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Broadband energy harvesting from parametric vibrations of a class

of nonlinear Mathieu systems

Panagiotis Alevras,® Stephanos Theodossiades, and Homer Rahnejat
Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University,

Loughborough LE11 3TU, United Kingdom

(Received 26 January 2017; accepted 11 May 2017; published online 5 June 2017)

The nonlinear dynamics of the Mathieu equation with the inclusion of a cubic stiffness component
is considered for broadband vibration energy harvesting. The results of numerical integration are
compared with the corresponding solution of a regular Duffing oscillator which is widely used to
model nonlinear energy harvesting. The use of Duffing oscillators has shown direct correspondence
between the effective frequency range of the associated hysteretic phenomenon and the value of
the nonlinearity coefficient. A broadband energy harvester requires strong nonlinearity, especially
for high frequencies of interest. This letter demonstrates that the effectiveness of parametrically
excited systems is not constrained by the same requirement. Based on this, it is suggested that
parametrically excited systems can be a robust means of broadband vibration harvesting. © 2017
Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

[http://dx.doi.org/10.1063/1.4984059]

Recent advances in the electronics industry have
resulted in the manufacture of compact devices, operating
with minimal energy requirements, typically of the order of
uW to mW. Vibration energy is viewed as a potential source
of renewable energy, which can power small-scale electronic
systems.' The underlying assumption is that ambient vibra-
tions can be harvested from moving bodies and coupled to
electrodynamic elements, such as piezoelectric patches.” The
primary principle is that the vibration energy which is con-
verted into electrical power can potentially power operating
electronic devices, locally or remotely.

The challenge in effective energy harvesting has been
its dependence upon the ratio of excitation frequency to the
natural frequency of a harvester. As long as this ratio
remains close to unity, the resonant conditions result in opti-
mal device performance.3’4 However, ambient vibrations are
subject to variations in the response frequency, affecting the
aforementioned ratio and deviating from the optimal condi-
tions. In recent times, a number of studies have addressed
this problem, proposing the intentional use of nonlinearities
in the system stiffness.””’ Nonlinear oscillators are well-
known in the hysteretic response, which enables multiple sta-
ble solutions to co-exist over a wide range of frequencies.
The physical properties of nonlinear dynamical systems such
as bi-stability or stochastic resonance have also been sug-
gested in order to improve the performance of vibration
energy harvesters.>® In particular, systems with cubic stiff-
ness elements, also known as Duffing oscillators, attain a
high or low energy solution in the frequency range of their
backbone curve. This characteristic amplitude-frequency
response curve may be deliberately used to increase the fre-
quency region for sustained effective energy harvesting. In
this approach, the degree of success depends on the relation-
ship between the amplitude of excitation and the damping
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coefficient,” as well as the magnitude of the nonlinear force
coefficient. A typical mono-stable energy harvester, gov-
erned by a Duffing-like equation, is usually designed in such
a way that the bent response curve would cover the fre-
quency range of interest. For given input energy and damp-
ing, one would rely on the magnitude of the nonlinear
coefficient to design a harvester which would cover a suffi-
ciently wide frequency range.

It is well established that higher values of the nonlinear
stiffness coefficient enable a broader frequency range over
which the response curve bends. 10 Nevertheless, the practical
implementation of this strategy is limited by the extent to
which the nonlinear coefficient can be increased independent
of linear stiffness elements, as in applied nonlinear magnetic
force for instance. The problem becomes more intractable at
higher frequencies, where stiffer systems would be required.
For example, the weakly nonlinear response bandwidth of
a mono-stable Duffing-like harvester does not significantly
differ from that of a linear system, and thus, any desired
improvement is lost.

This letter presents an alternative approach for utilizing
nonlinear vibrations in energy harvesting applications. The
aim is to disassociate the frequency band from the magnitude
of the nonlinear stiffness coefficient, thus allowing for broad-
band energy harvesting in weakly nonlinear systems as well.
An important class of dynamical systems is represented by
the Mathieu equation. Parametric excitation and the associ-
ated resonant zones which lead to unbound responses charac-
terize the dynamics of such systems. These zones occur at a
plethora of frequency ratios 2/n, withn = 1,2, ... . When a
nonlinear spring restores the motion of the oscillator, the
unstable motion turns to the periodic orbit,'® which may
serve vibration energy harvesting purposes.

Parametrically excited systems have been discussed in
the literature for energy harvesting applications. A cantilev-
ered piezoelectric beam with a tip mass has been considered

© Author(s) 2017.
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under axial excitations, a setting which can potentially lead to
parametric instability.”'® Multiple scale analyses have dem-
onstrated the influence of the critical excitation amplitude,
giving rise to stable oscillations. Daqaq and Bode'" exploited
parametric resonance in order to channel the energy away
from the superharmonic components of the excitation to their
fundamental resonant response. In this manner, parametric
excitation is used to amplify the response of a cantilever beam
to regular external excitations, yielding enhanced harvesting
performance. Yet, the effect of parametric excitation on the
output power bandwidth has not been considered. Zaghari
et al.'? considered a cantilever beam with an additional non-
linear magnetic restoring force. They investigated, analyti-
cally and experimentally, the transition curves, leading to
stable oscillations. Furthermore, harvesters employing pen-
dula have also been considered for their rotational response to
parametric excitation.'*'3 Jia et al.'* developed a novel har-
vesting device, but their experiments only focused on the
excitation amplitude and the dependence of the harvester’s
performance on the amplitude threshold associated with para-
metric excitation. The analyses thus far have not addressed
the qualitative differences between parametrically and exter-
nally excited nonlinear systems over the resonant frequency
range. Herein, it is demonstrated that the former offers a wider
useful frequency range for weakly nonlinear systems, thus
potentially presenting a route for curtailing the requirement
for the presence of strong nonlinearities.

Figure 1 shows a generic electromagnetic energy har-
vester, where the magnetic mass undergoes parametric and
direct force excitations in the proximity of a coil. The
dynamics of this system can be described as (' denotes the
derivative with respect to time)

)
X' 4 29x + (6 + 2ra, cos vt)x + f + %1
=2(1 —r)o, cos v, (1)
LI'+RI —®x =0, )

where x is the oscillator’s displacement, 7 is a normalised
damping coefficient, 6 denotes the natural frequency, a, is
the excitation amplitude, v is the excitation frequency, 7
denotes the dimensionless time, 8 is the nonlinear coeffi-
cient, ® is the coupling coefficient, m is the oscillator’s
mass, L is the coil inductance, / is the current, and R is the
coil’s resistance. Parameter r is introduced so that Eq. (1)

(1—=r)F(7)

R§ ---------

FIG. 1. Sketch of the electromagnetic harvester model where harmonic forc-
ing applies, F(t) = 2o,cosvt. The stiffness coefficient undergoes time-
dependent variations for r = 1, leading to parametrically excited dynamics;
r =0 leads to an externally excited system with a constant stiffness
coefficient.

B 6+ 1F(7)
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devolves into a directly forced Duffing system when r =0
and to a nonlinear Mathieu system when r = 1. After non-
dimensionalisation of the current, j = LI/®, and after the
introduction of p =R/L and 0 = CH /mL, Egs. (1) and (2)
become

X 429X + (6 + 2ro cosvt)x + px° + 0j = 2(1 — r)a, cos v,
(3)
J +pi—x=0. 4)

One can use a first order multiple scale approximation in
order to study the dynamics of Eq. (3). Assuming 7 =T
+eTy, y=c¢y, 0, =0, f=¢ff, 0 = €0, ande < 1, it fol-
lows that

X = Xo + &xy,
J=Jo+e. &)

Substituting Eq. (5) into Egs. (3) and (4), defining ¢ = 2,
and collecting similar powers of ¢ result in

P D%)Co + w2x0 =0,
Djo + pjo = Doxo, (6)

el D%)C] + (,02)(1 = —2D¢D1x¢ — 2yDoxo
— 20,x0 cos Ty — ﬁxg — 0Ojo,
Doj1 + pj1 = —D1jo + D1xo + Dox, @)

where the operator DX denotes the k-th partial derivative
with respect to T,,. The necessary analytical treatment of
Egs. (6) and (7) is omitted due to its triviality and for the
sake of brevity. Thus, only the useful worked expressions are
provided. The reader can refer to Ref. 8. Using Eq. (6), it can
be seen that

xXo = %eibei”TO +c.c., (8)
where a denotes the amplitude and b a phase difference.
Substituting Eq. (8) into Eq. (6), solving for j, and
substituting into Eq. (7), setting v = 2w + &0, and finally
setting the secular terms (i.e., proportional to ¢/7%) to be
zero result in

1 0p oed
/ e .
a :2<2y—|—pz_’_w2)ot—2wsm<p,

, oed 3ﬁ3 Ocwa
o' = 0o ———cosp — — fo’ — ——
¢ ) " 40 p?+w?’

€))

where ¢ = ¢T| —2b. Seeking a steady-state non-trivial
response, ¢’ = ¢' =0, the set of Eq. (9) are squared and
added to obtain the amplitude-frequency expression as

4 Oc? 0p \*
2 _ yp
a =35 aw—p2+w2i\/oc§—w2<2/+p2+w2>

(10)

Considering x = xp, Eq. (10) gives the response amplitude
for the first approximation. Furthermore, taking the co-
variant (total) derivative of x with respect to 7 yields
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FIG. 2. Transition curves of the nonlinear parametrically excited harvester against the detuning parameter ¢ and excitation amplitude o,, calculated from Eq.
10. The dashed line denotes the critical amplitude below which the response decays for any detuning. The insets show the type of numerically computed
response in each region: (A) stable trivial solution; (B) stable periodic solution; (C) periodic and trivial co-existing solutions.

X = —a(w+ a/2)sin[(w + a/2)T + by], (11)

where by is a constant phase shift. Substituting Eq. (11)
into Eq. (4) allows for a solution for j to the first approxima-

tion as
o
al w—+—
'<2)sin w+g T+c
e 2)"

o 1s a constant phase shift. Using Eq. (12), an expression for
the average power can be extracted as

2 7\’
T a <w+—>p
P —lJ Podi =2
av T OJ p 2(p2+w2) .

12)

13)

The purpose of the current work is to estimate the influence
of the nonlinear coefficient 5 upon the frequency response of
the average power output P,,. This is carried out in the con-
text of a parametrically excited nonlinear system, also com-
paring the response curve with that of an externally excited
nonlinear system, using the average power magnitude and
frequency range.

The average power depends on the response amplitude
a, as shown in Eq. (10). The condition for real-valued ampli-
tudes requires the square root argument in Eq. (10) to be pos-
itive. Reviewing the form of this expression, Daqgaq et al.’
reported that a critical excitation amplitude exists, above
which there are stable periodic solutions. This threshold can
be seen in Eq. (10), which depends on the damping coeffi-
cient and the electromagnetic coupling. This expression
implies that the coupling term between the mechanical and
electrical systems acts as an additional dissipation mecha-
nism. This is known to be the case in the externally excited
system as well.'® Equation (10) also provides the amplitudes
for the non-trivial solution and the parameter regions in
which these exist. Nayfeh and Mook discuss the extraction
of the transition curves which define these regions.® Figure 2

reproduces these transition curves, also showing the possible
response types in each region (see the insets of the figure).
The frequency response of the system, shown in Fig. 3,
depicts the associated average harvested power. The out-
come sought is to adjust an energy harvester so that its
response falls into regions B or C, where stable periodic sol-
utions are possible.

The frequency response bears a resemblance to that of a
mono-stable Duffing energy harvester. However, qualitative
differences arise from the amplitude-frequency expression,
Eq. (10). The nonlinear coefficient f§ affects the response
curve only as a scaling factor for the amplitude. The squared
response amplitude is inversely proportional to f5, which
implies that a parametrically excited harvester has a higher
power output when f decreases (otherwise, in a weakly non-
linear regime). Furthermore, the structure of the transition
curves is independent of the nonlinear coefficient. Given an
excitation amplitude and damping, the bifurcation points
governing the transition from regions A to B and from B
to C are identical for any non-zero positive value of f. This

2.5

av

0.5}

FIG. 3. Frequency response curve of the harvested power for a, = 0.5. The
shaded areas denote regions A, B, and C where different response types
appear, as described in Fig. 2.
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means that the frequency range over which a stable periodic
solution would exist (regions B and C in Fig. 3) is also iden-
tical for a weakly and strongly nonlinear regime. Hence,
vibration energy can be harvested over an invariant fre-
quency range regardless of the value of f5. This indicates that
better performance would be expected with weak nonlinear-
ity, potentially offering a solution to applications where
strong nonlinearity cannot be easily realized.

It should be noted that the above discussion is based on an
approximate analytical method with its accuracy restricted
close to v = 2. Therefore, numerical integration of Egs. (3) and
(4) is performed for selected indicative cases, in order to impart
confidence for these qualitative characteristics. Numerical inte-
gration is also performed for an externally excited Duffing-like
harvester, which is identical to the parametric one of Egs. (3)
and (4), with the exception of the excitation F,,; = 20, cos T
which is directly applied to the oscillator. The results are
compared in order to demonstrate the advantages of parametric
excitation for weakly nonlinear systems.

A relatively low excitation amplitude is chosen, o, = 0.1,
to better represent the conditions prevalent for ambient
vibrations. A reasonably low damping coefficient is used
(y = 0.01). The normalized equivalent coupling factor is
0 = 0.35 and 6 = 1 without loss of generality. Three values
are considered for the nonlinear coefficients f in the ascending
order (0.5, 1.0, 2.0) and the average power frequency response
of the parametrically (light grey curve) and externally (dark
grey curve) excited harvesters, all of which are plotted together
in Fig. 4. The results show the inverse proportionality of f§
upon the magnitude of the average power for the parametri-
cally excited case. Decreasing [ leads to higher output power
as a result of higher response amplitudes. This confirms the
scaling effect of the nonlinear coefficient, observed in Eq.
(10). In fact, one could expect an increase in the response
amplitudes without bound as f§ approaches the zero limit value.
This property may be extremely useful for energy harvesting
purposes in the presence of weak nonlinearity, emphasising
that parametrically induced vibrations can lead to higher output
power. On the other hand, the externally excited system
reaches a constant maximum power for all the values of ff. As

L5 T

av,n

FIG. 4. Numerical integration of Egs. (3) and (4) for a, =0.1, 6 =1,
y=0.01, 6 =0.35, and p = 10.6; f = 0.5 (O), f =1 (x), and =2 ().
Dark grey denotes the response of the directly excited system corresponding
to r = 0, and light grey denotes the parametric case for r = 1.
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long as strong nonlinearity is present, this class of harvesters is
favoured since it also leads to a broad frequency range.
However, this can also imply the converse argument that as f§
decreases, the bandwidth of the response becomes narrower,
approaching essentially the response of an equivalent linear
system. This is evident in Fig. 4 where it is noted that for
f = 2, the bandwidth is over 1 and for f = 0.5, it is halved. In
contrast, the response of the parametric system appears to
extend over an invariant frequency range (extending from v =
2 up to v = 4 for all the f§ values considered). Most of the fre-
quency range corresponds to region C, where the periodic solu-
tion co-exists with the trivial solution, due to the relatively low
input amplitude. Overall, the transition from a strong to weak
nonlinearity does not narrow the response bandwidth, and
thus, broadband energy harvesting is not subject to the con-
straint set by it.

In this letter, parametric resonance was considered as a
direct alternative to forced nonlinear energy harvesting. The
response bandwidth for the latter depends, among other influ-
ential factors, on the magnitude of the nonlinear coefficient.
This calls for the presence of a source of strong nonlinearity
for effective broadband vibration energy harvesting. It was
shown that parametrically excited systems are not subject to
the same constraint since their response bandwidth is invariant
of the magnitude of nonlinearity. In addition, weakly nonlin-
ear systems lead to increased power output compared to their
strongly nonlinear counterparts. These properties suggest that
parametrically excited nonlinear systems are favoured alterna-
tives for broadband vibration energy harvesting in applica-
tions where strong nonlinearity cannot be achieved.

The authors wish to express their gratitude to the
Engineering and Physical Sciences Research Council
(EPSRC) for the financial support extended to the “Targeted
energy transfer in powertrains to reduce vibration-induced
energy losses” Grant (No. EP/L019426/1), under which this
research was carried out.
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