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ABSTRACT 

Linearized esculentin 2 EM (E2EM-lin) from the frog, Glandirana emeljanovi was 

highly active against Gram-positive bacteria (minimum lethal concentration ≤ 5.0 μM) and 

strongly α-helical in the presence of lipid mimics of their membranes (> 55.0 %). The N-

terminal α-helical structure adopted by E2EM-lin showed the potential to form a membrane 

interactive, tilted peptide with an hydrophobicity gradient over residues 9 to 23. E2EM-lin 

inserted strongly into lipid mimics of membranes from Gram-positive bacteria (maximal 

surface pressure changes ≥ 5.5 mN m-1), inducing increased rigidity (Cs-1 ↑), thermodynamic 

instability (ΔGmix < 0 → ΔGmix > 0) and high levels of lysis (> 50.0%). These effects appeared 

to be driven by the high anionic lipid content of membranes from Gram-positive bacteria; 

namely phosphatidylglycerol (PG) and cardiolipin (CL) species. The high levels of α-helicity 

(60.0%), interaction (maximal surface pressure change = 6.7 mN m-1) and lysis (66.0%) shown 

by E2EM-lin with PG species was a major driver in the ability of the peptide to lyse and kill 

Gram-positive bacteria. E2EM-lin also showed high levels of α-helicity (62.0%) with CL 

species but only low levels of interaction (maximal surface pressure change = 2.9 mN m-1) and 

lysis (21.0%) with the lipid. These combined data suggest that E2EM-lin has a specificity for 

killing Gram-positive bacteria that involves the formation of tilted structure and appears to be 

primarily driven by PG-mediated membranolysis. These structure / function relationships are 

used to help explain the pore forming process proposed to describe the membranolytic, 

antibacterial action of E2EM-lin. 

 

Highlights 

• E2EM-lin shows specificity and potent efficacy towards Gram-positive bacteria 

• PG-driven membranolysis promotes E2EM-lin action against Gram-positive bacteria 

• PE-driven membranolysis promotes E2EM-lin action against Gram-negative bacteria  

• CL-mediated mechanisms contribute to E2EM-lin action against both bacterial types  

  



Biochimica et Biophysica Acta (BBA) – Biomembranes Volume 1862, Issue 2, 1 February 2020, 
183141: https://doi.org/10.1016/j.bbamem.2019.183141 
 
 

3 

 

1. INTRODUCTION 

The occurrence of microorganisms with multiple drug resistance (MDR) coupled to the 

declining number of novel antimicrobial agents in the research pipeline is threatening a return 

to the pre-antibiotic era [1]. In response, the therapeutic development of antimicrobial peptides 

(AMPs) has been proposed as a potential solution to this problem [2] and the richest source of 

these peptides is the skin of amphibians [3, 4]. AMPs from frogs were the first to be 

commercially developed for clinical use [5], and currently, peptides from a wide variety of 

frogs, toads and salamanders are under investigation as therapeutically relevant antibacterial, 

antiviral, antifungal and antiprotozoan agents [3, 6]. In the search for novel AMPs, the true 

frogs, family Ranidae, has been a promising source as it is the most diverse and 

widely distributed group of anuran amphibians worldwide, occurring on all continents except 

Antarctica [7, 8]. The Ranidae have undergone many taxonomic reorganizations and 

phylogenetic studies [9-12], and currently, the online database, AmphibiaWeb, lists 22 genera 

with 407 species for this family [13]. There have also been attempts to derive a consistent 

nomenclature for AMPs of the Ranidae [9, 14, 15] and using the system proposed by Conlon 

(2008), these peptides are assigned to one of fourteen families on the basis of sequence 

similarity to prototypic peptides [9]. Major examples of these prototypic peptides include 

brevinin-1 and brevinin-2 [9], which were isolated from Rana brevipoda porsa [16], and  

esculentin-1 and esculentin-2 [9], which were identified in  Rana esculenta [17]. The families 

of brevinins and esculentins are distributed across the genera of Ranidae [3, 18], ranging from 

Rana, which is the largest with over 100 species, to Glandirana, which is one of the newest and 

smallest with five species [13]. 

 

The archetypal species of the genus Glandirana is Glandirana emeljanovi [19], formerly known 

as Rana rugosa, which is distributed across northeastern China and the Korean peninsula [20].  

It produces a suite of α-helical AMPs that were originally named gaegurins  in reference to the 

Korean word  for frog, Gaegury [21]. These peptides have been renamed since their discovery 

and several have been well characterised, including esculentin-2EM (gaegurin 4), brevinin-

1EMa (gaegurin 5) and brevinin-1EMb (gaegurin 6) [19]. Along with their derivatives, these 

latter three AMPs have been shown to kill bacteria, fungi and protozoa [21-27], as well as 

possessing anticancer activity [22, 28, 29] and insulinotropic properties [30]. These AMPs and 
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their derivatives have also been investigated for potential therapeutic application; for example, 

brevinin-1Emb and its N-terminal homologue, PTP6, were highly effective against oral 

streptococci. These AMPs also acted synergistically with conventional oral antimicrobials, 

such as chlorhexidine, which led to the proposal that they might be suitable for development 

as agents for the prevention of dental caries [31]. There have been attempts to develop more 

efficient techniques for the production of esculentin-2EM (E2EM) and its derivatives as 

antimicrobials; for example, using E. coli as a host, recombinant E2EM, and recombinant 

hybrids of E2EM and the human AMP, LL-37, were efficiently generated and shown to have 

potent antibacterial activity [32, 33]. Another derivative of E2EM is the linear form of the 

peptide, E2EM-lin, which lacks the sole disulphide bond possessed by the parent peptide [19]. 

The primary focus of research on E2EM-lin appears to be investigation of the biological role 

of the C-terminal Rana box motif of E2EM [19, 34], a cysteine-stabilised, α-helical, loop-like 

fold that is conserved across many ranid AMPs [3, 4]. However, most recently, the membrane 

interactive form of E2EM-lin was shown to be highly thermostable in the presence of a range 

of bacterial membranes. It was suggested that the peptide, or its derivatives, might find 

application in the development of food packaging materials [35]. These packaging materials 

are formed from polymers which incorporate AMPs and are able to prolong the shelf life of 

the food product by inhibiting microbial growth on the surface of the product or the headspace 

inside the packaging [36, 37]. 

 

Despite its potential for commercial use, the mechanisms underpinning the antimicrobial 

activity of E2EM-lin are currently, not well characterised and have been investigated in the 

present study using a range of theoretical and biophysical techniques. These investigations 

showed that E2EM-lin has a potent, specificity for killing Gram-positive bacteria using a mode 

of action that appeared to be promoted by the high levels of anionic lipid in their membranes; 

namely, phosphatidylglycerol (PG) and cardiolipin (CL) species. The latter lipid promoted only 

low levels of membranolysis by E2EM-lin and potential roles for the lipid in the antibacterial 

mechanism of the peptide are being discussed. The primary driver in the mode of antibacterial 

action used by E2EM-lin appeared to be PG-mediated membranolysis, wherein the peptide’s 

N-terminal region formed tilted structure to promote membrane pore formation. Based on our 

data, we propose a model for the PG-mediated antibacterial action of the peptide that also 

provides insight into both that of E2EM and that of a number of its truncated analogues.   
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 2. MATERIALS AND METHODS  

2.1 Materials 

E2EM-lin (GILDTLKQFAKGVGKDLVKGAAQGVLSTVSCKLAKTC) was 

supplied by Pepceuticals (UK), synthesised by solid state synthesis and purified by HPLC to 

purity greater than 99%, confirmed by MALDI-TOF mass spectrometry (Supplementary 

Figure 1). Sodium phosphate monobasic, sodium diphosphate dibasic, sodium chloride, 

Sephadex G75, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) and EDTA 

(Ethylenediaminetetraacetic acid) were supplied by Sigma-Aldrich Ltd (UK). Nutrient agar, 

Nutrient Broth, Triton X-100 and ¼ strength Ringer solution tablets were supplied by Thermo 

Fisher Scientific (UK). Dimyristoyl phosphatidylglycerol (DMPG), dimyristoyl 

phosphatidylethanolamine (DMPE) and cardiolipin (CL) were supplied by Avanti Polar Lipids, 

Inc (Alabaster, AL). Calcein was supplied by Alfa Aesar and Milli Q water with a specific 

resistance of 18 Ω cm-1 was used for preparation of all stock solutions and buffers. 

 

2.2 Methods 

2.2.1 Theoretical analysis of E2EM-lin 

The potential of E2EM-lin to form amphiphilic α-helical structure was investigated using the 

graphics function of Heliquest software (available online at http://heliquest.ipmc.cnrs.fr/ [38]) 

which represented the peptide as a two-dimensional axial projection taken perpendicular to the 

α-helical long axis and assuming an amino acid periodicity of 100° [39]. The potential of 

E2EM-lin segments to form tilted structures was determined according to extended 

hydrophobic moment methodology [40]. Tilted structures are α-helical segments that are 

characterized by an asymmetric distribution of hydrophobicity, or hydrophobicity gradient, 

along the α-helical long axis that causes the parent AMPs to penetrate membranes at a shallow 

angle of between 20° and 80°, thereby promoting a range of membrane destabilizing effects 

[41, 42]. Extended hydrophobic moment methodology determines the potential of AMPs to 

form tilted structure using sequence information alone and essentially, computes the mean 

hydrophobic moment, < µH >, and the mean hydrophobicity, < H >, of segments using the 

normalised consensus hydrophobicity scale of Eisenberg et al., (1982) and a moving window 

of 11 residues [39]. These values of < µH >  and < H > are then represented as data points on 
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the extended hydrophobic moment plot diagram, which identifies candidate tilted α-helix 

forming segments by the occurrence of their data points in the shaded area delineated on the 

extended plot diagram [40]. The potential of E2EM-lin to form a hydrophobicity gradient was 

investigated by amphiphilic profiling using -< µH > with a moving window of seven residues 

and the normalized consensus hydrophobicity scale of Eisenberg et al., [42]. Essentially, this 

methodology uses sequence information alone to provide a visual representation of the 

hydrophobicity gradients associated with tilted structure that informs on their relative 

magnitude and direction along the α-helical long axis of the parent tilted structure  [41, 42]. 

 

2.2.2 The preparation of bacterial cultures 

Cell suspensions of the Gram-positive and Gram-negative test organisms (Table 1), were 

prepared as follows:  Freeze – dried  cultures grown on Nutrient agar were used to inoculate a 

series of 9 ml of sterile Nutrient broths in universal bottles . These samples were then incubated 

in an orbital shaker at 100 rpm and 37 ºC until reaching their exponential log phase, as 

determined by optical density (OD) measurements in the range 0.01 to 0.03 at λ = 600 nm. 

Each bacterial suspension was centrifuged at 15000 × g for 15 minutes at 21 ºC using a bench 

top centrifuge (ALC PK 120R) to form a cell pellet. The resulting cell pellets were resuspended 

in 9 ml Ringer’s solution and centrifuged  again, and the resulting pellets were resuspended in 

Ringer’s solution to give a starting inoculum density of circa 5.8 × 108 CFU / ml. 

 

2.2.3 The antibacterial properties of E2EM-lin 

In order to evaluate the toxicity of E2EM-lin to bacterial cells, stock peptide in 25% Ringer’s 

solution (150 μM), was diluted to give concentrations in the range 0.06 μM to 150 μM. Aliquots 

(500 μl) of the peptide at each concentration in this range were then inoculated with an equal 

amount of bacterial suspension (10 μl) and left to incubate for 12 hours at 37 °C. As a control, 

this procedure was repeated without the inclusion of E2EM-lin After incubation, each sample 

of was spread onto a Nutrient agar plate and incubated for 12 hours to determine the minimum 

peptide concentration that yielded no bacterial growth. Where no bacterial growth was 

observed, 10 μl samples of these E2EM – bacteria mixtures were used to inoculate 9.9 ml of 

fresh Nutrient broth and incubated for a further 12 hours. After incubation, these peptide - 

bacterial mixtures were spread onto Nutrient agar plates and where no bacterial growth had 
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occurred, the levels of E2EM-ln in that sample was taken as its minimum lethal concentration 

(MLC) for the bacterial strain concerned. These experiments were performed in quintuplicate 

and the mean value derived. 

 

2.3.4 The preparation of total lipid extract from bacterial membranes 

Cultures were prepared from Bacillus subtilis, Staphylococcus aureus, Escherichia coli and 

Pseudomonas aeruginosa, as described above, and in each case, total membrane lipid extracts 

were obtained from these cultures using a modified form of the methodology presented by 

Bligh and Dyer [43]. Essentially, for each bacterium, 9 ml aliquots of culture were taken and 

centrifuged at 15000 × g for 15 minutes at 21 ºC using a bench top centrifuge (ALC PK 120R) 

to form a cell pellet. These pellets were washed twice with ¼ strength Ringer solution and 

centrifuged at 15000 × g for 10 minutes. Each pellet was then resuspended in 100 μl of ¼ 

strength Ringer solution and the whole vortexed with 125 μl of a chloroform:methanol mixture 

(1:2, v/v) for 5 minutes. The resulting suspensions were then vortexed with 125 μl of 

chloroform for 5 minutes before 125 μl of water was added and the whole centrifuged at 600 

× g for 5 minutes to obtain a two-phase system. The bottom, organic phase was then taken and 

concentrated by removing the solvent with N2 gas before storage at -20 ºC. 

 

2.3.5 The lysis of model membranes by E2EM-lin  

To investigate the membranolytic ability of E2EM-lin, chloroformic solutions were prepared, 

which contained either the individual lipids, DMPG, CL or DMPE; lipid mixtures formed from 

DMPE and DMPG at ratios of 1:10, 1:20, 1:30, 1:50 and 1:100; lipid mimics of membranes 

from E. coli, P. aeruginosa, B. subtilis and S. aureus (Table 2); or lipid extracts from the 

membranes of each of these bacteria, prepared as described above.  These chloroformic lipid 

solutions were then used to form small unilamellar vesicles (SUVs) and were dried under an 

N2 (gas) stream before being placed under vacuum overnight. The resulting thin lipid films 

were hydrated using 5.0 mM HEPES, which contained 70 mM calcein, and these suspensions 

were then vortexed before being sonicated for 30 minutes and freeze-thawed 5 times. 

Untrapped calcein was separated from dye filled SUVs by gel filtration using a Sephadex G75 

column, which was rehydrated overnight in 20 mM HEPES, 150 mM NaCl and 1.0 mM EDTA. 

The column was eluted with 5 mM HEPES pH 7.5 to produce solutions of SUVs with calcein 

entrapped. The rate of calcein leakage induced by E2EM-lin from these SUVs was then 



Biochimica et Biophysica Acta (BBA) – Biomembranes Volume 1862, Issue 2, 1 February 2020, 
183141: https://doi.org/10.1016/j.bbamem.2019.183141 
 
 

8 

 

determined as a function of peptide concentration. Stock solutions of E2EM-lin (90 µl) with 

concentrations in the range, 0 µM to 200 µM, were mixed with 30µl of calcein entrapped SUVs 

solutions and these samples made up to 3 ml with PBS, pH 7.4. The samples were left to 

incubate and after one hour, calcein fluorescence was measured using an FP-6500 

spectrofluorometer (JASCO, UK) with an excitation wavelength of 490 nm and an emission 

wavelength of 520 nm. The % calcein leakage from SUVs was then calculated according to 

equation 1:    

%  dye release = (([FPeptide] − [FPBS]) / ([FTriton] − [FPBS]))   × 100  ………………Equation (1) 

where the fluorescence of calcein release by the peptide at 520 nm is denoted by [FPeptide], that 

released by PBS as [FPBS] and that released by Triton X-100 as [FTriton]. In all cases, values of 

the % calcein released were determined in quintuplicate and the mean value derived. 

 

2.3.6 The conformational behaviour of E2EM-lin 

To investigate the conformational behaviour of E2EM-lin in aqueous solution and membrane 

mimicking solvents, the peptide was solubilised in either PBS (10 mM, pH 7.4), TFE and a 50 

% (v/v) mixture of TFE / PBS (10 mM, pH 7.4) to give a final peptide concentration of 2.6 

μM. The conformational behaviour of E2EM-lin in the presence of a range of SUVs was 

investigated by solubilising the peptide (final concentration of 0.1 mg ml-1) in these SUVs at a 

lipid to peptide ratio of 1:100. SUVs were formed from either the individual lipids, DMPG, CL 

or DMPE; lipid mixtures formed from DMPE and DMPG at ratios of 1:10, 1:20, 1:30, 1:50 

and 1:100; lipid mimics of membranes from E. coli, P. aeruginosa, B. subtilis and S. aureus 

(Table 2); or lipid extracts from the membranes of each of these bacteria, prepared as described 

above.  In each case, these single lipids, lipid extracts, and lipid mixtures were dissolved 

separately in chloroform and dried under N2 gas before being placed under vacuum for 4 hours.  

The resulting lipid films were rehydrated using PBS (10 mM, pH 7.40) sonicated for an hour 

or until the solution was no longer turbid, and then subjected to 5 cycles of freeze-thawing. 

Conformational analyses were conducted using a J-815 CD spectropolarimeter (Jasco, UK) at 

20 °C, all as previously described [44].  Essentially, samples were placed in a quartz cell with 

a 10 mm path-length and four scans per sample were performed over a wavelength range of 

260 to 180 nm at 0.5 nm intervals, using a band width of 2 nm and a scan speed 50 nm min-1.  

All spectra were baseline corrected and the % α-helical content determined using the CDSSTR 
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method (protein reference set 3) from the DichroWeb server [45-47]. These experiments were 

repeated in quintuplicate and the levels of α- helicity obtained were averaged. 

2.3.7 The surface activity of E2EM-lin 

The surface activity of E2EM-lin was investigated using a 15 cm2 Teflon Langmuir 

trough, wherein the peptide was injected into a PBS subphase (10 mM, pH 7.4) using a 

Hamilton micro syringe to give final peptide concentrations ranging from 0 to 2 µM. The 

resulting surface pressure changes were monitored and were plotted as a function of peptide 

concentration. 

 

2.3.8 The lipid monolayer interactions of E2EM-lin  

Monolayer experiments were performed using a 601M Langmuir trough (Biolin 

Scientific KSV NIMA, UK) equipped with moveable barriers. Surface pressure changes were 

monitored using a  Whatman CH1 Whilemly paper plate attached to a microbalance [48, 49]. 

In all experiments the subphase of the Langmuir trough consisted of PBS buffer (10 mM, pH 

7.4) prepared with Milli-Q-water (resistivity ≈ 18 MΩ cm) at 21± 1 °C. 

 

2.3.8.1 Constant area analysis 

The ability of E2EM-lin to interact with lipid monolayers was studied at constant area 

[48, 49]. Monolayers were formed by separately spreading chloroformic solutions onto a PBS 

subphase (10 mM, pH 7.4), which contained either the individual lipids DMPG, CL, or DMPE 

(0.5 mM); or lipid mixtures mimetic of membranes from E. coli, P. aeruginosa, B. subtilis and 

S. aureus (Table 2). After spreading these monolayers, solvent was allowed to evaporate for 

30 minutes and then the barriers Langmuir trough were closed at a rate of 10 cm2 min-1 to 

achieve a surface pressure of 30 mN m-1. This surface pressure is generally taken to represent 

the packing density of naturally occurring cell membranes and was maintained throughout 

these experiments [50]. Monolayers were allowed to equilibrate for 10 minutes and E2EM-lin 

was injected into the subphase to give a final peptide concentration of 0.5 μM. The resulting 

changes in monolayer pressure were monitored and plotted as a function of time. Each 

experiment was repeated in quintuplicate. 
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2.3.8.2 Compression isotherm analysis 

Compression isotherms were generated by spreading chloroformic solutions of lipid (1.0 × 1015 

molecules) onto a PBS subphase (10 mM, pH 7.4), which contained either the individual lipids 

DMPG, CL, or DMPE (0.5 mM); or lipid mixtures mimetic of membranes from E. coli, P. 

aeruginosa, B. subtilis and S. aureus (Table 2). The solvent was allowed to evaporate for 10 

minutes and the monolayer was allowed to settle for a further 20 minutes before the trough 

barriers were closed at a rate of 10 cm2 per minute until monolayer collapse pressure was 

achieved. Surface pressure changes were monitored and plotted as a function of the area per 

lipid molecule. Corresponding experiments were then performed except that E2EM-lin was 

introduced into the PBS subphase (10 mM, pH 7.4) using a Hamilton syringe to give a final 

peptide concentration of 2 µM. All experiments were repeated in quintuplicate. 

 

Thermodynamic analysis of lipid and lipid / peptide isotherms was undertaken and 

compressibility moduli were determined for these isotherms according to equation 4 [51]:  

Cs
-1 = −𝐴(

𝛿𝜋

𝛿𝐴
) ...................Equation (2). 

where π is the monolayer surface pressure and A represents area per peptide or lipid molecule 

in the monolayer.  

 

The thermodynamic stability of these isotherms was also investigated by determining their 

Gibbs free energy of mixing (ΔGmix) according to equation 5: 

...................Equation (3). 

where A1,2,3.is the molecular area occupied by the mixed monolayer, A1 -  A3 are the area per 

lipid molecule in the individual monolayers of component 1, 2, and 3, X1, X2, X3 are the molar 

fractions of the components. Numerical data were calculated from these compression isotherms 
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according to the mathematical method of Simpson [52].  ΔGmix is used to measure the relative 

stability of monolayers associated with the miscibility energetics of their individual lipid 

components where thermodynamically stable and unstable monolayers are indicated by 

negative and positive values of ΔGmix respectively [50]. 

2.3.9 Statistical analysis 

 

Unless otherwise stated, the results are presented as mean values ± standard errors (SE) 

of the mean. Initially, the normal distribution of the data was analysed by Skewness Kurtosis 

tests. Significant differences between mean values were further analysed by using a one-way 

ANOVA test, based on a null hypothesis that there is no significant difference between the 

mean values. 

 

 3. RESULTS  

3.1 The theoretical analysis and surface activity of E2EM-lin 

Confirming previous suggestions [19], when modelled as a two-dimensional axial 

projection, the entire E2EM-lin sequence only showed the potential to form an α-helix with ill-

defined amphiphilicity (Figure 1A). However, sequences defined by residues 1-23 (E2EM-lin 

(1-23), Figure 1B) and residues 25-37 (E2EM-lin (25-37), Figure 1C) showed the potential to 

form two strongly amphiphilic α-helices. These α-helices exhibited hydrophobic arc sizes of 

200o and 120o respectively and were linked by the intervening glycine residue, G24 (Figures 

1B and 1C). Analysis of E2EM-lin (1-23) and E2EM-lin (25-37) using extended hydrophobic 

moment plot methodology yielded values of < µH > = 0.43 and < H > = 0.06, and < µH > = 

0.67 and < H > = 0.09, respectively. When plotted on the extended plot diagram, the resulting 

data points lay within the shaded area of the diagram, predicting that both α-helices had the 

potential to form tilted peptides (Figure 2A), which are characterized by a hydrophobicity 

gradient along the α-helical long axis [42]. Amphiphilic profiling revealed that E2EM-lin 

possessed a hydrophobicity gradient, which increased in the N → C direction and stretched 

over residues 9 to 31, encompassing both E2EM-lin (1-23) and E2EM-lin (25-37) (Figure 2B).  
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Figure 1. Helical wheel analysis of E2EM-lin 

 

 

Figure 1 shows E2EM-lin modelled as two dimensional axial projections [38]. Figure 1A 

shows that in an α-helical conformation, the entire sequence of the peptide 

(GILDTLKQFAKGVGKDLVKGAAQGVLSTVSCKLAKTC) possesses only ill-defined 

amphiphilicity with no clear segregation between polar and non-polar residues. Figures 1B and 

1C show that the peptide could potentially form two strongly amphiphilic α-helices that are 

linked by the intervening glycine residue (G24), as previously shown [19]. The first of these 

α-helices is defined by residues 1-23 and exhibits a hydrophobic face with an arc size of 200o, 

along with a hydrophilic face that has a net cationic charge due to the presence of multiple 

lysine and aspartic acid residues (Figure 1B). The second of these α-helices is defined by 

residues 25-37 and possesses a hydrophobic face with an arc size 120o, complemented by a 

hydrophilic face formed from polar and lysine residues (Figure 1C).  
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Figure 2. The potential of E2EM-lin to form tilted structure 

 

Figure 2 shows theoretical analyses of the E2EM-lin α-helices potential for tilted peptide 

formation. In Figure 2A, extended hydrophobic moment plot methodology shows that the data 

points representing E2EM-lin (1-23) and E2EM-lin (25-37) [< µH > = 0.43 and < H > = 0.06, 

and < µH > = 0.67 and < H > = 0.09, respectively] lie in the shaded area of the plot diagram. 

This location indicates the potential to form tilted peptides, which are characterized by a 

hydrophobicity gradient along the α-helical long axis [42]. In Figure 2B, amphiphilic profiling 

shows that E2EM-lin possesses a hydrophobicity gradient, which increases in the N → C 

direction and stretches over residues 9 to 31, encompassing both E2EM-lin (1-23) and E2EM-

lin (25-37). This asymmetric distribution of hydrophobicity causes the tilted structure of AMPs 

to penetrate membranes at a shallow angle of between 20 and 80, thereby promoting a range 

of membrane destabilizing effects [41, 42]. 

 

3.2 The antibacterial properties and membranolytic ability of E2EM-lin  

Assay of E2EM-lin against a panel of bacteria showed that the peptide had weak 

activity against Gram-negative organisms, with MLCs that were ≥ 75.0 μM. but possessed 

potent efficacy towards Gram-positive bacteria, with MLCs that were ≤ 6.5 μM (Table 1). This 

was confirmed by statistical analysis which showed that there was a significant difference 

between the MLCs of E2EM-lin for Gram-negative and Gram-positive bacteria [F2,21 = 33.61; 

p = 0.00].  These observations indicated that E2EM-lin has a strong preference for Gram-

positive bacteria, which is consistent with data reported by previous authors [19, 53], and to 

investigate this preference further, S. aureus and B. subtilis were taken as representative Gram-

positive organisms, whilst E. coli and P. aeruginosa, were chosen to represent Gram-negative 

bacteria. Consistent with a preference for Gram-positive bacteria, calcein release assay showed 
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that E2EM-lin lysed mimics of S. aureus and B. subtilis membranes (> 58.0%, Table 2) more 

strongly than those of E. coli and P. aeruginosa membranes (≤ 45.0%, Table 2). These data 

clearly suggested that the peptide has a greater lytic efficacy against membranes from Gram-

positive bacteria in comparison to those from Gram-negative bacteria, which was confirmed 

by statistical analysis [F3, 11 = 67.0; p = 0.00].  The correlation of these lysis levels (Table 2) 

with the MLCs of the peptide against the corresponding organisms (Table 1) clearly suggested 

that the E2EM-lin killed bacteria via membranolytic mechanisms. Moreover, this correlation 

also suggested that the preference of the peptide for Gram-positive organisms was related to 

differences in the membrane compositions of these two bacterial classes. Membranes from B. 

subtilis and S. aureus are predominantly formed from CL and PG lipids, whereas those from 

E. coli and P. aeruginosa are primarily composed of phosphatidylethanolamine (PE) lipids 

(Table 2). Consistent with this observation, E2EM-lin induced levels of lysis that were 66.0% 

in the case SUVs formed from DMPG (Table 2) and were reduced as DMPE was introduced 

into the composition of these SUVs, reaching 41.0% for SUVs formed solely from DMPE 

(Table 2). However, the peptide showed a varying ability to interact with anionic SUVs, 

inducing only low levels of lysis with those formed from CL (20.0%, Table 2), and statistical 

analysis indicated that there was a significant difference between the levels of lysis induced by 

E2EM-lin with SUVs formed from either DMPG, DMPE or CL [F4, 14 = 10; p = 0.001].  Hence, 

these results clearly suggested that CL does not directly promote the membranolytic activity of 

E2EM-lin and would seem to exclude the peptide from AMPs that target CL domains of 

bacterial membranes to promote this mode of antibacterial activity [54-57]. 
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Table 1. The antibacterial activity of E2EM-lin. 

Bacteria and NCIMB strain number MLCs of E2EM-lin (µM) 

Gram-positive organisms  

Micrococcus luteus (196) 3.13 

Streptococcus mutans (11723) 3.13 

Streptococcus pyogenes (11841) 6.25 

Staphylococcus aureus (1671) 3.13 

Staphylococcus epidermis (8558) 3.13 

Bacillus subtilis (8054) 6.25 

Gram-negative organisms  

Klebsiella pneumoniae (13438) 100.0 

Klebsiella aerogenes (10102) 200.0 

Escherichia coli (887a) 100.0 

Pseudomonas aeruginosa (8295) 75.0 

Proteus mirabilis (13283) 200.0 

 

In Table 1, MLCs are the minimum lethal concentrations of E2EM-lin required to kill bacteria, 

determined as described above, and the data are the mean of five replicates. 

 

3.3 The conformational behaviour and membrane interactions of E2EM-lin  

CD spectroscopy showed that in aqueous solution (PBS, 10.0 mM, pH 7.4), E2EM-lin 

possessed < 10.0 % α-helical structure and was predominantly formed from random coil and 

β-type structures (Supplementary Figure 2). However, the peptide was found to be strongly 

surface active at an air / water interface (Maximal surface pressure changes of 21 mNm-1, 

Figure 6) and previous work has predicted that under these experimental conditions, E2EM-lin 

adopts an α-helical conformation [35]. The peptide adopted high levels of α-helicity that were 

> 65.0 % when solubilized in the membrane mimicking solvent, TFE, or a 50 % (v/v) mixture 

of TFE / PBS (10 mM, pH 7.4), (Supplementary Figure 2). E2EM-lin also showed the ability 

to adopt α-helical structure in the presence of SUVs mimetic of bacterial membranes, formed 

from either lipid mixtures or native bacterial lipids (40.2% to 61.0%) (Figure 3, Table 2). In 
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combination, these observations show that the peptide is generally active in an amphiphilic 

interfacial environment via the adoption of α-helical structure. 

 

E2EM-lin adopted levels of α-helicity were higher for mimics of S. aureus and B. subtilis 

membranes (> 55.0%) than those of E. coli and P. aeruginosa membranes (< 45.0%) (Figure 

3, Table 2). Statistical analysis confirmed that these differences in the α-helicity of E2EM-lin 

were significant in the case of both membranes formed from lipid mixtures [F3, 11 = 7392.3; p 

= 0.00] and those formed from native bacterial lipids [F3, 11 = 594.0; p = 0.00].  The rank order 

of α-helicity levels adopted by E2EM-lin in the presence of membrane mimics from S. aureus, 

B. subtilis, E. coli and P. aeruginosa membranes (Figure 3, Table 2) also correlated with that 

of the lytic ability shown by E2EM-lin for these organisms (Table 2). This correlation 

suggested that the higher levels of α-helicity induced in the peptide by the membranes of Gram-

positive bacteria promoted the greater lytic activity shown by E2EM-lin for these membranes 

(Table 2). Strongly supporting this suggestion, E2EM-lin showed a greater ability to partition 

into monolayer mimics of membranes from S. aureus and B. subtilis (maximal surface pressure 

changes ≥ 5.9 mN m-1, Figure 7B) as compared to those of E. coli and P. aeruginosa (maximal 

surface pressure changes ≤ 4.8 mN m-1, Figure 7B). Moreover, the high levels of these surface 

pressure changes clearly indicated that the peptide was able to deeply penetrate the 

hydrophobic acyl chain region of these membrane mimics, consistent with membranolyic 

ability  [50].  

 

To further investigate the role of individual lipids in the preference of E2EM-lin for Gram-

positive bacteria, the conformational and partitioning behaviour of the peptide with model 

membranes formed from either, DMPG, DMPE or CL was studied (Figure 4 and Figure 5).  

These studies showed that E2EM-lin possessed levels of α-helicity that were 60.0% in the 

presence of SUVs formed solely from DMPG and were reduced as DMPE was introduced into 

the composition of these SUVs, reaching 40.5% for SUVs formed solely from DMPE (Figure 

4, Figure 5, Table 2). Statistical analysis showed there was a significant different between the 

levels of α-helicity observed in E2EM-lin across these peptide to lipid ratios [F4, 14 = 75.6; p = 

0.000]. The rank order of these α-helicity levels correlated strongly with that of the lytic ability 

shown by E2EM-lin towards SUVs with the corresponding DMPG / DMPE compositions 

(Table 2). In general, increasing the α-helicity of AMPs enlarges their hydrophilic and 

hydrophobic surfaces, thereby enhancing their capacity to penetrate and lyse membranes [2, 
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41]. In combination, these data strongly suggested that the induction of α-helical structure in 

E2EM-lin by PG plays a major role not only in promoting the membranolytic antibacterial 

action of the peptide but also its preference for killing Gram-positive bacteria. Consistent with 

this suggestion, E2EM-lin induced maximal surface pressure changes of 6.7 mN m-1 in 

monolayers formed from DMPG that were reduced to 4.2 mN m-1 in the case of those formed 

from DMPE (Figure 7A). The high levels of these surface pressure changes also indicated that 

the partitioning of the peptide into bacterial membranes involved strong contributions from 

electrostatic and hydrophobic forces [50].  These observations clearly reflected the strongly 

amphiphilic nature of the α-helical structure formed by E2EM-lin (Figure 1A and Figure 1B). 

 

E2EM-lin induced maximal surface pressure changes of 2.9 mN m-1 in monolayers formed 

from CL (Figure 7A), which are levels of partitioning that indicate head group associations 

[50] and are consistent with the low ability of the peptide to lyse SUVs formed from the lipid 

(Table 2). However, E2EM-lin adopted levels of α-helical structure in the presence of SUVs 

formed from CL that were 62% and very close to the levels of α-helicity adopted by the peptide 

in the case of SUVs formed from DMPG (Figure 4, Table 2). These data clearly showed that 

although CL induced conformational changes in E2EM-lin that were similar to those induced 

by DMPG, in comparison, they promoted greatly diminished levels of membrane interaction 

(Figure 7A, Table 2). In combination, these observations suggest that CL is able to promote 

electrostatic binding to the membrane by E2EM-lin and stabilization of the peptide’s α-helical 

structure, but not the levels of partitioning required for membranolysis and antibacterial 

activity. It would seem that some property of the lipid inhibits or reduces the ability of E2EM-

lin to partition into membranes and similar effects have been reported for other AMPs. In these 

cases, CL-mediated changes to the structural properties of membranes prevented the induction 

of membranolysis by these peptides but not their surface binding [58-60]. However, there is 

also the possibility that CL can promote the antibacterial action of E2EM-lin by mechanisms 

where direct membrane lysis does not play a major role. Several recent studies on AMPs have 

suggested that the CL-mediated partitioning of these peptides into bacterial membranes 

promotes cell death through secondary effects induced by changes to the biophysical properties 

of these membranes [61, 62].  
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Table 2. The levels of α-helicity and lysis shown by E2EM-lin with lipid SUVs. 

Composition of SUVs formed from lipids and lipid 

mimics of bacterial membranes 

Membrane 

lysis 

 (%) 

α-helicity of 

E2EM-lin 

(%) 

CL 20.0 62.0 

DMPG 66.0 60.0 

DMPE:DMPG ratio 1:100 64.5 60.0 

DMPE:DMPG ratio 1:50 56.6 58.0 

DMPE:DMPG ratio 1:30 52.5 54.0 

DMPE:DMPG ratio 1:20 48.0 50.0 

DMPE:DMPG ratio 1:10 44.0 46.0 

DMPE  41.0 40.5 

B. subtilis: DMPE:DMPG:CL molar ratio 10:29:47 60.0 60.3 

B. subtilis: lipid extracts of membranes 58.0 60.5 

S. aureus: DMPG:CL molar ratio 57:43 57.0 58.0 

S. aureus: lipid extracts of membranes 53.0 56.3 

E. coli: DMPE:DMPG:CL molar ratio 82:6:12 45.0 40.2 

E. coli: lipid extracts of membranes 41.0 40.3 

P. aeruginosa: DMPE:DMPG:CL molar ratio 68:19:11  37.0 42.0 

P. aeruginosa: lipid extracts of membranes 33.0 41.8 

 

In Table 2, DMPG = dimyristoyl phosphatidylglycerol, DMPE = dimyristoyl 

phosphatidylethanolamine and CL = cardiolipin. Data for the lipid composition of bacterial 

membranes was taken from [63, 64].  
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Figure 3.  CD analysis of E2EM-lin in the presence of model bacterial membranes  

 

Figure 3 shows CD spectra for E2EM-lin in the presence of model bacterial membranes. In all 

cases, these spectra show typical α-helical structure for E2EM-lin with two minima near the 

230 to 210 nm region and maxima near 195 nm [44]. In Figure 3A, curves are shown for the 

structure of E2EM-lin in the presence of lipid mixtures (Table 1) representing membranes of 

E. coli (Blue), P. aeruginosa (Green), S. aureus (Orange) and B. subtilis (Grey). In Figure 3B, 

curves are shown for the structure of E2EM-lin in the presence of native bacterial lipids 

representing membranes E. coli (Blue), P. aeruginosa (Green), S. aureus (Orange) and B. 

subtilis (Grey). Analysis of these spectra showed that E2EM-lin adopted high levels of α-

helical structure in the presence of bacterial membranes (40.2% to 61.0%), which were, 

however, higher in the case of Gram-positive bacteria (58.0% to 61%) as compared to Gram-

negative bacteria (40.2%  to 42.0%) (Table 2). 

 

Figure 4. CD analysis of E2EM-lin in the presence of individual lipid membranes 

 

Figure 4 shows CD spectra for E2EM-lin in the presence of individual lipids at an L:P ratio of 

100:1. In all cases, these curves possesses minima in the range 210 nm to 224 nm and a 

maximum at 193 nm, which is typical of α-helical structure [44]. Analysis of these spectra 

E2EM-lin was 60.0% in the case of DMPG (Black), 62.0% in that of CL (Grey) and 40.0% in 

that of DMPE (Green) (Table 2). 
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Figure 5. CD analysis of E2EM-lin in the presence of DMPE / DMPG membranes  

 

Figure 5 shows CD spectra for E2EM-lin in the presence of membranes formed from DMPE 

and DMPG where the lipid to peptide:ratio was maintained at 100:1 and the PE:PG ratio was 

varied between 1:10 and 1:100.  In all cases, these curves possesses minima in the range 210 

nm to 224 nm and a maxim around 193 nm, which is typical of α-helical structure [44]. 

Analysis of these spectra showed that E2EM-lin was 46.0% in the case of a DMPE: DMPG 

ratio of 1:10 (Orange), 50.0% in that of a 1:20 ratio (Green), 54.0% in that of a 1:30 ratio 

(Purple), 58.0% in that of 1:50 ratio (Blue) and 60.0%  in that of a 1:100 ratio (Grey) (Table 

2). 

 

Figure 6. The surface activity of E2EM-lin 

 

Figure 6 shows the surface activity of E2EM-lin at an air/water subphase. The peptide was 

introduced into the PBS subphase (10 mM, pH 7.4) of a 15 cm2 Teflon Langmuir trough, and 

the resulting surface pressure changes plotted as a function of peptide concentration. Surface 

pressure changes induced by E2EM-lin increased rapidly up to a concentration of circa 0.5 µM 

when maximal surface pressure changes of 21 mNm-1 were observed.  Above this peptide 

concentration, maximal surface pressure changes became independent of E2EM-lin levels, 
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indicating that the air / buffer interface was saturated with molecules of the peptide. These data 

indicate that E2EM-lin is highly surface active, and in each case, the data are the mean of five 

replicates and error bars are the standard error of the mean. 

Figure 7. The interactions of E2EM-lin with lipid monolayers 

 

Figure 7 shows interactions of E2EM-lin with lipid monolayers. In Figure 7A, the peptide 

interacts with monolayers formed from DMPG (Black), CL (Grey) and DMPE (Green). The 

surface pressure increases induced by these interactions generally follow hyperbolic kinetics 

and show maximal values that are 6.7 mN m-1 in the case of DMPG, 2.9 mN m-1 in that of CL 

and 4.2 mN m-1 in that of DMPE. The levels of these surface pressure changes show that 

E2EM-lin has the general ability to partition strongly into anionic and zwitterionic lipid 

monolayers, indicating a role for both electrostatic interactions and hydrophobic forces. In 

Figure 7B, E2EM-lin interacts with monolayers formed from lipid mimics of membranes from 

B. subtilis (Grey), S. aureus (Orange), E. coli (Blue) and P. aeruginosa (Green). These 

interactions induce maximal surface pressure increases that were 7.1 mN m-1 in the case of S. 

aureus, 5.9 mN m-1 in that of B. subtilis, 4.5 mN m-1 in that of  E. coli and 4.8 mN m-1 in that 

of P. aeruginosa. These data show that the peptide has the ability to partition into the 

membranes of both Gram-positive and Gram-negative bacteria, although this ability appears to 

be stronger in the case of the former organisms. In each case, the data are the mean of five 

replicates. 

 

3.4 The thermodynamic analysis of E2EM-lin interactions with bacterial membranes 

Langmuir-Blodgett troughs were used to generate compression isotherms for monolayers 

formed from either DMPG, CL or DMPE; or monolayer mimics of membranes of either B. 

subtilis, S. aureus, E. coli, or P. aeruginosa; all in the presence and absence of E2EM-lin 

(Supplementary Figure 3). Analysis of these isotherms showed that these mimics of bacterial 

membranes possessed Cs
-1 values ranging from 19.02 mN m-1 to 29.27 mN m-1 in the absence 

of the peptide, indicating that they were in the liquid expanded phase and fluid at this 

compression pressure (Table 3) [50].  However, upon the addition of E2EM-lin to each of these 

lipid monolayer systems, Cs
-1 increased, with values ranging from 35.69 mN m-1 to 49.03 mN 
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m-1 (Table 3). These data signified a general rise in the lateral pressure of monolayers and led 

to increases in their rigidity and lipid packing density, consistent with partitioning by the 

peptide [50]. Analysis of isotherms also generated values of ΔGmix for monolayer mimics of 

membranes from B. subtilis, S. aureus, E. coli, or P. aeruginosa; all in the presence and absence 

of E2EM-lin (Supplementary Figure 3). In the absence of the peptide, these monolayer mimics 

of bacterial membranes were thermodynamically stable with values of ΔGmix < 0. In the 

presence of E2EM-lin, they became thermodynamically unstable with values of ΔGmix > 0 

(Table 3), indicating that partitioning by the peptide had altered their lipid packing 

characteristics. Similar changes in ΔGmix and Cs
-1 (Table 3) have been reported for a number of 

AMPs that appear to use carpet type and tilted type mechanisms to promote their 

membranolytic, antibacterial action [65-67]. In combination, these observations support 

monolayer (Figure 7B) and lysis data (Table 3), reinforcing the suggestion that the amphiphilic 

and tilted characteristics of α-helical E2EM-lin play a major role in facilitating the 

membranolytic, antibacterial activity of the peptide. It is possible that these changes in ΔGmix 

and Cs
-1 (Table 3) also relate to CL-mediated interactions between E2EM-lin and bacterial 

membranes that promote non-membranolytic mechanisms of antibacterial action. Changes to 

membrane properties similar to those revealed by the thermodynamic analysis of E2EM-lin 

interactions with bacterial membrane mimics (Table 3) were demonstrated for the CL-mediated 

membrane partitioning of the non-membranolytic AMPs described above [61, 62]. For 

example, the insertion of these peptides, into the membranes of both Gram-positive and Gram-

negative bacteria, promoted lipid reorganisation, changes to lipid packing characteristics and 

the perturbation of acyl chain order [61, 62].  

Table 3. Thermodynamic analysis of E2EM-lin 

Bacterial  

membranes 

Cs
-1 ( mN m-1) ΔGmix (kJ mol-1) 

 
- E2EM-lin + E2EM-lin - E2EM-lin + E2EM-lin 

B. subtilis 23.28 49.03 -26.38 51.60 

S. aureus 19.02 47.13 -31.95 50.91 

E. coli 29.27 36.22 -6.34 78.22 

P. aeruginosa 19.32 35.69 -39.63 72.70 
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4. DISCUSSION 

E2EM-lin displayed potent activity against Gram-positive bacteria at levels in the low 

micromolar range that are appropriate to therapeutic development [2] but showed only weak 

action towards Gram-negative organisms (Table 1). This pattern of antibacterial activity and 

efficacy is highly similar to that of E2EM [21, 25, 27, 33, 68], which clearly supports the view 

that the disulphide bond in the Rana box region of the latter peptide is not essential for action 

against prokaryotes [19]. Similar results have been recently reported for other amphibian 

AMPs [69] and it may be that the Rana box of E2EM serves other biological functions rather 

than playing a role in the peptide’s antibacterial activity. For example, it has been shown that 

the presence of the disulphide bond in this motif is essential to the ability of brevinin-1EMb to 

stimulate insulin secretion in pancreatic β cells [30].. 

 

E2EM-lin showed conformational behaviour (Figure 3, Table 2) and induced changes to the 

properties and integrity of membranes (Figure 7B, Table 2, Table 3) that are consistent with 

work proposing that the ability of the peptide to kill bacteria involves the permeabilization of 

their membranes. An experimentally supported, pore forming mechanism that is similar to that 

used by E2EM has been proposed to explain the process of membrane permeabilization by 

E2EM-lin. [19, 35, 70]. The present study has shown that the membrane interactions of E2EM-

lin involve novel, unreported structure / function relationships that appear to help explain pore 

formation by E2EM-lin. In response, these structure / function relationships have been used to 

generate a more detailed model for the pore forming activity of E2EM-lin, which is depicted 

in Figure 8. In the early stages of this model, E2EM-lin is largely unstructured in aqueous 

solution, primarily formed from random coil and β-type structures (Supplementary Figure 2), 

and is strongly cationic (Figure 1), which facilitates the targeting of anionic components of the 

bacterial cell membrane (Figure 8A). Localization of the peptide to the anisotropic 

environment of the interface provided by these membranes promotes the adoption of α-helical 

structure (Figure 3, Table 2), which is strongly amphiphilic (Figure 1). Possession of this 

secondary architecture facilitates the partitioning of α-helical E2EM-lin into membranes via 
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electrostatic associations with the lipid head-group region and hydrophobic interactions with 

the acyl chain core of the membrane (Figure 8B).  

 

 

 

Figure 8. A model for the membrane interactions of E2EM-lin 

 

Figure 8 was revised from [19] and shows models for the membrane interaction of E2EM-lin 

where the peptide is represented as cylinders with a hydrophobic surface (red) and a 

hydrophilic surface (blue). For clarity, two monomers of E2EM-lin are shown in this pore 

forming process but it has been predicted that the involvement of higher order oligomers of the 

peptide are probable [35]. In our model, aqueous E2EM-lin is largely unstructured and targets 

anionic components of the bacterial cell membrane via its strong cationic charge (Figure 8A). 

Localisation to the membrane interface promotes the adoption of strongly α-helical structure 

and membrane partitioning by E2EM-lin via electrostatic associations with the lipid head-

group region and hydrophobic interactions with the acyl chain core (Figure 8B). This action 

then leads to membrane permeabilisation and ultimately, the death of target bacteria via either 

toroidal pore (Figure 8C) or barrel stave pore formation (Figure 8D). In each case, the N-

terminal α-helical structure of the peptide, E2EM-lin (1-23), forms a tilted peptide with an 



Biochimica et Biophysica Acta (BBA) – Biomembranes Volume 1862, Issue 2, 1 February 2020, 
183141: https://doi.org/10.1016/j.bbamem.2019.183141 
 
 

25 

 

extensive hydrophobicity gradient that plays a role in promoting the transmembrane orientation 

of E2EM-lin (Figure 8C and Figure 8D). For the formation of both pore types, a glycine kink 

(G24) orientates the C-terminal, reduced Rana box region of the peptide, E2EM-lin (25-37) to 

lie parallel to the membrane surface. In this orientation, the C-terminal region of the peptide 

interacts with the lipid head-group region of the membrane and stabilises pore formation by 

E2EM-lin.  

 

In the next stages of our model, partitioning by α-helical E2EM-lin leads to reorientation of the 

peptide within the bilayer to facilitate membrane lysis (Table 2) and ultimately, the death of 

the target bacteria (Figure 8); it has previously been proposed that membranolysis by E2EM-

lin involves the formation of either toroidal pores (Figure 8C) or barrel stave pores (Figure 8D) 

[19]. In each case, the α-helical structure adopted by the peptide forms two strongly 

amphiphilic α-helices defined by the N-terminal residues E2EM-lin (1-23) and the C-terminal 

residues E2EM-lin (25-37), which are linked by an intervening glycine residue (Figures 1B 

and 1C). The N-terminal region, E2EM-lin (1-23), exhibits tilted peptide characteristics, with 

an extensive hydrophobicity gradient, encompassing almost two thirds of its sequence (Figure 

2A and Figure 2B). Tilted peptides are known to promote the angled insertion of pore-forming 

amphibian AMPs into microbial membranes [71] and our model further proposes that similar 

mechanisms (Figure 7B) may play a role in promoting the transmembrane orientation of the 

E2EM-lin’s N-terminal region (Figure 8C and Figure 8D). This mode of oblique penetration 

could help explain the observation that insertion by the peptide appears to have a rigidifying 

effect on the lipid matrix of bacterial membranes, promoting increases in its lipid packing 

density, which render the membrane thermodynamically unstable (Table 3). It seems possible 

that the tilted structure possessed by the transmembrane region of E2EM-lin could play a more 

direct role in pore formation by the peptide; it has been previously shown that these structural 

motifs are able to promote protein – protein interactions [42]. In relation to the C-terminal 

region of E2EM-lin, similarly to E2EM, our model proposes that E2EM-lin (24-37) interacts 

with the membrane surface regions, thereby acting as an anchor that stabilizes pore formation 

by the peptide (Figures 8C and 8D) [19]. However, in contrast to E2EM, the residues of E2EM-

lin (24-37) are not conformationally constrained by the presence of a disulphide bond, which 

may help promote membrane anchoring by this C-terminal region [25, 33]. Moreover, given 

the functional redundancy of the disulphide bond in E2EM-lin (24-37), this region may also 

serve to stabilize the overall α-helical, membrane interactive conformation of E2EM-lin, as 

proposed for the parent peptide [19, 34, 72]. Indeed, E2EM-lin (24-37) shows the potential to 
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form tilted structure (Figure 2B) and maintaining the general α-helical conformation of E2EM-

lin would stabilize its overall tilted architecture, thereby promoting pore formation [73]. 

 

E2EM-lin showed a clear, potent specificity for Gram-positive bacteria that appeared to be 

promoted by the relative excess of anionic lipid found in their membranes as compared to 

Gram-negative bacteria (Table 1), although these lipids, PG and CL, appeared to play widely 

different roles the antibacterial action of the peptide. The levels of PG in membranes of the 

Gram-positive bacteria studied here were between circa one and a half and ten times greater 

than those of Gram-negative organisms (Table 1). These higher levels of PG induced increased 

quantities of amphiphilic α-helical structure in E2EM-lin (Table 2), which generally enhanced 

the ability of the peptide to penetrate and lyse the membranes of S. aureus and B. subtilis in 

relation to E. coli and P. aeruginosa (Table 2, Figure 8B). In terms of our model for the 

antibacterial activity of E2EM-lin, increased quantities of α-helical structure could contribute 

to the preference shown by the peptide for Gram-positive via a number of structure / function 

relationships (Figure 8). Clearly, increased amphiphilic α-helical structure would endow 

E2EM-lin with a greater capacity to engage in the electrostatic and hydrophobic interactions 

associated with membrane invasion by the peptide. Increased α-helical structure could also 

potentially, enhance the levels of tilted structure formed by E2EM-lin in its N-terminal region, 

which was proposed above to help drive the transmembrane orientation of this region. 

Moreover, the presence of higher levels of α-helical structure in the N-terminal region of 

E2EM-lin would increase the surface areas of this secondary structure available for the protein 

– lipid and protein – protein interactions involved in the process of pore formation, thereby 

increasing the efficacy of this process.  

 

The levels of CL in membranes of the Gram-positive bacteria studied here were four to five 

times greater than those of Gram-negative organisms, which paralleled a circa twentyfold 

increase in antibacterial potency (Table 1). These observations strongly suggested that CL-

mediated mechanisms would make a major contribution to the activity E2EM-lin against S. 

aureus and B. subtilis, and the peptide’s preference for Gram-positive bacteria. Nonetheless, 

although CL induced high levels of α-helical structure in E2EM-lin (Table 2), the lipid 

appeared not to directly promote the membranolytic activity of the peptide. The role of CL in 
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the antibacterial action of E2EM-lin was unclear but it is well established that the lipid is able 

to modulate multiple membrane properties that can influence the action of AMPs [74]. This 

ability underpins a number of antimicrobial mechanisms that have been recently reported for 

AMPs and has the potential to explain the inability of CL to promote high levels of 

membranolysis by E2EM-lin [58-60, 75, 76]. In particular, studies on some of these AMPs 

showed that the high levels of CL found in the membranes of Gram-positive bacteria, such as 

S. aureus (Table 2), were able to inhibit the lytic action of these peptides but not their ability 

to bind the bilayer surface. This inhibitory action appeared to derive from the intrinsic 

structural properties of CL; namely the ability of its cone shaped molecule to promote negative 

membrane curvature, thereby countering the tendency of AMPs to induce positive membrane 

curvature and inhibiting toroidal pore formation by these peptides [59, 60]. Mechanisms of this 

type would be consistent with the fact that E2EM-lin interacted with the head-group region of 

CL membranes but appeared unable to penetrate their hydrophobic acyl chain region (Figure 

7A). Presumably, in this paradigm, the major promoter of E2EM-lin activity against Gram-

positive bacteria would be PG-driven lytic mechanisms (Figure 7). There is also the possibility 

that CL promotes the antibacterial activity of E2EM-lin through non-lytic mechanisms of 

membrane interaction and such mechanisms have recently been reported for a number of AMPs 

[61, 62]. For example, some AMPs show high activity against B. subtilis using a novel 

mechanism that was based on neither membrane lysis nor the use intracellular sites of action. 

Rather, this mechanism involved peptide interactions with CL-rich PE microdomains in B. 

subtilis membranes, thereby influencing the functional organization of these membranes and 

initiating effects on cell metabolism and homeostasis that promoted cell death [61]. Clearly, 

similar non-membranolytic mechanisms could not feature in the antibacterial action of E2EM-

lin against S. aureus; PE is absent from the membranes of this organism (Table 2) and in this 

case, it would seem that the antibacterial action of the peptide would be driven by PG-mediated 

lytic action (Figure 8). In relation to Gram-negative bacteria, the low PG content of their 

membranes (Table 2) would suggest that lytic mechanisms driven by this lipid do not make a 

major contribution to the action of E2EM-lin against these organisms (Figure 8). The low CL 

content of these membranes (Table 2) also renders it unlikely that mechanisms similar to those 

described above, which enable the lipid to effectively inhibit the action of AMPs, would have 

a major impact on the action of E2EM-lin against Gram-negative bacteria [58-60]. PE lipids 

are by far the major component of membranes from Gram-negative bacteria (Table 2) and non-

membranolytic, mechanisms involving interactions with CL-rich PE microdomains have been 
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reported for AMPs that kill E. coli [62]. These mechanisms show similarities to those described 

above for B. subtilis [61] and involve the perturbation of the lipid organization in E. coli 

membranes, which promotes inhibition of the cell division process and death of the organism 

[62]. It is possible that similar mechanisms may contribute to the action of E2EM-lin against 

E. coli and P. aeruginosa; however, based on our data, the primary driving force behind the 

action of the peptide towards Gram-negative bacteria would seem to be the induction of 

membranolytic α-helical structure by PE (Figure 4, Table 2). Indeed, the lower ability of this 

lipid to induce such structure in E2EM-lin (Table 2) in comparison to PG would seem to be a 

major reason for the peptide’s reduced efficacy towards Gram-negative bacteria in relation to 

Gram-positive bacteria (Table 1). Moreover, similarly to CL, PE is able to modulate multiple 

membrane properties that can influence the antimicrobial mechanisms of AMPs and in a 

number of cases, this ability involves the capacity of the cone-shaped molecule possessed by 

this lipid to promote negative membrane curvature [77]. For example, it was proposed that this 

ability may help facilitate the preferential extraction of PE from E. coli membranes by 

cycloviolacin O2 from Viola odorata, thereby promoting membrane thinning and the 

membranolytic action of the peptide against this organism [78]. In particular, it is well 

established that the ability of PE to adopt non-lamellar structures and promote negative 

membrane curvature enhances the capacity of tilted AMPs to destabilize and permeabilize 

membranes [79, 80], as proposed for these AMPs when directed against E. coli [81]. It seems 

possible that this ability could help facilitate the action of E2EM-lin against E. coli, P. 

aeruginosa and the other Gram-negative organisms studied here, as well as that against some 

of the Gram-positive bacteria (Table 2). 

 

In conclusion, E2EM-lin shows specificity and potent efficacy towards Gram-positive bacteria, 

and when taken with the low haemolytic activity of the peptide, the potential for development 

as an agent to combat these organisms is suggested [35]. Gram-positive bacteria are the causes 

of many serious clinical infections due to their association with a diverse spectrum of 

pathologies, particularly those with MDR such as methicillin-resistant Staphylococcus aureus 

and vancomycin-resistant enterococci [82, 83]. This preference for Gram-positive bacteria 

could also support the suggested role for E2EM-lin as a thermostable, antimicrobial agent in 

the food industry [35]; a variety of Gram-positive bacteria able to tolerate high temperatures 

are known to act as food spoilage organisms [84].  
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Supplementary data 

Figure 1. Mass spectrometry data for E2EM-lin

 

C. Mass spectrum of E2EM-lin 

 

Figure 1C shows a MALDI-TOF time-of-flight mass spectrum of positive ions from E2EM-

lin at a mass of 3747.67, confirming the prediction of Chemdraw (Figures 1A and 1B). 
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Figure 2. The analysis of E2EM-lin in aqueous solution and organic solvents.  

 

 

Figure 2 shows CD spectra of E2EM-lin in different environmental conditions. In aqueous 

solution (PBS, 10.0 mM, pH 7.4), the peptide displayed spectra with a minimum at 200 nm 

and a weak band near 222 nm (Purple curve), which indicated random coil and β-type 

structures. In contrast, in individual TFE (Black curve) and a 50 % (v/v) mixture of TFE / PBS 

(10.0 mM, pH 7.4), E2EM-lin displayed curves with two minima near 210 and 224 nm, 

respectively, and maxima at 193 nm (Green curve), which is typical of α-helical peptides [44]. 

Analysis of these spectra showed that E2EM-lin exhibited levels of α-helicity that were  9.3% 

in aqueous solution (PBS, 10.0 mM, pH 7.4), 66.0% in TFE and 72.0% in 50 % (v/v) mixture 

of TFE / PBS (10.0 mM, pH 7.4). In each case, the remaining structural contributions were 

from random coil and β-type structures. 
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Figure 3. Pressure–area isotherms for E2EM-lin / lipid monolayers 

 

 

Figure 3 shows pressure–area isotherms for lipid monolayers in the absence and presence of 

E2EM-lin. Figures 3A and 3B show isotherms for DMPG (Orange), CL (Green) and DMPE 

(Turquoise) in the absence and presence of E2EM-lin, respectively. Figures 3C and 3D show 

isotherms for lipid monolayer mimics of bacterial membranes from E. coli (Blue), P. 

aeruginosa (Green), B. subtilis (Grey) and S. aureus (Orange) in the absence and presence of 

E2EM-lin, respectively. In all cases, in the absence of peptide, these lipid monolayers showed 

collapse pressures that ranged between 20.0 mN m-1 and 35.0 mN m-1 (Figure 3A and 3C) but 

in the presence of E2EM-lin, collapse pressures varied between 35.0 mN m-1 and 40.0 mN m-

1 (Figures 3B and 3D). Analysis of these isotherms showed that for each of the bacterial 

membranes studied, the presence of the peptide led to increases in Cs
-1 and values of ΔGmix > 

0 (Table 3), consistent with partitioning by E2EM-lin and thermodynamic destabilisation of 

the these membranes [50]. In each case, the data are the mean of five replicates.  

 

 

 


