the 

predictive performance of each of these algorithms are 

provided in Table 2. 

 The ROC curve for PCA-QDA and SPA-QDA models are 

shown in Figure 2, where the AUC value was found at 0.929 

indicating an outstanding classification performance for both 

algorithms. 

 

Table 2. Quality parameter for distinguishing Grade I and 

Grade II meningiomas in the test set. 

Algorithm Accuracy Sensitivity Specificity F-score 

PCA-LDA 46.2% 85.7% 31.6% 46.2% 

PCA-QDA 96.2% 85.7% 100% 92.3% 

PCA-SVM 61.6% 28.6% 73.7% 41.2% 

SPA-LDA 57.7% 100% 42.1% 49.3% 

SPA-QDA 96.2% 85.7% 100% 92.3% 

SPA-SVM 34.6% 71.4% 21.1% 32.5% 

GA-LDA 61.5% 57.1% 63.2% 60.0% 

GA-QDA 73.1% 0% 100% 0% 

GA-SVM 42.3% 42.9% 42.1% 42.5% 

 

 QDA-based algorithms exhibit superior performance in 

comparison with LDA- and SVM-based methods. Usually, for 

complex biological data, QDA outperforms LDA since QDA-

based algorithms model each class variance individually, while 

LDA assumes classes having similar variance structures.24 This 

occurs because the performance of QDA ultimately depends 

on the variance structure of the data. QDA is expected to work 

better than LDA for most biological applications, since quite 

commonly biological samples are composed of complex 

chemical matrices with different variances structures for each 

class. For example, diseases’ samples can have a smaller 

variance distribution than healthy control samples, since the 

latter can be composed of individuals with different life habits, 

while patients with a same specific disease usually have a 

similar life-style. The same can occur with different tumour 

grades, where one class can assume a different variance 

distribution in comparison with the other. The only situation 

where QDA underperforms LDA is when the number of 

samples in the dataset is small,36 since the variance of each 

group might not be totally covered by QDA hence increasing 

the degree of extrapolation needed and commonly leading the 

model to overfitting. 

SVM-based models seem to be highly overfitted, since the 

training performance for these algorithms are excellent (see 

ESI Table S1), with near 100% correct classification rates; 

however, test performance is highly affected as demonstrated 

in Table 2. SVM classification performance would probably 

improve by adding more samples to the training set, thus 

creating a most representative training model. Nevertheless, 

PCA-QDA and SPA-QDA performance are both excellent in the 

test set, indicating that these algorithms are robust to provide 

a satisfactory prediction towards external samples. 

Figure 2. Receiver operating characteristic (ROC) curve for PCA-QDA and SPA-QDA. 

AUC: area under the curve.
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 The difference-between-mean (DBM) spectrum, PCA 

loadings on PC1 (56.64% explained variance), and SPA-QDA 

selected variables are shown in Figure 3. The PCA loadings 

indicate higher coefficients at ~850 cm-1, ~1003 cm-1, ~1130 

cm-1, ~1337 cm-1, ~1450 cm-1,  ~1665 cm-1, and ~1858 cm-1; 

and the SPA-QDA selected variables are: ~850 cm-1, ~1130 cm-

1, ~1245 cm-1, ~1337 cm-1, ~1450 cm-1, and ~1858 cm-1. Only 

the variable at 1245 cm-1 selected by SPA-QDA does not have a 

high PCA loadings, while the other variables selected by SPA-

QDA are very close or are a perfect match with the ones 

observed in PCA-QDA. The list of PCA and SPA-QDA selected 

variables and tentative assignment according to Movasaghi et 

al.35 are shown in Table 3. The Raman shift at 1858 cm-1 is 

unknown based on this reference, but this wavenumber has 

been associated to C=O stretching in other literature.37 The 

peak at around 850 cm-1 has been previously detected in 

meningioma samples as belonging to tyrosine,38 an α-amino 

acid that constitute important structures in proteins 

responsible for signal transduction processes;39 and the peaks 

at 1003 cm-1 (phenylalanine) and 1450 cm-1 (CH2 bending in 

DNA) have also been reported as biomarkers of meningioma 

tumours.38,40 Phospholipids (1130 cm-1), Amide III (1245 cm-1) 

and Amide I (1665 cm-1) have been reported for brain tumours 

in general.12,40  

 

 

 

 

 

Table 3. Tentative assignment of PCA and SPA-QDA selected 

variables to distinguish meningiomas Grade I and Grade II. 

DBM: difference-between-mean spectrum, where ↑ 

represents higher intensity in meningioma Grade I samples, 

and ↓ represents higher intensity in meningioma Grade II 

samples. 

Peak Algorithm Assignment DBM 

850 cm-1 PCA/SPA-QDA Amino acids or 

polysaccharides 

↑ 

1003 cm-1 PCA C-C in phenylalanine ↑ 

1130 cm-1 PCA/SPA-QDA Phospholipid 

structural changes 

↓ 

1245 cm-1 SPA-QDA Amide III ↑ 

1337 cm-1 PCA/SPA-QDA Amide III and CH2 

wagging vibrations 

↑ 

1450 cm-1 PCA/SPA-QDA CH2 bending ↑ 

1665 cm-1 PCA Amide I ↑ 

1858 cm-1 PCA/SPA-QDA C=O stretching ↑ 

  

MCR-ALS was employed to resolve the median Grade I and 

Grade II meningioma images in order to identify 

spectrochemical changes associated with tumour 

aggressiveness. MCR-ALS was performed with 4 components 

selected by singular value decomposition (99.99% explained 

variance, 0.21 lack of fit, non-negativity in concentration 

mode). The recovered concentration and spectral profiles of 

the 4 components are depicted in the ESI Figure S3. The 1st 

component of MCR-ALS was found to be associated with 

Grade II appearance (Figure 4a), once it is clearly present in 

a.

b.

c. ν(C-C)
amino acids/

polysaccharides

Phospholipid 
structural 
changes

Amide III

Amide III / 
CH2 wagging

δ(CH2)

v(C=O)

Figure 3. PCA loadings and SPA-QDA selected variables. (a) Difference-between-mean (DBM) spectrum (+ values: higher intensity in meningioma Grade I samples; - values: higher 

intensity in meningioma Grade II samples); (b) PCA loadings on PC1; (c) average training set spectrum and SPA-QDA selected variables (red circles) with their tentative assignment. 

ν: stretching vibration, δ: bending.  
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the Grade II tissue sample. The spectral profile of the 1st 

component (Sopt 1) indicates distinguishing features at the 

region between 1230 cm-1 and 1360 cm-1 in comparison with 

the spectral profiles for other components (see ESI Figure S3), 

where three peaks (1265 cm-1, 1296 cm-1 and 1336 cm-1) are 

presents. These peaks are associated with Amide III, CH2 

deformation in lipids, and CH2/CH3 twisting in polynucleotide 

chains, respectively.35 This region encompasses the 

wavenumber at 1337 cm-1 (amide III and CH2 wagging 

vibrations) in Table 3. Similarly to Figure 1f, the peaks at 850 

cm-1 [ν(C-C)1, amino acids or polysaccharides], 890 cm-1 [ν(C-

C)2, proteins], 930 cm-1 [ν(C-C)3, amino acids], 1003 cm-1 [ν(C-

C)4, phenylalanine], 1130 cm-1 (phospholipids), 1265 cm-1 

(Amide III),  1296 cm-1 [δ(CH2)1, lipids], 1336 cm-1 [δ(CH3/CH2), 

DNA/RNA], 1450 cm-1 [δ(CH2)2, malignant tissue], and 1665 cm-

1 (Amide I) are also present. In addition, other peaks at 1060 

cm-1 [ν(PO2
-), DNA/RNA], 1100 cm-1 [ν(C-C)5, lipids], and a small 

arm at 1459 cm-1 [δ(CH2)3, deoxyribose]35 are observed as 

distinguishing features in the MCR-ALS Sopt 1 profile. 

 Bury et al.15 have recently used Raman spectroscopy to 

discriminate meningioma Grade I brain tissue among different 

brain pathologies (low-grade glioma, high-grade glioma, 

metastasis, lymphoma, and no-tumour) with 94.8% accuracy, 

63.9% sensitivity and 97.1% specificity using PCA-LDA with 

smear-based samples; and, meningioma Grade I brain tissue 

among low-grade glioma, high-grade glioma, metastasis and 

lymphoma with 90.8% accuracy, 91.7% sensitivity and 90.8% 

specificity using PCA-LDA with FFPE samples. Mehta et al.38 

have recently used Raman spectroscopy to discriminate 

healthy controls and meningioma patients based on serum 

using PCA-LDA. Seventy patients (35 controls, 35 

meningiomas) were analysed, resulting in 70% accuracy to 

distinguish meningiomas versus controls in an independent 

test set; 72% accuracy to distinguish meningiomas Grade I 

versus controls; and 80% accuracy to distinguish meningiomas 

Grade II versus controls. The results reported herein (96.2% 

accuracy, 85.7% sensitivity, 100% specificity) are very 

promising to distinguish meningioma tissue grades, which is 

critical to delineate patient treatment; and also evidences the 

potential of Raman spectroscopy to investigate brain tumour 

tissues. 

 

Conclusion 

Ninety meningioma brain tissue samples (66 meningiomas 

Grade I, 24 meningiomas Grade II) were investigated using 

Raman microscpectroscopy imaging. Several chemometric 

algorithms were applied to distinguish the samples according 

to the tumour grade, where PCA-QDA and SPA-QDA were 

found to have to best classification performance at 96.2% 

accuracy, 85.7% sensitivity and 100% specificity (AUC = 0.929). 

Spectral bio-markers at 850 cm-1, 1130 cm-1, 1337 cm-1, 1450 

cm-1 and 1858 cm-1 were found in common using both PCA-

QDA and SPA-QDA, and a further analysis using MCR-ALS 

indicated distinguishing features at the region between 1230 – 

1360 cm-1 associated with increases in the WHO meningioma 

tumour grade. The classification results found by PCA-QDA and 

SPA-QDA are very promising, and show the potential of Raman 

microspectroscopy to distinguish meningioma tissue grades, 

thus aiding clinicians to delineate patient treatment. 
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