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Abstract: Observational epidemiological studies indicate that endometriosis and migraine co-occur
within individuals more than expected by chance. However, the aetiology and biological
mechanisms underlying their comorbidity remain unknown. Here we examined the relationship
between endometriosis and migraine using genome-wide association study (GWAS) data. Single
nucleotide polymorphism (SNP) effect concordance analysis found a significant concordance of SNP
risk effects across endometriosis and migraine GWAS. Linkage disequilibrium score regression
analysis found a positive and highly significant genetic correlation (rc=0.38, P =2.30 x 10-%) between
endometriosis and migraine. A meta-analysis of endometriosis and migraine GWAS data did not
reveal novel genome-wide significant SNPs, and Mendelian randomisation analysis found no
evidence for a causal relationship between the two traits. However, gene-based analyses identified
two novel loci for migraine. Also, we found significant enrichment of genes nominally associated
(Pgene < 0.05) with both traits (Poinomiattest = 9.83 x 10°). Combining gene-based p-values across
endometriosis and migraine, three genes, two (TRIM32 and SLC35G6) of which are at novel loci, were
genome-wide significant. Genes having Pgene < 0.1 for both endometriosis and migraine (Pbinomial-test=
1.85 x10-°%) were significantly enriched for biological pathways, including interleukin-1 receptor
binding, focal adhesion-PI3K-Akt-mTOR-signaling, MAPK and TNF-a signalling. Our findings
further confirm the comorbidity of endometriosis and migraine and indicate a non-causal
relationship between the two traits, with shared genetically-controlled biological mechanisms
underlying the co-occurrence of the two disorders.

Genes 2020, 11, 268; doi:10.3390/genes11030268 www.mdpi.com/journal/genes
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1. Introduction

Endometriosis is one of the leading gynaecological disorders affecting 6%-10% of women of
reproductive age and 35%-50% of women with infertility worldwide [1,2]. The disorder is defined by
the presence of endometrial tissue in extra-uterine locations and characterised by varying degrees of
pelvic, menstrual, abdominal, bowel and lower-back pain as well as infertility [1,2]. With an estimated
global prevalence of 14.7%, migraine, on the other hand, is the most disabling neurologic disorder and
the third most common illness worldwide [3,4]. Like endometriosis, women in their reproductive and
most productive years are more commonly affected with migraine [5,6]. A typical migraine presents
with a recurrent, unilateral and episodic headache of moderate to severe intensity [7]. Both
endometriosis and migraine portend substantial morbidity with wide-ranging socioeconomic burdens
to sufferers, their families, relationships, and the society at large [8-11]. Notably, the diagnosis of the
two disorders is challenging, due to a lack of diagnostic markers, which often results in missed or
delayed diagnosis. Also, the aetiology and pathogenesis of endometriosis and migraine remain
relatively obscure, and there are currently no known curative treatments for them.

While endometriosis and migraine appear to have clear-cut distinctions —anatomically, as well as
in terms of clinical diagnosis and disease classification—some shared epidemiological characteristics
or similarities suggest a comorbid relationship between them. For instance, similar to endometriosis,
which almost exclusively affects women [12], migraine has a substantially higher prevalence in
women (15%-18%) compared to men (6%), and women of reproductive age also experience a longer
duration of migraine attacks with greater disability [13-16]. The two disorders share similar risk
factors in women including early menarche, menorrhagia, and involvement of the menstrual cycle in
their pathogenesis [17-19]. Indeed, increased exposure to menstruation is a known risk factor for
endometriosis just as menstrual migraine and menstrually-related migraine (with prevalence varying
from 4%-70%) are common subtypes of migraine in women [20-24]. Furthermore, Danazol (a
synthetic androgen for managing endometriosis) has been reported to reduce the frequency of
migraine attacks [25]. In addition to their shared similarities and risk factors, the comorbidity
(co-occurrence of two or more conditions in the same individual) of endometriosis with migraine has
been consistently reported by observational epidemiological studies [5,6,18,26-29].

As far back as 1975, for example, a clinic-based study had reported a higher prevalence of
headache (84%) among women diagnosed with endometriosis compared to the control (60%, P = 0.007)
[26]. Interestingly, 28% of the endometriosis cases described their headaches as migraine-like
compared to only 18% (P = 0.023) in control [26]. In a related case-control study, over two times higher
prevalence of migraine was found in endometriosis (38.3%) compared to the control (15.1%, P < 0.001)
[27]. A study investigating the cost implications of endometriosis in the United States similarly found a
three-fold greater prevalence of migraine in endometriosis compared to the general population [28].
More recently, adolescents with surgically confirmed endometriosis had over two-fold greater
prevalence (69.3% vs 30.7%) and nearly five-fold increased odds of migraine (adjusted Odds Ratio
[AOR] = 4.77; 95% CI: 2.53-9.02) compared to their counterparts with no endometriosis [30]. Also, a
recent French case-control study similarly found a higher prevalence of endometriosis in migraine
cases (35.2%) compared to controls (17.4%, P = 0.003) [5].

The consistent and growing evidence on the endometriosis—migraine comorbid relationship,
notwithstanding, some questions remain unanswered. First, is the endometriosis-migraine
comorbidity reported in observational studies a true association, or could the findings be due to the
confounding effects, biases, or otherwise false-positive results of the traditional observational studies?
Second, is there a causal relationship between endometriosis and migraine? Third, are there some
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shared genetic variants, susceptibility loci, genes and biological pathways between the two disorders?
Last, what biological mechanism(s) may underlie possible endometriosis—-migraine comorbidity?

Using a twin-based study approach, Nyholt et al. [13] examined the genetic influences and
comorbidity of migraine and endometriosis and reported that additive genetic factors accounting for
69% (95% CI: 60%—77%) of the phenotypic variance in migraine also account for 17% (95% CI: 8%-27%)
of the variance in endometriosis (i.e., bivariate heritability of 17%)—suggesting shared genetic
influences completely explain their co-occurrence within individuals. Additional bivariate heritability
analyses utilising direction-of-causation twin models did not support endometriosis as the cause of
migraine or vice versa; however, given the sample size and similar heritability for endometriosis and
migraine, these analyses lacked power [13].

To date, genome-wide association studies (GWAS) have identified 19 independent single
nucleotide polymorphisms (SNPs) for endometriosis [31] and 44 for migraine [32]. However,
molecular genetic studies of the association between endometriosis and migraine, including causality
and shared genetic risk variants and loci are currently lacking. Lastly, biological pathways driving
possible endometriosis and migraine comorbidity remain poorly understood. The present study, thus,
aims to assess the molecular genetic overlap, causal relationship and shared pathways between
endometriosis and migraine using GWAS data.

2. Materials and Methods

2.1. Data Sources and Study Samples

We utilise GWAS meta-analysis summary statistics from the International Endogene Consortium
(IEC, endometriosis GWAS data) [31] and the International Headache Genetics Consortium (IHGC,
migraine GWAS data) for analysis in the present study. Summary statistics data sourced from the
United Kingdom Biobank (UKBB, migraine GWAS data) were used in testing the reproducibility of
our findings for SNP-level genetic overlap and correlation studies.

2.1.1. IEC Endometriosis GWAS Data

The ‘IEC endometriosis’ GWAS summary statistics utilised in this study represent the largest
endometriosis genetic study published to date [31]. The data combined 11 separate GWAS case-control
datasets (QIMRHCS, deCODE, LEUVEN, OX, 23andMe, NHS2-dbGaP, WGHS, iPSYCH, BB],
Adachi-6, and Adachi-500K) consisting of 17,054 cases of endometriosis (all stages of endometriosis)
and 191,858 controls (n = 208,912). A total of 6,979,035 SNPs passed quality control in six or more (at
least 50%) of the studies and those were included in a fixed-effect meta-analysis [31]. Study
participants in the GWAS were of European (approximately 93%) and Japanese ancestries (from
Australia, Belgium, Denmark, Iceland, Japan, the UK, and the USA). Endometriosis was surgically
confirmed (using the revised American Fertility Society system [33]) in cases from QIMRHCS, OX,
deCODE and LEUVEN studies, while cases from other studies were self-reported or their diagnosis
was based on combined self-report and surgical records [31]. Similar quality control procedures were
used in each of the GWAS. A detailed description of these GWAS, the quality control and the analyses
carried out have previously been published [31].

2.1.2. IHGC Migraine GWAS Data

Our migraine data were sourced from the 2016 IHGC (http://www.headachegenetics.org)
migraine GWAS, which meta-analysed migraine summary statistics from 22 GWAS (obtained from six
tertiary headache clinics and 27 population-based cohorts) [32]. A total of 59,674 migraine cases and
316,078 controls were included in the meta-analysis, and all participants were unrelated individuals of
European ancestry [32]. Diagnosis of migraine was through self-reported questionnaires or clinical
interview, and, in line with the criteria of the International Classification of Headache Disorder (ICHD)
[34]. Standard protocols for quality control were included and a common 1000 Genomes Project [35]



Genes 2020, 11, 268 4 of 28

reference panel (Phase I, v3) was used in imputing missing genotypes into each of the samples.
Logistic regression analysis was conducted on the imputed genotypes in each of the GWAS for
association analysis [32].

To account for possible population stratification and other confounders, an adjustment was made
for the top ten principal components, sex and other covariates where necessary [32]. The GWAMA
program [36] was used to perform a combined fixed-effect meta-analysis. SNPs were filtered based on
imputation quality and other metrics [32]. A detailed and more comprehensive description of the
‘IHGC migraine” GWAS sample has previously been published [32]. The data utilised in the present
study were restricted to 29,208 cases and 172,931 controls (n = 202,139) with a total of 8,935,979 SNPs,
following the exclusion of the 23andMe GWAS sample (30,465 migraine cases and 143,147 controls).
The 23andMe GWAS sample was excluded to ensure there was no sample overlap between the ‘IEC
endometriosis” GWAS data (which comprise 23andMe GWAS data) and the ‘ITHGC migraine” GWAS
data.

2.1.3. United Kingdom (UK) Biobank Data

The UK Biobank is a large, population-based cohort study that was established in the United
Kingdom in the year 2006. A total of 500,000 volunteers aged 40-69 years were recruited for the study
between 2006 and 2010 with the aim of investigating the genetic and environmental determinants of
health and diseases [37]. Extensive genotype and phenotype data, including biological samples,
physical measurements, health and lifestyle information, multimodal imaging, and genome-wide
genotyping have been collected from these study participants [37]. Also, a variety of their
health-related outcomes are being followed up [37]. Anonymised data from the study are made
available to researchers via an application process [37]. We utilised UK Biobank GWAS summary
statistics for migraine sourced from the Neale Lab, which performed linear regression analysis
controlling for 10 principal components of ancestry, in a sample of 337,159 unrelated individuals of
“White British” ancestry, comprising 10,007 self-reported migraine cases and 327,152 controls
(https://nealelab.github.io/UKBB_ldsc/h2_summary_20002_1265.html, downloaded 12/03/2018)
GWAS summary statistics were available for 10,894,597 SNPs.

2.2. SNP Effect Concordance Analysis (SECA)

We assessed the genetic overlap between the ‘IEC endometriosis’ GWAS data and the 'IHGC
migraine” GWAS data using SECA (https://sites.google.com/site/qutsgel/software/seca-local-version)
[38]. SECA utilises GWAS summary statistics data and tests whether the direction of single nucleotide
polymorphism (SNPs) are positively correlated across GWAS results thereby facilitating the
assessment of genetic overlap between traits [38]. We formatted our datasets appropriately so that
SECA requirements were met [38]. Thereafter, the ‘IEC endometriosis’" GWAS data was assigned, for
SECA analysis, as dataset 1 and the ‘THGC migraine’” GWAS as dataset 2. SECA first aligns the SNP
effects across dataset 1 and dataset 2 to the same effect allele, and, subsequently extracts a subset of
independent SNPs by utilising a ‘p-value informed” SNP clumping, accounting for linkage
disequilibrium (LD) between SNPs.

For each of the ‘IEC endometriosis’ and ‘IHGC migraine’” GWAS datasets, SECA partitions the
extracted SNPs into 12 p-value subsets which ranges from 0.01 to 1 (P <0.01, 0.05, 0.1, 0.2, 0.3. 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0). The p-value partitioning yields 144 subsets of SNPs from all possible
combinations of dataset 1 (P1, 12 SNP subsets) with dataset 2 (P2, 12 SNP subsets). SECA performs two
tests: a binomial test to assess the presence of excess SNP subsets associated between the two datasets,
and, the Fisher exact test for the concordance in the direction of effect of the individual SNPs across
datasets 1 and dataset 2 [38].

Our SECA analysis was restricted to SNPs that are most strongly associated with dataset 1; hence,
we swapped ‘IEC endometriosis’ GWAS data as dataset 2 and ‘IHGC migraine’ GWAS data as dataset
1 in an analogous analysis. This ability to condition on one of the GWAS datasets (not possible using
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the linkage disequilibrium score regression method can help determine whether an observed genetic
overlap is driven similarly by both datasets, or driven predominantly by one dataset. We estimated LD
using the 1000G Phase I v3 CEU genotype data and LD pruning prioritised SNPs with smaller
p-values (P1) in dataset 1. Also, we tested the reproducibility of our study using independent migraine
summary statistics GWAS data from the UKBiobank.

2.3. Linkage Disequilibrium Score Regression (LDSC)

We estimated the SNP-based heritability and cross-trait genetic correlation for endometriosis and
migraine using the LDSC software (https://github.com/bulik/ldsc). The ‘IEC endometriosis” and ‘IHGC
migraine” GWAS data were utilised in the analysis. These datasets were formatted using the
‘munge_sumstats.py’ script in line with the LDSC documentation
(https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation). We performed univariate
LDSC analyses to estimate SNP-based liability heritability (h2sne) using the ‘IEC endometriosis’
(sample prevalence = 8.2%, population prevalence = 8% [31]) and the ‘IHGC migraine’ (sample
prevalence = 14.5%, population prevalence = 15% [39])) GWAS data. Also, to estimate the genetic
correlation (rc) between the two traits, we conducted a bivariate cross-trait LDSC analysis utilising the
‘IEC endometriosis’ GWAS data and the ‘THGC migraine’ GWAS data. This analysis complements our
SECA-based study in assessing the genetic overlap between endometriosis and migraine. We
constrained the intercept to one for ‘IEC endometriosis’ GWAS data (both in heritability and cross-trait
LDSC correlation analysis) because the estimated intercept (without constraining) was not
significantly different from one. We also constrained the genetic covariance intercept to zero (in the
cross-trait LDSC correlation analysis) given there was no sample overlap between the two datasets.
The intercept for all migraine data was significantly different from one, hence, their estimated
intercepts (obtained without constraining) were retained in the model. In all the LDSC analyses, we
calculated the LD scores based on the European 1000 Genomes Project haplotype reference data (Phase
I, v3). Last, we repeated the above analysis procedures using the ‘IEC endometriosis’ GWAS data and
the migraine GWAS data from the UKBB ("UKBB migraine’ GWAS data).

2.4. Cross-Disorder Meta-Analysis of Endometriosis and Migraine

We conducted a cross-disorder meta-analysis of the ‘IEC endometriosis’ and the ‘THGC migraine’
GWAS summary statistics data to identify possible genetic variants and loci shared by both
endometriosis and migraine. The inverse variance-weighted fixed effect (FE) and ‘Han and Eskin’s
random effect’ (RE2) models, implemented in METASOFT (http://genetics.cs.ucla.edu/meta/), were
utilised in the meta-analysis. We accounted for possible between-study heterogeneity using RE2—a
modified random effect model. Unlike the traditional random effect (RE) model, which is highly
conservative, RE2 has greater power under heterogeneity [39-41]. We included a total of 411,051
participants in the analysis, and meta-analysed the 6,904,914 SNPs overlapping the two GWAS. We
aimed at identifying novel cross-disorder genome-wide significantly enriched (P <5 x 10-9) SNPs and
loci associated with both endometriosis and migraine.

2.5. Mendelian Randomisation (MR)

To assess the causal relationship between endometriosis and migraine, we performed a
two-sample Mendelian Randomization analysis (“TwoSampleMR”) [42] utilising genome-wide
significant (P < 5 x 108) SNPs associated with ‘IEC endometriosis’ summary statistics data.
Randomised controlled trials (RCTs) are considered the most reliable evidence for drawing causal
inferences. However, due to limitations such as substantial costs, non-availability of appropriate
interventions and controls and certain ethical constraints [43,44], conducting an RCT may not always
be feasible. MR analysis mimics the design of an RCT thereby providing an alternative approach to
assessing and estimating the causal relationship between an exposure and outcome variables [45].
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MR method is anchored on the principle of Mendel’s law of inheritance—gene segregation and
natural randomisation at gamete formation which is comparable to the experimental randomisation in
RCTs. The method is supported by the understanding that genotypes are naturally fixed at conception
and generally not subject to confounding effects or bias of reverse causation [45]. MR analysis, thus,
exploits the presence of specific genetic variants associated with the variable of interest as proxies for
assessing causality with the outcome of interest. The effect of the genetic variants (instrumental
variables, IVs) on the outcome is expected to be through the exposure variable (vertical pleiotropy).
Although not without limitations—possible violations of some of its assumptions—MR analysis is
increasingly being used as an unbiased causality detection, and, where possible, estimation method
[45].

In the present study, we performed “TwoSampleMR” analyses [42]. First, we extracted a total of
338 SNPs associated with endometriosis, in the ‘IEC endometriosis” GWAS data, at a genome-wide
significance level (P <5 x 10-%). We assigned endometriosis as the exposure variable and migraine
('IHGC migraine” GWAS data) as the outcome variable. Following LD clumping (r? < 0.001; to ensure
the independence of the extracted SNPs), 11 genome-wide significant SNPs associated in the ‘IEC
endometriosis’ GWAS were retained as our IVs. Second, we extracted SNP effects from the outcome
('IHGC migraine’” GWAS) data. To ensure that the SNP effects on exposure and outcome data
correspond to the same allele, we carried out harmonisation of both the exposure and the outcome
variables.

Last, we conducted a “TwoSampleMR” analysis using the inverse variance weighted (IVW)
method. IVW estimates are essentially the weighted average of the individual Wald-type ratios for
each of the IVs. The IVW method assumes the absence of horizontal pleiotropy or a balance of same
among the IVs. We conducted sensitivity analyses to address a possible violation of this assumption
using the weighted median (which provides valid causal estimates even if up to 50% of the IVs have
pleiotropic effect) [46], and the MR-Egger method (which corrects pleiotropy and provides valid
causal estimates even if all the IVs are invalid) [47]. We implemented the “TwoSampleMR” [42]
analysis methods in the R statistical package following a well-established protocol
(https://mrcieu.github.io/TwoSampleMR/).

MR analyses are based on three fundamental assumptions [48]. First, is that a robust association
exists between the selected genetic variants (IVs) and the exposure variable [48]. This assumption can
easily be validated, and we utilised only the genome-wide significant (P <5 x 10-%) SNPs associated
with endometriosis thereby satisfying the assumption. Second, is that the IVs are not associated with
potential confounders [48]. We acknowledge that this assumption is difficult to prove, however, to
reduce chances of violating it, we ensured that our IVs were independent. Also, we assessed the
association between the IVs and age at menarche, age at menopause, menorrhagia, oestrogen level, as
well as oral contraceptives use—all of which are possible risk factors for endometriosis and migraine
[17-19]. This assessment was carried out using PhenoScanner v2 [49]
(http://www.phenoscanner.medschl.cam.ac.uk, accessed on 2" September 2019), at P < 1 x 10
(suggestive genome-wide significance level). Our IVs were not associated with any of these traits,
except “rs74485684” which we found to be associated with ‘length of menstrual cycle’ and ‘excessive,
frequent and irregular menstruation” (Supplementary Table 1). To address possible pleiotropy implied
by this finding, we carried out a ‘leave-one-out’ MR analysis.

The third assumption, which is also difficult to validate, is that the IVs do not affect the outcome
through any alternative pathway other than the exposure variable, that is, there is no horizontal
pleiotropy [48]. We conducted a test for horizontal pleiotropy as well as used alternative MR
approaches including MR-Egger, and weighted median, to minimise the possibility of breaching this
assumption.

2.6. Gene-Based Association Study

Gene-based analysis examines associations between a trait of interest and all SNPs while
accounting for LD and allelic heterogeneity between the SNPs [50]. Compared to SNP-level studies (in
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which individual SNPs are assessed), gene-based studies are more powerful in gaining mechanistic
insights into the biology of complex traits [50] given that, as the basic functional units of the human
genome, they are more closely related to biological mechanisms than SNPs. Thus, to identify genes
associated with endometriosis and migraine as well as further assess the molecular genetic overlap
between the two traits, we conducted gene-based tests using Vegas2 software
(https://vegas2.qimrberghofer.edu.au/) [51]. Vegas2 is user-friendly, computationally tractable, and
has been used extensively in studies [31,51]. We utilised the ‘IEC endometriosis’ and 'IHGC migraine’
GWAS data for the Vegas2 gene-based analyses.

Prior to conducting Vegas2 analyses, we extracted all SNPs from each of the two GWAS data.
Following the exclusion of SNPs with no rsIDs, a total of 6,978,534 SNPs from the ‘IEC endometriosis’
GWAS and 8,175,736 SNPs from the ‘IHGC migraine’ GWAS were available for analysis. However, to
ensure equivalent gene-based tests were performed for both disorders, we restricted Vegas2 analyses
to a total of 6,904,914 SNPs overlapping the ‘IEC endometriosis’ and ‘IHGC migraine” GWAS. We
utilised the following Vegas2 options: Use SNPs from = “1000G EUROPEAN’; Select Sub-population
from = ‘ALL EUROPEAN’; Use Gene definition from = ‘+/- 0 kb outside gene’; and Chromosome =
‘All'. Importantly, rather than the default ‘Top-x% test with top 100 per cent’ test, we specified the
‘Best-SNP test’. These analysis procedures were carried out separately for the ‘IEC endometriosis” and
‘IHGC migraine’” GWAS data. We extracted nominally significant genes (at P < 0.1, P < 0.05, and P <
0.01) from Vegas2 outputs for each of the two traits and assessed those for overlapping genes between
endometriosis and migraine. We also estimated gene-based Fisher’s combined p-values (FCP) for
association (at Pgene < 0.1) across endometriosis and migraine to assess genes overlapping the two traits
at a genome-wide level of significance.

Due to the presence of ‘LD between the most significant SNP ("Best-SNP’) assigned to each gene,
gene-based association results could be correlated across neighbouring genes’ [52]. Hence, we
estimated the effective number of independent genes (independent gene-based tests) by examining the
LD between the ‘Best-SNP’ assigned to each gene. Briefly, we estimated the effective number of
independent gene-based tests in both the endometriosis and migraine datasets utilising the ‘genetic
type 1 error calculator’ (GEC) software [53]. This analysis adjusts for multiple testing corrections
taking into account correlation due to LD which may exist across neighbouring genes in our
gene-based results. ‘Best-SNPs’ from the endometriosis and migraine Vegas2 results were processed as
input files for GEC analysis [53]. GEC first partitions input SNPs into LD blocks with the assumption
that LD blocks are independent (rip < 0.1), and thereafter estimates the effective number of
independent SNPs (hence, the independent gene-based tests) in the LD blocks.

2.7. Overlapping Genes and Statistics Tests

To allow for differences in power across the endometriosis and migraine GWA studies, we
generated gene sets with gene-based association p-values less than three nominal p-value thresholds
(Pgene < 0.1, Pgene < 0.05, and Pgene < 0.01). For each gene set, estimates of the effective number of
independent gene-based tests were calculated by GEC [53]. We assigned endometriosis as the
‘discovery’ set and migraine as the ‘target’ set to test whether the proportion of overlapping genes was
more than expected by chance. The observed number of overlapping genes was defined as ‘the
effective number of independent genes with p-values less than the threshold in both the discovery and
target sets’ [52]. The observed proportion of overlapping genes was ‘calculated as the observed
effective number of independent overlapping genes divided by the effective number of independent
genes with a p-value less than the threshold in the discovery set’ [52]. The expected proportion of
overlapping genes was calculated as the effective number of independent genes with a p-value less
than the threshold in the target set divided by the total effective number of independent genes in the
target set. The statistical significance of whether the number of overlapping genes was more than
expected by chance was calculated using one-sided exact binomial test. We also report the raw number
of genes in the gene sets to highlight the importance of estimating the effective number of independent
genes.
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2.8. Pathway-Based Functional Enrichment Analyses

To further elucidate potential biological mechanisms underlying the co-occurrence of
endometriosis and migraine, we conducted pathway-based functional enrichment analyses. The
protocols proposed by Reimand and colleagues [54] for enrichment analysis (using the g:Gost tool in
g:Profiler [55]), visualisation (using Enrichmentmap [56]) and interpretation (using auto annotate [54])
of enriched pathways were adopted in this study. The g:Gost tool, implemented in g:Profiler, performs
statistical enrichment analysis and automates the functional annotation of user-inputted genes based
on their molecular, cellular and biological functions [54,55], thereby identifying over-represented
(significantly enriched) biological pathways for the trait(s) of interest [54,55]. We utilised the
web-based (http://biit.cs.ut.ee/gprofiler/) version of the tool, which is user-friendly. Notably, g:Gost’s
databases, including Gene Ontology, WikiPathways and Human Phenotype Ontology (for human
disease phenotypes), are updated on a regular basis [55]. Regulatory motifs matches (TRANSFAC),
miRNA targets (miRTarBase), Human Protein Atlas (for tissue specificity), CORUM (for protein
complexes) and Biological pathways (Kyoto Encyclopedia of Genes [KEGG], as well as Reactome) are
also included in the g:Gost tool of g:Profiler [55].

In the present study, we utilised the g:Gost tool of g:Profiler (accessed 15t October 2019) to perform
pathway-based functional enrichment analysis [54,55] using genes overlapping endometriosis and
migraine at Pgene < 0.1 [52]. We employed the ‘g:SCS algorithm’ recommended for multiple testing
correction in the g:Gost analysis, and restricted our results to only significantly enriched pathways at
Pagj < 0.05 (adjusted p-value for multiple testing correction [54]). Also, the size of the functional
category (term size) was restricted to within 5 and 350 values (minimum and maximum) as
recommended [54]. Several of the pathways enriched in g:Gost tool may be redundant. Therefore, we
utilised the ‘Enrichmentmap” application to produce ‘enrichment maps’ by collapsing related versions
of over-represented pathways (g:Gost results) into simplified biological themes—thus, eliminating
redundancy and enhancing the visualisation of enriched pathways [54,56]. We also utilised the ‘auto
annotate’ application, to promote the interpretation of enriched pathways by organising ‘enrichment
maps’ into clusters [54]. We implemented both ‘Enrichmentmap’ and ‘auto annotate’ tools via the
Cytoscape environment [54,57].

3. Results

3.1. SECA: Genetic Overlap between Endometriosis and Migraine

SECA reveals significant concordance of SNP effects across the endometriosis and migraine
GWAS, indicating that a strong molecular genetic overlap exists between the two traits. All 144 SNP
subsets produced Fisher’s exact tests with at least nominally significant concordance effects (OR > 1
and P < 0.05) between the ‘IEC endometriosis’ GWAS data (dataset 1) and ‘IHGC migraine” GWAS
data (dataset 2) [Prsig-permuted = 9.99 x 1004 95%CI: 5.12 x 10 — 5.64 x 10-%]. The most statistically
significant concordance test was produced by SNP subsets with ‘IEC endometriosis’ GWAS Passoc < 0.2
and the ‘IHGC migraine” GWAS Passoc < 0.6 (ORer= 1.36; PFTmin-permuted = 1.66 x 10-32). Moreover, a total of
59,188 independent SNPs was shared by both endometriosis and migraine (SNP subsets with P1 = P2 =
1), out of which 30,790 (52%) showed concordance effect (Table 1). The test of association between the
two traits (for SNP subsets with P1 = P2 = 1) was positive and highly significant statistically (OR =1.18,
Fisher's p-value [two-sided] = 8.77 x 10-2%). Importantly, SNP effect concordance increased as one
conditioned on SNPs with smaller p-values. For example, the risk increasing alleles were concordant
(OR = 1.92, Fisher’s p-value [two-sided] = 2.23 x 10) for 804 (58%) of the 1,383 independent
endometriosis and migraine SNPs with nominally significant p-values (P1 = P2 < 0.05) [Table 1]. The
proportion of concordance further increased to 66% (OR = 3.61, Fisher's p-value [two-sided] = 7.20 x
104) for the 128 independent endometriosis and migraine SNPs with p-values (P1 and P2) < 0.01
(Table 1).
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Table 1. SNP effect concordance analysis (SECA) results for the test of genetic concordance between
endometriosis and migraine.

P1 P2 Concordant = Discordant Total Proportion of OR p
SNPs SNPs SNPs concordance

1 1 30790 28398 59188 0.52 1.18 8.77 x 107
0.9 0.9 27540 25213 52753 0.52 1.19 4.11 x 102
0.8 0.8 24222 21971 46193 0.52 1.22 1.30 x 10
0.7 0.7 20842 18665 39507 0.53 1.25 6.60 x 10728
0.6 0.6 17474 15458 32932 0.53 1.28 1.23 x 1028
0.5 0.5 14218 12383 26601 0.53 1.32 2.69 x 10
0.4 0.4 10973 9415 20388 0.54 1.36 1.31 x 10>
0.3 0.3 7804 6510 14314 0.55 1.44 3.21 x 10%
0.2 0.2 4771 3855 8626 0.55 1.53 6.92 x 107
0.1 0.1 1946 1496 3442 0.57 1.69 2.06 x 1074
0.05 0.05 804 579 1383 0.58 1.92 2.23 x 10
0.01 0.01 85 43 128 0.66 3.61 7.20 x 10~

P1: International Endogene Consortium (IEC) Endometriosis data p-value; P2: International Headache
Genetics Consortium (IHGC) migraine data p-value; SNP: single nucleotide polymorphism; OR: odds
ratio for the effect direction concordance association test for endometriosis and migraine; P: Fisher’s
exact p-value for the effect direction concordance association test between endometriosis and

ity rfa\]l}frialogous analysis where the ‘IHGC migraine” and ‘IEC endometriosis’ GWAS dataset
order was reversed (designated dataset 1 and dataset 2, respectively), the number of SNP subsets with
significant effect concordance remained unchanged at 144 (Prsig-permuted = 9.99 x 10-%; 95%ClI: 5.12 x 105
- 5.64 x 10%) and produced a similar pattern of results as before. The subset of SNPs producing the
most statistically significant concordance test was Passoc < 0.6 for the ‘IHGC migraine” and Passoc < 0.6 for
the ‘IEC endometriosis” GWAS (ORrr= 1.27; Prrmin-permuted = 1.35 x 10-26),

We replicated SECA analysis using another independent migraine GWAS data from the
UKBiobank. Our results confirmed significant SNP effect concordance between the ‘IEC
endometriosis” GWAS data and the ‘UKBiobank migraine’ GWAS data with 85 SNP subsets showing
significant concordance of effect direction (Prsig-permuted = 4.0 x 1079%; 95%CI: 1.56 x 10 - - 1.02 x 10 —2).
The most significant test was for SNP subsets with ‘IEC endometriosis’ GWAS Passoc < 0.1 and
‘UKBiobank migraine’” GWAS Passoc < 0.2 (ORer = 1.20; Prrminpermuted = 4.83 x 10-4). An analogous
concordance test where the “‘UKBiobank migraine” and ‘IEC endometriosis’ GWAS dataset order was
reversed (designated dataset 1 and dataset 2, respectively) similarly indicated significant effect
concordance with 119 SNP subsets producing Fisher’s exact tests with at least nominally significant
concordance effects (Prsig-permuted = 9.99 x 10-%4; 95%CI: 5.12 x 10-95 — 5.64 x 10-%) between the two datasets.
The most statistically significant subset being SNPs with “UKBiobank migraine” GWAS Passoc < 0.1 and
‘IEC endometriosis” GWAS Passoc < 0.05 (ORrr= 1.48; Prrmin-permuted = 1.10 x 10704).

3.2. LD Score Regression Results for Endometriosis-Migraine

Our univariate LDSC analysis estimated SNP-based liability heritability (h?r) of 11.44% (95%CI:
10.73%-12.15%) and 8.99% (95%CI: 8.23%-9.75%), for the ‘IEC endometriosis’ and ‘IHGC migraine’
GWAS, respectively (Table 2). Cross-trait bivariate LD score regression analysis revealed a moderate,
positive and highly significant genetic correlation between endometriosis and migraine (r¢=0.38, P =
2.30 x 10%). Using the ‘UKBiobank migraine” GWAS data, we estimated a h?xr of 16.87% (96%CI:
15.07%-18.67%, Table 2) for migraine and a statistically significant positive correlation between the
‘IEC endometriosis’ and ‘“UKBiobank migraine’ GWAS data’ (rc=0.14, P = 1.60 x 10-3).

Table 2. Linkage disequilibrium (LD) score regression summary.

SNP-based Heritability

Phentype Dataset Valid SNPs  Liability scale h?sne (95% Intercept (se)
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source in analysis CI

Endometriosis IEC 1,157,235 11.44% (10.73 - 12.15%) Constrained to 1
Migraine IHGC 1,173,223 8.99% (8.23 — 9.75%) 1.0232 (0.008)
Migraine UKBB 1,177,705 16.87% (15.07 — 18.67%) 1.0122 (0.007)
SNP-based Genetic Correlation
Phenotype 1 Phenotype2 | SNPswith  rc (se) Phenotype1l = Phenotype2 @ Gencov
(data source) (data source) = valid [P-value] Intercept Intercept Intercept

alleles (se)
Endometriosis = Migraine 1,154,255 0.38 (0.0364) Constrained 1.0214 Constrained
(IEC) (IHGC) [230x10%]  tol (specified) to0
Endometriosis = Migraine 1,152,558 0.14 (0.0438) Constrained 1.0136 Constrained
(IEC) (UKBB) 1.60 x 10-°3 tol (specified) to 0

IEC: International Endogene Consortium, IHGC: International Headache Genetics Consortium, UKBB:
United Kingdom BioBank, SNP: single nucleotide polymorphism, h?xp: SNP-based heritability, CI:
confidence interval, se: standard error.

3.3. SNPs Associated with Endometriosis and Migraine

Based on the results of our RE2 meta-analysis model (RE2 selected due to the presence of
heterogeneity), 13 SNPs at one locus, associated with both endometriosis and migraine, were enriched
to genome-wide signficance (Psnes < 5 x 10-%) in our meta-analysis of the ‘IEC endometriosis’ and the
‘IHGC migraine’ GWAS data (Supplementary Table 2). The 13 SNPs (rs11031005, rs11031006,
rs11031040, rs11031047, rs12223987, 1s12278989, 1s3858429, rs4071558, rs4071559, rs4071563,
1575525300, rs7929660, rs7947350) are at a locus (the 11p14.1 locus) which has previously been reported
to be genome-wide significantly associated with endometriosis (with rs74485684 as the index SNP)
[31]. Indeed, all 13 SNPs are in strong LD with the endometriosis lead SNP (rs74485684), 12 having r2>
0.8, and the remaining one, rs12223987, having 2= 0.694. An additional 47 independent SNPs loci
associated with both endometriosis and migraine showed evidence of genome-wide suggestive (P <1
x 1075) association (Supplementary Table 3).

3.4. Mendelian Randomisation (MR)

Table 3 presents the results of the individual Wald-type ratio, IVW MR as well as the various
sensitivity analyses —summarising the association of our IVs with endometriosis and migraine. Given
the large sample size of our ‘IEC endometriosis” GWAS data, the robust association between our IVs
and endometriosis and the approximate F-statistics greater than 30, our IVs are strong and are not
expected to suffer from weak instrument bias [58].
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Table 3. Instrumental variables, Mendelian randomisation (MR) results and sensitivity analyses.

SNPs EA OA Beta SE P(endo) Beta SE P(migr) Beta F-Stat SE P
(endo)  (endo) (migr) (migr) (endo-migr) * (endo-migr) (endo-migr)

rs10167914 A G -0.11 0.02 1.10 x 10~ 0.01 0.01 0.27 -0.11 3727  0.10 0.27

rs11674184 T G 0.12 0.01 2.67 x 1077 -0.02 0.01 0.16 -0.13 7140 | 0.09 0.16

rs12037376 A G 0.15 0.02 8.87 x 10717 0.01 0.01 0.35 -0.09 68.97  0.10 0.35

rs12700667 A G 0.10 0.02 9.08 x 10°1° 0.01 0.01 0.6 -0.07 3764 0.13 0.61

151537377 T C -0.09 0.01 1.33 x 107° 0.00 0.01 0.83 0.03 4153  0.12 0.83

rs1903068 A G 0.10 0.01 1.04 x 10 0.01 0.01 0.32 0.11 46.28  0.11 0.32

154762326 T C 0.08 0.01 2.20 x 10-° -0.01 0.01 0.31 0.14 3555 0.13 0.31

rs6546324 A C 0.08 0.01 3.01 x 10-°¢ -0.01 0.01 0.42 0.11 3056  0.14 0.42

rs71575922 CcC G -0.11 0.02 2.02 x 10-°8 -0.01 0.01 0.35 -0.12 3141 0.13 0.35

1574485684 T C 0.11 0.02 2.00 x 10-°¢ 0.04 0.01 0.01 0.36 3155 0.13 0.01

15760794 T C 0.09 0.01 1.79 x 10-'° -0.02 0.01 0.07 -0.22 4043  0.12 0.07

Methods Number of SNPs Beta SE P

All-TVW 11 -0.02 0.05 0.67

All - MR Egger 11 -0.25 0.27 0.38

All - Simple mode 11 0.08 0.12 0.50

All — Weighted mode 11 -0.11 0.07 0.14

All — Weighted median 11 -0.09 0.05 0.10

11 of 28

SNP: single nucleotide polymorphism, endo: endometriosis, migr: migraine, EA: effect allele, OA: other allele, Endo-migr: endometriosis as exposure and migraine as
the outcome variable, Beta: effect size in standard deviation unit, SE: standard error, P: p-value, IVW: inverse variance weighted; * we estimated approximate F
statistics values using t-statistics = Beta/SE, which is the t distribution with N-1 degrees of freedom (N is our sample size). The square of the t statistic represents
approximate F statistics with degrees of freedom = 1. Thus, approximate F-statistics = (Beta_endo/SE_endo)?.
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Nevertheless, we found evidence for marginally significant heterogeneity among the IVs
(Cochran’s Q statistics for IVW =18.39, degree of freedom [df] = 10, P = 0.049, and Q' statistics for MR
Egger=16.99, df =9, P =0.049). Under the null hypothesis of no heterogeneity, we expect that the value
of Q and Q' will be same as their corresponding df (10 and 9, respectively). This is not the case.
However, the difference between Q and its df (18.39 — 10 = 8.39) for IVW and (Q’, 16.99 — 9 = 7.99) for
MR Egger are small, indicating (alongside the borderline significant p-value) that the heterogeneity
was not substantial. In addition, we did not find MR Egger a better fit for our data than the VW model
since the difference Q — Q' = 1.4 is not sufficiently extreme under a ;(f distribution. Our selected
instruments reportedly explained about 1.75% variance in endometriosis [31].

Combining all the 11 endometriosis SNPs (IVs), MR analysis did not find evidence for a causal
relationship between endometriosis and migraine based on the IVW method ([OR = 0.98, 95%CI: 0.89 —
1.07, P = 0.667] per standard deviation increase in endometriosis risk). Our results for sensitivity
analyses using the MR-Egger (OR = 0.78, 95%CI: 0.46 — 1. 32, P = 0.381), and the weighted median (OR =
0.92, 95%CI: 0.83 — 1.02, P = 0.098) agree with that of the IVW method. Furthermore, the MR-Egger
intercept (representing the average estimate of the pleiotropic effects of a SNP) was 0.0232 (SE: 0.027,
P: 0.413). This intercept was not significantly different from zero, indicating that there was no evidence
of directional (unbalanced horizontal) pleiotropy. However, our results for ‘single SNPs MR’ analysis
identify 1574485684 to be statistically significant as endometriosis genetic variant with risk-increasing
effect on migraine (OR=1.43, 95%CI: 1.11 — 1.83, P = 0.006). This SNP was nominally associated with
migraine (Table 3) as well as, ‘length of menstrual cycle’ and ‘excessive, frequent and irregular
menstruation’ (Supplementary Table 1). The results of MR excluding the SNP (data not shown) did not
make any difference to our previous finding, supporting the evidence of no causal association between
our exposure and outcome variables.

Compared to endometriosis, a greater number of genome-wide significant SNPs have been
identified for migraine [31,32]. Consequently, we conducted a “TwoSampleMR” utilising independent
genome-wide significant SNPs from migraine GWAS as IVs, migraine as the exposure variable, and
endometriosis as the outcome variable, reversing the direction of the datasets (data not shown). We
note, however, that the causal effects of migraine on endometriosis may be difficult to explain
conceptually. Regardless, the results for this analysis also did not provide evidence for a causal
association between migraine and endometriosis.

3.5. Gene-Based Analysis for Endometriosis and Migraine

Our gene-based association analyses identified 1,749 and 1,871 genes nominally significant (Pgene <
0.05) in the ‘IEC endometriosis’ and ‘IHGC migraine’ GWAS gene-level association results,
respectively (Supplementary Tables 4 and 5). A Bonferroni adjustment using the largest estimated
total effective number of genes (17,104) produced a genome-wide, gene-based threshold of 2.92 x 10-6
(0.05/17,104). At this threshold, nine genes (ARL14EP, VEZT, CDC42, LINC00339, WNT4, GREB1, IL1A,
FGD6, KDR) were genome-wide significant (Supplementary Table 6) in the gene-based analysis for the
‘IEC endometriosis” GWAS, all of which have previously been reported for endometriosis (assessed
using PhenoScanner v2 [49] (http://www.phenoscanner.medschl.cam.ac.uk, on 30 September 2019).
Similarly, for migraine, a total of 17 genes (PLCEI1, PLCEI-AS1, MRVI1, LRP1, STAT6, MEF2D,
PRDM16, MROH2A, TRPMS8, POC5, FHL5, KCNK5, PHACTR1, UFL1, TMEM91, MSL3P1, ANKDD1B)
were genome-wide significant (Supplementary Table 6) in the gene-based analysis (at 2.92 x 10
threshold). Following an assessment in PhenoScanner v2 (accessed on 22" September 2019), five of the
17 genes (PLCE1-AS1, MROH2A, POC5, TMEM91, ANKDD1B) have not previously been reported for
migraine. Of the five new migraine genes, two (MROH2A on chromosome 2q37.1, and PLCE1-AS1 on
chromosome 10q23.33) were located at previously reported migraine loci. The remaining three genes
are located at two loci not previously identified for migraine (POC5 and ANKDD1B on chromosome
5q13.3, and TMEMO91 on chromosome 19q13.2), thus, representing novel loci for migraine risks.

We assessed overlapping genes between endometriosis and migraine using gene-based test
outputs, and our results revealed a total of 17 (at Pgene < 0.01), 196 (at Pgene < 0.05), and 493 (at Pgene < 0.1)
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significantly enriched genes shared by the two traits (Supplementary Tables 7-9, respectively).
Moreover, following FCP estimation for overlapping genes at Pgene < 0.1, three genes, ARLI4EP (on
chromosome 11p14.1), TRIM32 (on chromosome 9q33.1), and SLC35G6 (on chromosome 17p13.1) were
enriched to a genome-wide significant level based on their combined p-value (Table 4). Two of these
three genes (TRIM32, and SLC35G6) were not genome-wide significant in endometriosis or migraine;
rather they attained genome-wide significance following the combination of the respective gene
association p-values for the two traits indicating evidence of their involvement in the two disorders
(and possibly their comorbid state). ARLI4EP, on the other hand, was genome-wide significant for
endometriosis only but attained a more genome-wide significance status following the estimation of
FCP using both endometriosis and migraine gene p-values.
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Table 4. Genome-wide significant genes overlapping endometriosis and migraine in gene-based association analyses.

Start Stop IEC Endometriosis IHGC Migraine
SN | Chro | Gene Position Position Gene Topsnp  10PSNP Gene TopsNp | 10PSNP FCP
p-Value p-Value p-Value p-Value
11 ARLI14EP @ 30344648 30359165 1.00 x 1006 rs4071559 | 5.60 x 10708 5.54 x 10702 rs4071559 5.97 x 1003 9.81 x 107
9 TRIM32 119449580 119463579 2.76 x 1002 rs11793648 = 3.14 x 1003 5.00 x 10-06 1576973802 | 7.15 x 107 2.32 x 10-0¢
17 SLC35G6 | 7384720 7386383 1.59 x 1003 rs9891297 | 3.09 x 1004 9.40 x 109 rs8065577 2.21x10°% 2.50 x 1006

Chr: chromosomes; FCP: Fisher’s combined p-value; IEC: International Endogene Consortium; IHGC: International Headache Genetic Consortium.

Table 5. Summary of gene-level association analyses for endometriosis and depression under three p-value thresholds.

The effective number of genes in Endometriosis and migraine

Disorder Total genes P value <0.1 P <0.05 P <0.01
Raw ¢ Effectived Raw ¢ Effectived  Proportionc Rawc< Effectived Proportionc Raw< Effectived Proportion ¢
Endometriosis @ = 20473 17104 2966 2433 0.142 1749 1430 0.084 481 386 0.023
Migraine ® 20473 17046 3239 2579 0.151 1871 | 1467 0.086 587 450 0.026
Number of overlapping genes and binomial test results for gene-based association
Discovery Targets Overlapping genes = Proportion of overlap Binomial test P-value
Raw Effective Expected Observed
P value <0.01
Endometriosis =~ Migraine 17 15 450/17046 = 0.026 15/386 = 0.039 0.08259
P value < 0.05
Endometriosis = Migraine 196 171 1467/17046 = 0.086 171/1430 = 0.120 9.83 x 10-%
P value <0.1
Endometriosis = Migraine 493 420 2579/17046 = 0.151 420/2433 =0.173 1.85 x 103

2 Endometriosis data from International Endogene Consortium, ® migraine data from International Headache Genetic Consortium (IHGC), < raw number of genes, 4

effective number of independent genes, ¢ proportion of total effective number of genes.
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Lastly, the exact binomial test confirms that significant gene-based genetic overlap exists
between endometriosis and migraine at p-value thresholds of P < 0.1 and P < 0.05 (Table 5). For
example, at gene-based p-value < 0.05, the observed proportion of genes overlapping the two traits
(12%) was significantly higher than the expected proportion (8.6%) [Pbinomial-test= 9.83 x10-%]. These
results indicate that the observed gene-based genetic overlap between endometriosis and migraine
was more than expected by chance implying that at the least, a proportion of the identified
overlapping genes are truly associated with both endometriosis and migraine.

3.6. Functional Enrichment Analyses

Functional enrichment analysis identifies six significantly enriched biological pathways for the
493 genes overlapping endometriosis and migraine at Pgene < 0.1. Table 6 presents a summary of these
pathways. Clusters were generated following enrichment mapping and auto-annotation thereby
collapsing the identified pathways into three main biological themes and clusters: mitogen-activated
protein kinase (MAPK) signalling pathway, regulation of kappa-light-chain-enhancer of activated B
cells (kappaB) signalling and tumor necrosis factor (TNF) alpha signalling pathway (Figures 1).

Table 6. Significantly enriched ordered pathways for overlapping endometriosis-migraine genes.

Term ID for pathway Pathwa @ Adjuste = Genes
y term d
name p-value
Source: Gene Ontology (Molecular function)
Interleukin-1 receptor binding GO: 9.19 x IL36RN, 137, IL36B, IL1B, IL1F10
0005149 | 10
Source: Gene Ontology (Biological process)
Regulation of I-kappaB kinase and GO: 1.90 x TRIM32, IL36RN, 1137, TMED4, IL36B, IL1B,
NF-kappaB signalling 0043122 | 102 RNF31, IKBKB, SHISA5, TANK, PARK?2, IL1F10,

ZDHHC17, GSTP1, DAB2IP, SLC35B2, TRIM13

Source: Biological pathways (Kyoto Encyclopedia of Genes [KEGG])

MAPK signalling pathway KEGG: 1.40 x IL1B, FGF18, NGF, IKBKB, MAP2K5, PTPN5,
04010 10-02 PDGFC, MAPK9, NRAS, PPP3CA, CACNAIE,
FGF17, MAP2K6, FGF9, MET, RPS6KA4, FGFR4
Source: Biological pathways (WikiPathways)
MAPK Signalling Pathway WP: 1.3 x FGF11, IL1B, FGF18, NGF, IKBKB, MAP2K5,
WP382 1072 PTPN5, MAPK9, NRAS, PPP3CA, CACNALE,
FGF17, MAP2K6, FGF9, RPS6KA4, FGFR4
Focal WP: 1.54 x FGF11, ITGB5, CREBS5, PFKFB4, PPP2CA, DDIT4,
Adhesion-PI3K-Akt-mTOR-signali =~ WP3932 1072 FGF18, NGF, IKBKB, PTK2, PDGFC, SLC2A4,
ng pathway NRAS, CREB3L2, FGF17, FGF9, MET, FGFR4
TNF alpha Signalling Pathway WP: 2.3 % PPP2CA, RFK, IKBKB, PTPRCAP, MAPKO,
WP231 10-2 NSMAF, NRAS, TANK, MAP2K6
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Figure 1. Clustered biological themes for overlapping endometriosis—migraine genes.

4. Discussion

Several observational epidemiological studies have reported the comorbidity of endometriosis
with migraine. For the first time, however, we present a comprehensive assessment of the molecular
genetic overlap, causal relationship as well as shared genes and biological pathways between the
two disorders. SECA reveals the existence of a strong and significant genetic overlap between
endometriosis and migraine. For instance, the proportion of nominally significant (P < 0.05)
independent SNPs with concordant risk allele effects for endometriosis and migraine (58%) was
higher than expected under the null hypothesis of no association (Pconcordant = 2.23 x 10-%). Bivariate
LDSC analysis estimates a moderate, positive and highly significant genetic correlation between
endometriosis and migraine (rc= 0.38, P = 2.30 x 10-%%). Notably, we reproduced these significant
findings using a second independent migraine GWAS dataset from the UKBB (rc= 0.14, P = 1.60 x
10%). The weaker genetic correlation observed in the latter is most likely due to the smaller sample
size (migraine cases) and the broader ‘self-reported migraine’ phenotype in the ‘UKBB migraine’
GWAS.

Our finding of significant genetic overlap and correlation between endometriosis and migraine
indicates the presence of shared genetic components between the two disorders and confirms their
comorbidity. This means that endometriosis patients share a non-negligible proportion of genetic
risk variants with migraine patients. The SNP-based heritability estimated for endometriosis and
migraine were lower than those reported from the twin-based studies due to the imperfect tagging
of causal variants by common SNPs, in particular, if the causal variants are rare [59]. However, our
findings compare favourably with those of a previous twin-based study which concluded that
common genetic influences explain the comorbidity of migraine and endometriosis [13].

Although a meta-analysis of migraine and endometriosis GWAS produced a number of SNPs
with genome-wide significant P-values, no novel risk loci were identified as all 13 SNPs reported
were in strong LD with a previously reported risk locus for endometriosis on 11p14.1. Our finding,
nonetheless, indicates the potential involvement of the locus in both disorders, and possibly, in their
comorbid state. In addition to endometriosis, the 11p14.1 locus comprising FSHB has been
associated with several female hormone-related traits including age at menarche and menopause,
short menstrual cycle, polycystic ovarian syndrome, and increased risk of dizygotic twinning
[31,60-62]. Thus, the locus may influence risk for both endometriosis and migraine via more
frequent (menstrual-related) hormonal fluctuations in women as the same variants at this locus are
associated with shorter and more frequent menstrual cycles and influencing oestradiol release,
which have both been implicated in migraine risk [31,60]. We identified an additional 47
independent SNPs loci enriched to genome-wide suggestive (P < 1 x 10-%) association which should
be prioritised in future studies. Meta-analysing more powerful GWAS data (with larger sample
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sizes) for endometriosis and migraine will identify more robust SNPs and novel risk loci shared by
the two disorders.

Results for ‘single SNPs MR’ analysis showed evidence that one of the 11 endometriosis
genome-wide significant SNPs, rs74485684, had a statistically significant risk-increasing effect on
migraine. The rs74485684 SNP is located on chromosome 11pl4.1 near FSHB gene, a locus
significantly enriched for both endometriosis and migraine in our meta-analysis. The results for our
PhenoScanner analysis, however, indicate a significant and strong association between rs74485684
SNP and some traits namely ‘length of menstrual cycle’ and ‘excessive, frequent and irregular
menstruation’. There is evidence that the named traits represent important risk factors for both
endometriosis and migraine [13-19] which may have confounded our MR analysis—i.e., a violation
of the second assumption of MR analysis [48]. This observation would negate a causal relationship
of the endometriosis SNP (rs74485684) on migraine but lend support for a ‘shared genetic risk factor
mechanism of association’ in the comorbidity of the two disorders.

Combining all 11 endometriosis risk SNPs, MR analysis did not provide evidence of a causal
relationship between endometriosis and migraine. We note, however, that the variance in
endometriosis explained by the combined multi-allelic instrument is rather small (less than 2%)
indicating that our MR estimates were biased towards the null [63]. Thus, we cannot completely rule
out the possibility of causal effects of endometriosis on migraine. Future studies should revisit the
MR analysis when more genome-wide significant SNPs associated with endometriosis are available.
Although we do not have evidence of a causal relationship between endometriosis and migraine,
some other mechanisms of association may explain their co-occurrence. For example, observational
studies have identified some epidemiological similarities for both endometriosis and migraine
[13-19], suggesting a ‘shared risk factor mechanism of association’. The results of our genetic
overlap analyses support this position —identifying shared genetic risk factors for the co-occurrence
of endometriosis and migraine.

Moving beyond the SNP-level study, we conducted gene-based analyses thereby furthering our
assessment of the genetic overlap between endometriosis and migraine. Considered the basic
physical and functional unit of the human genome, genes exhibit a closer relationship with
biological mechanisms than SNPs. Moreover, gene-based analyses have the ability to account for LD
and allelic heterogeneity while examining the association between a trait of interest and multiple
co-located SNPs [64]. Thus, gene-based methods can provide a more robust and interpretable
approach to understanding the biology of complex traits [64]. Like the SNP-based analysis, we
found a significant gene-level genetic overlap between endometriosis and migraine with a total of
196 significantly enriched genes nominally associated (Pgene < 0.05) with both traits (Pbinomial-test= 9.83 x
10-¢). Three overlapping genes, ARLI4EP (on chromosome 11p14.1), TRIM32 (on chromosome
9g33.1), and SLC35G6 (on chromosome 17p13.1), were genome-wide significant based on their
combined gene association p-values. We note, nonetheless, that these results are based on a
statistical association of variants in and directly flanking each gene and do not strictly functionally
implicate the genes. The 11p14.1 locus harbouring the ARLI4EP gene has previously been associated
with endometriosis [31], and implicated in our cross-disorder meta-analysis as well as the ‘single
SNPs MR’ analysis (present study). However, the roles of the gene in migraine as well as in the
comorbidity of endometriosis and migraine remain to be elucidated. ARLI4EP is well expressed in
thyroid and adrenal glands, brain, endometrium, lymph nodes, ovary, and many other tissues. More
targeted studies are now warranted for a clearer understanding of the gene and its relationship with
both endometriosis and migraine.

The remaining two genome-wide significant genes, TRIM32 and SLC35G6, have not been
previously reported for endometriosis or migraine, neither are they located at or near established
loci for any of the two disorders; hence, they represent two novel genes and susceptibility loci for the
two traits. The SLC35G6 gene is well expressed in the testis, lowly expressed in the endometrium
and adrenal gland; however, information about its biological functions is limited; hence, further
investigation into the gene and its involvement in endometriosis and migraine is necessitated.
Conversely, TRIM32 is a protein-coding gene consisting of a ‘RING, B-box, coiled-coil and six
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C-terminal NHL domains’ [65]. Being a ubiquitously expressed E3 ligase, the gene targets several
proteins for degradation through ubiquitination [65]. TRIM32 has broad substrate specificity and has
been associated with several biological activities including the regulation of microRNA,
tumorigenesis, development and differentiation, as well as innate immunity. Moreover, TRIM32 has
been linked with certain disorders such as Bardet-Biedl syndrome (mutation in ‘the B-box” domain
of the gene) [66,67], and limb-girdle muscular dystrophy (mutations in the 'C-terminal NHL
domain’ of the gene) [68]. Endometrium, adrenal gland and the brain are among the three leading
sites of TRIM32’s expression, lending greater support for its potential involvement in endometriosis
and migraine. More targeted studies are required to elucidate TRIM32’s exact role in the two traits.

To explain the pathogenesis of co-occurring endometriosis and migraine, some authors have
suggested a number of possible biological mechanisms including the roles of elevated levels of
circulating prostaglandins [27], hormonal fluctuations [13], and impaired regulation of nitric oxide
synthesis [69,70]. The involvement of hormone fluctuations is especially favoured by the fact that
both endometriosis and migraine share risk factors consistent with the hormone-based regulation of
the menstrual cycle such as early menarche, and menorrhagia [17-19]. The results of our
meta-analysis, ‘single SNPs MR’ and, partly, overlapping genes assessment, potentially support a
role for sex hormones activities in the pathogenesis of the two disorders. Following functional
enrichment analysis, we also found significantly enriched biological pathways shared by both traits
that may differ in some respects from the aforementioned mechanisms. For ease of interpretation as
well as to eliminate possible redundancy, we carried out enrichment mapping thereby collapsing the
over-represented pathways into three simplified biological themes and clusters. The first cluster of
biological pathways, MAPK signalling pathway, comprises ‘focal
adhesion-PI3K-Akt-mTOR-signaling” and ‘MAPK signalling’. MAPK and ‘PI3K-Akt-mTOR’ are
expressed differently, however, there is evidence that both are activated by steroid hormones and
growth factors [71], supporting a role for sex hormones in the pathogenesis of endometriosis and
migraine.

‘Focal adhesion-PI3K-Akt-mTOR’ is a signalling cascade made up of ‘focal adhesion’ (or
cell-matrix adhesions), “phosphatidylinositide 3 kinases’ (PI3K), ‘protein kinase B’ (AKT), and
‘mammalian target of rapamycin’ (mTOR). Besides their structural role of mediating the molecular
contact between intra- and extra-cellular spaces [63], focal adhesions relay signals between cells and
the extracellular matrix, consequence upon which a range of cellular responses—cell growth,
differentiation and movement—are initiated [63]. Protein kinases and phosphatases —two opposing
but complementary groups of cells signalling proteins—as well as integrins, constitute essential
parts of focal adhesive molecules [72,73]. While kinases and phosphatases co-regulate protein
phosphorylation, a biological process that is critical to several cellular functions, integrins sense the
environment and subsequently evoke responses resulting in the regulation of cell motility and
shapes [72,73]. Also, through a complex interplay of its core components—PI3K stimulation, AKT
phosphorylation, mTOR activation—the ‘PI3K-Akt-mTOR’ pathway facilitates several cellular
processes including cell proliferation, metabolism, angiogenesis, and apoptosis [74]. There is
evidence implicating these mechanisms in the biology of endometriosis and migraine [71,75].

For example, the role of kinases, particularly, MAPK, is well supported in the causal pathway of
endometriosis, and arguably migraine [64—67]. Altered peritoneal microenvironment caused by
endometriotic lesions is believed to activate kinase signalling pathways which may result in
kinase-dependent growth or proliferation of endometriotic lesions [68]. In the case of migraine,
activation of MAPK is suggested to mediate the synthesis and the release of calcitonin gene-related
peptide (CGRP) which has long been implicated in the pathophysiology of migraine [66,69]. Indeed,
recently approved monoclonal antibodies (mAbs) targeting CGRP or its receptor have lately been
developed, representing a first major breakthrough for migraine-specific treatments in 30 years
[76-78]. Furthermore, overexpression of ‘PI3K-Akt-mTOR’ has been noted in endometriosis and
certain types of cancers (ovarian, breast and urothelial), and therapeutic agents targeting its core
components have been developed [71,79].
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‘Interleukin-1 receptor binding’ and ‘regulation of I-kappaB kinase and NF-kappaB signalling’,
converged to a second biological cluster of pathways, regulation of kappaB signaling, following
enrichment mapping and auto-annotation. Nuclear factor- kappaB (‘NF-kappaB’) is a transcription
factor regulating inflammatory responses and mediating several functions of both the adaptive and
innate immunity [80,81]. In addition to participating in the regulation of inflammatory processes,
‘NF-kappaB’ plays an important role in the expression of certain pro-inflammatory genes such as
those involved in coding for cytokines [81]. Interleukin 1, on the other hand, is a pro-inflammatory
cytokine whose activities are mediated through interleukin-1 receptor binding [82,83]. There are two
types of this receptor: interleukin-1 receptor I which mainly transmits inflammatory signals, and
interleukin-1 receptor II which although transmits no signals may suppress the effects of
interleukin-1 by competing for its active binding sites [82,84]. Interleukin 1 not only mediates innate
immune reactions, it also activates ‘NF-kappaB’ inflammatory pathways [83,84]. Thus, in line with
previous studies [83,85], our study suggests that inflammatory processes and immune system
dysfunction, mediated by the deregulation of cytokines and the ‘NF-kappaB’ factor [81], maybe
relevant in the causal pathways of endometriosis and migraine.

Lastly, the tumour necrosis factor-alpha (TNF-a) signalling pathway was significantly enriched
as one of the biological mechanisms underpinning endometriosis and migraine in the present study.
Primarily produced by activated macrophages, T helper type 1 cells and natural killer cells, TNF-q,
is among the most studied member of the TNF family [86,87]. The protein acts commonly alongside
interleukin-1 and similarly activates the ‘NF-kappaB’ inflammatory pathways [86,87]. Consistent
evidence indicates that women with endometriosis have a higher level of TNF-a in their peritoneal
fluid and endometrium [83,88]. Also, the size of endometriotic lesions has been reported to be
positively correlated with the concentration of TNF-a [83,88]. Therefore, our finding agrees with
previous studies which have recognised the role of TNF in the pathogenesis of endometriosis [83,88].
In contrast, contradictory evidence for the role of TNF-a in migraine has been reported [89,90].
Hence, the present study provides important support for TNF-a in both endometriosis and migraine
pathogenesis.

Strengths and Limitations

Major strengths of this study include our use of multiple statistical methods in analysing
well-powered world-leading datasets to provide a comprehensive assessment of the relationship
between endometriosis and migraine at the molecular genetic level. Furthermore, being based on
genotype data, these analyses are generally not susceptible to potential confounding effects often
associated with observational studies, thus providing strong and reliable evidence in support of our
findings. For example, unlike in the traditional observational studies where the confounding effects
of lifestyles or environmental factors are highly likely, genotypes are known to be well established
and fixed at conception and should not be confounded by lifestyles or environments. Also, given
that the inheritance of genotype precedes exposure to environmental factors, and, hence, disease
onset later on in the offspring, the possibility of reverse causality is avoided in our study, lending
credence to our findings. Limitations of our study mainly relate to those specific to the analysis
methods. For example, sample overlap may confound LDSC and MR analyses. However, we
ensured the independence of our samples and used a range of recommended approaches to
minimise a possible violation of the MR assumptions. Lastly, several of the significantly enriched
mechanisms in the pathway-based analyses are prone to redundancy. To minimise this limitation,
however, we performed enrichment mapping and auto-annotation to collapse related pathways to
simplified biological themes and clusters, thereby, enhancing the visualisation and interpretation of
the significantly enriched biological pathways.

5. Conclusions

Our findings further confirm the comorbidity of endometriosis and migraine and indicate a
non-causal relationship between the two traits, with shared genetically controlled biological
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mechanisms underlying the co-occurrence of the two disorders. After combining gene-based
p-values across endometriosis and migraine GWAS, we found that three genes (ARL14EP, TRIM32,
and SLC35G6), were genome-wide significant. Two of these genes (TRIM32, and SLC35G6) have not
previously been reported for endometriosis or migraine, nor were they located on or near previously
identified loci for any of the two traits—indicating that they represent novel genes and susceptibility
loci for both endometriosis and migraine. Our functional enrichment analyses reveal some
genetically controlled biological pathways underlying endometriosis and migraine including
interleukin-1 receptor binding, focal adhesion-PI3K-Akt-mTOR-signaling, MAPK and TNF alpha
signalling. Biological mechanisms related to sex hormone activities, protein adhesion and
phosphorylation as well as inflammatory and immune system dysfunction, among others, are
implicated by these pathways. Our study further supports the importance of a concurrent screening
for migraine in patients presenting with or being investigated for endometriosis. Clinicians, thus,
would need to start exercising a heightened suspicion for migraine in endometriosis patients. Shared
genes and biological pathways identified in the present study could serve as potential therapeutic
targets for endometriosis and migraine and perhaps the comorbid state of the two traits. However,
further molecular and functional studies are needed for a targeted investigation into their roles in
both disorders. Future analyses utilising results from more powerful GWAS are expected to improve
the power to identify more robust SNPs and loci, as well as genes for endometriosis, migraine and
the co-occurrence of the two disorders.
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