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Broadband energy harvesting from parametric vibrations of a class
of nonlinear Mathieu systems
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Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University,
Loughborough LE11 3TU, United Kingdom

(Received 26 January 2017; accepted 11 May 2017; published online 5 June 2017)

The nonlinear dynamics of the Mathieu equation with the inclusion of a cubic stiffness component

is considered for broadband vibration energy harvesting. The results of numerical integration are

compared with the corresponding solution of a regular Duffing oscillator which is widely used to

model nonlinear energy harvesting. The use of Duffing oscillators has shown direct correspondence

between the effective frequency range of the associated hysteretic phenomenon and the value of

the nonlinearity coefficient. A broadband energy harvester requires strong nonlinearity, especially

for high frequencies of interest. This letter demonstrates that the effectiveness of parametrically

excited systems is not constrained by the same requirement. Based on this, it is suggested that

parametrically excited systems can be a robust means of broadband vibration harvesting. VC 2017
Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4984059]

Recent advances in the electronics industry have

resulted in the manufacture of compact devices, operating

with minimal energy requirements, typically of the order of

lW to mW. Vibration energy is viewed as a potential source

of renewable energy, which can power small-scale electronic

systems.1 The underlying assumption is that ambient vibra-

tions can be harvested from moving bodies and coupled to

electrodynamic elements, such as piezoelectric patches.2 The

primary principle is that the vibration energy which is con-

verted into electrical power can potentially power operating

electronic devices, locally or remotely.

The challenge in effective energy harvesting has been

its dependence upon the ratio of excitation frequency to the

natural frequency of a harvester. As long as this ratio

remains close to unity, the resonant conditions result in opti-

mal device performance.3,4 However, ambient vibrations are

subject to variations in the response frequency, affecting the

aforementioned ratio and deviating from the optimal condi-

tions. In recent times, a number of studies have addressed

this problem, proposing the intentional use of nonlinearities

in the system stiffness.5–7 Nonlinear oscillators are well-

known in the hysteretic response, which enables multiple sta-

ble solutions to co-exist over a wide range of frequencies.

The physical properties of nonlinear dynamical systems such

as bi-stability or stochastic resonance have also been sug-

gested in order to improve the performance of vibration

energy harvesters.5,6 In particular, systems with cubic stiff-

ness elements, also known as Duffing oscillators, attain a

high or low energy solution in the frequency range of their

backbone curve. This characteristic amplitude-frequency

response curve may be deliberately used to increase the fre-

quency region for sustained effective energy harvesting. In

this approach, the degree of success depends on the relation-

ship between the amplitude of excitation and the damping

coefficient,4 as well as the magnitude of the nonlinear force

coefficient. A typical mono-stable energy harvester, gov-

erned by a Duffing-like equation, is usually designed in such

a way that the bent response curve would cover the fre-

quency range of interest. For given input energy and damp-

ing, one would rely on the magnitude of the nonlinear

coefficient to design a harvester which would cover a suffi-

ciently wide frequency range.

It is well established that higher values of the nonlinear

stiffness coefficient enable a broader frequency range over

which the response curve bends.10 Nevertheless, the practical

implementation of this strategy is limited by the extent to

which the nonlinear coefficient can be increased independent

of linear stiffness elements, as in applied nonlinear magnetic

force for instance. The problem becomes more intractable at

higher frequencies, where stiffer systems would be required.

For example, the weakly nonlinear response bandwidth of

a mono-stable Duffing-like harvester does not significantly

differ from that of a linear system, and thus, any desired

improvement is lost.

This letter presents an alternative approach for utilizing

nonlinear vibrations in energy harvesting applications. The

aim is to disassociate the frequency band from the magnitude

of the nonlinear stiffness coefficient, thus allowing for broad-

band energy harvesting in weakly nonlinear systems as well.

An important class of dynamical systems is represented by

the Mathieu equation. Parametric excitation and the associ-

ated resonant zones which lead to unbound responses charac-

terize the dynamics of such systems. These zones occur at a

plethora of frequency ratios 2=n; with n ¼ 1; 2;… . When a

nonlinear spring restores the motion of the oscillator, the

unstable motion turns to the periodic orbit,10 which may

serve vibration energy harvesting purposes.

Parametrically excited systems have been discussed in

the literature for energy harvesting applications. A cantilev-

ered piezoelectric beam with a tip mass has been considereda)Author to whom correspondence should be addressed: P.Alevras@lboro.ac.uk
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under axial excitations, a setting which can potentially lead to

parametric instability.9,10 Multiple scale analyses have dem-

onstrated the influence of the critical excitation amplitude,

giving rise to stable oscillations. Daqaq and Bode11 exploited

parametric resonance in order to channel the energy away

from the superharmonic components of the excitation to their

fundamental resonant response. In this manner, parametric

excitation is used to amplify the response of a cantilever beam

to regular external excitations, yielding enhanced harvesting

performance. Yet, the effect of parametric excitation on the

output power bandwidth has not been considered. Zaghari

et al.12 considered a cantilever beam with an additional non-

linear magnetic restoring force. They investigated, analyti-

cally and experimentally, the transition curves, leading to

stable oscillations. Furthermore, harvesters employing pen-

dula have also been considered for their rotational response to

parametric excitation.13–15 Jia et al.14 developed a novel har-

vesting device, but their experiments only focused on the

excitation amplitude and the dependence of the harvester’s

performance on the amplitude threshold associated with para-

metric excitation. The analyses thus far have not addressed

the qualitative differences between parametrically and exter-

nally excited nonlinear systems over the resonant frequency

range. Herein, it is demonstrated that the former offers a wider

useful frequency range for weakly nonlinear systems, thus

potentially presenting a route for curtailing the requirement

for the presence of strong nonlinearities.

Figure 1 shows a generic electromagnetic energy har-

vester, where the magnetic mass undergoes parametric and

direct force excitations in the proximity of a coil. The

dynamics of this system can be described as (0 denotes the

derivative with respect to time)

x00 þ 2cx0 þ dþ 2rae cos �sð Þxþ bx3 þH
m

I

¼ 2 1� rð Þae cos �s; (1)

LI0 þ RI �Hx0 ¼ 0; (2)

where x is the oscillator’s displacement, c is a normalised

damping coefficient, d denotes the natural frequency, ae is

the excitation amplitude, � is the excitation frequency, s
denotes the dimensionless time, b is the nonlinear coeffi-

cient, H is the coupling coefficient, m is the oscillator’s

mass, L is the coil inductance, I is the current, and R is the

coil’s resistance. Parameter r is introduced so that Eq. (1)

devolves into a directly forced Duffing system when r ¼ 0

and to a nonlinear Mathieu system when r ¼ 1. After non-

dimensionalisation of the current, j ¼ LI=H, and after the

introduction of q ¼ R=L and h ¼ H2=mL, Eqs. (1) and (2)

become

x00 þ 2cx0 þ dþ 2rae cos�sð Þxþbx3þ hj¼ 2 1� rð Þae cos�s;

(3)

j0 þ qj� x0 ¼ 0: (4)

One can use a first order multiple scale approximation in

order to study the dynamics of Eq. (3). Assuming s ¼ T0

þ eT1; c ¼ ec; ae ¼ eae; b ¼ eb; h ¼ eh; and e� 1, it fol-

lows that

x ¼ x0 þ ex1;

j ¼ j0 þ ej1: (5)

Substituting Eq. (5) into Eqs. (3) and (4), defining d ¼ x2,

and collecting similar powers of e result in

e0 : D2
0x0 þ x2x0 ¼ 0;

Dj0 þ qj0 ¼ D0x0; (6)

e1 : D2
0x1 þ x2x1 ¼ �2D0D1x0 � 2cD0x0

� 2aex0 cos �T0 � bx3
0 � hj0;

D0j1 þ qj1 ¼ �D1j0 þ D1x0 þ D0x1; (7)

where the operator Dk
m denotes the k-th partial derivative

with respect to Tm. The necessary analytical treatment of

Eqs. (6) and (7) is omitted due to its triviality and for the

sake of brevity. Thus, only the useful worked expressions are

provided. The reader can refer to Ref. 8. Using Eq. (6), it can

be seen that

x0 ¼
a

2
eibeixT0 þ c:c:; (8)

where a denotes the amplitude and b a phase difference.

Substituting Eq. (8) into Eq. (6), solving for j0 and

substituting into Eq. (7), setting v ¼ 2xþ er, and finally

setting the secular terms (i.e., proportional to eixT0 ) to be

zero result in

a0 ¼ 1

2
2cþ hq

q2 þ x2

� �
a� aea

2x
sin u;

au0 ¼ ar� aea

x
cos u� 3

4x
ba3 � hxa

q2 þ x2
; (9)

where u ¼ rT1 � 2b. Seeking a steady-state non-trivial

response, a0 ¼ u0 ¼ 0, the set of Eq. (9) are squared and

added to obtain the amplitude-frequency expression as

a2 ¼ 4

3b
rx� hx2

q2 þ x2
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

e � x2 2cþ hq
q2 þ x2

� �2
s2

4
3
5:
(10)

Considering x � x0, Eq. (10) gives the response amplitude

for the first approximation. Furthermore, taking the co-

variant (total) derivative of x with respect to s yields

FIG. 1. Sketch of the electromagnetic harvester model where harmonic forc-

ing applies, F sð Þ ¼ 2aecos�s. The stiffness coefficient undergoes time-

dependent variations for r ¼ 1, leading to parametrically excited dynamics;

r ¼ 0 leads to an externally excited system with a constant stiffness

coefficient.
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x0 ¼ �a xþ r=2ð Þsin xþ r=2ð Þsþ b0½ �; (11)

where b0 is a constant phase shift. Substituting Eq. (11)

into Eq. (4) allows for a solution for j to the first approxima-

tion as

j ¼
a xþ r

2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ x2

p sin xþ r
2

� �
sþ c0

� �
: (12)

c0 is a constant phase shift. Using Eq. (12), an expression for

the average power can be extracted as

Pav ¼
1

T

ðT

0

j2qdt ¼
a2 xþ r

2

� �2

q

2 q2 þ x2ð Þ : (13)

The purpose of the current work is to estimate the influence

of the nonlinear coefficient b upon the frequency response of

the average power output Pav. This is carried out in the con-

text of a parametrically excited nonlinear system, also com-

paring the response curve with that of an externally excited

nonlinear system, using the average power magnitude and

frequency range.

The average power depends on the response amplitude

a, as shown in Eq. (10). The condition for real-valued ampli-

tudes requires the square root argument in Eq. (10) to be pos-

itive. Reviewing the form of this expression, Daqaq et al.9

reported that a critical excitation amplitude exists, above

which there are stable periodic solutions. This threshold can

be seen in Eq. (10), which depends on the damping coeffi-

cient and the electromagnetic coupling. This expression

implies that the coupling term between the mechanical and

electrical systems acts as an additional dissipation mecha-

nism. This is known to be the case in the externally excited

system as well.16 Equation (10) also provides the amplitudes

for the non-trivial solution and the parameter regions in

which these exist. Nayfeh and Mook discuss the extraction

of the transition curves which define these regions.8 Figure 2

reproduces these transition curves, also showing the possible

response types in each region (see the insets of the figure).

The frequency response of the system, shown in Fig. 3,

depicts the associated average harvested power. The out-

come sought is to adjust an energy harvester so that its

response falls into regions B or C, where stable periodic sol-

utions are possible.

The frequency response bears a resemblance to that of a

mono-stable Duffing energy harvester. However, qualitative

differences arise from the amplitude-frequency expression,

Eq. (10). The nonlinear coefficient b affects the response

curve only as a scaling factor for the amplitude. The squared

response amplitude is inversely proportional to b, which

implies that a parametrically excited harvester has a higher

power output when b decreases (otherwise, in a weakly non-

linear regime). Furthermore, the structure of the transition

curves is independent of the nonlinear coefficient. Given an

excitation amplitude and damping, the bifurcation points

governing the transition from regions A to B and from B

to C are identical for any non-zero positive value of b. This

FIG. 2. Transition curves of the nonlinear parametrically excited harvester against the detuning parameter r and excitation amplitude ae, calculated from Eq.

10. The dashed line denotes the critical amplitude below which the response decays for any detuning. The insets show the type of numerically computed

response in each region: (A) stable trivial solution; (B) stable periodic solution; (C) periodic and trivial co-existing solutions.

FIG. 3. Frequency response curve of the harvested power for ae ¼ 0:5. The

shaded areas denote regions A, B, and C where different response types

appear, as described in Fig. 2.
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means that the frequency range over which a stable periodic

solution would exist (regions B and C in Fig. 3) is also iden-

tical for a weakly and strongly nonlinear regime. Hence,

vibration energy can be harvested over an invariant fre-

quency range regardless of the value of b. This indicates that

better performance would be expected with weak nonlinear-

ity, potentially offering a solution to applications where

strong nonlinearity cannot be easily realized.

It should be noted that the above discussion is based on an

approximate analytical method with its accuracy restricted

close to � ¼ 2. Therefore, numerical integration of Eqs. (3) and

(4) is performed for selected indicative cases, in order to impart

confidence for these qualitative characteristics. Numerical inte-

gration is also performed for an externally excited Duffing-like

harvester, which is identical to the parametric one of Eqs. (3)

and (4), with the exception of the excitation Fext ¼ 2ae cos �s
which is directly applied to the oscillator. The results are

compared in order to demonstrate the advantages of parametric

excitation for weakly nonlinear systems.

A relatively low excitation amplitude is chosen, ae ¼ 0:1,

to better represent the conditions prevalent for ambient

vibrations. A reasonably low damping coefficient is used

(c ¼ 0:01). The normalized equivalent coupling factor is

h ¼ 0:35 and d ¼ 1 without loss of generality. Three values

are considered for the nonlinear coefficients b in the ascending

order (0.5, 1.0, 2.0) and the average power frequency response

of the parametrically (light grey curve) and externally (dark

grey curve) excited harvesters, all of which are plotted together

in Fig. 4. The results show the inverse proportionality of b
upon the magnitude of the average power for the parametri-

cally excited case. Decreasing b leads to higher output power

as a result of higher response amplitudes. This confirms the

scaling effect of the nonlinear coefficient, observed in Eq.

(10). In fact, one could expect an increase in the response

amplitudes without bound as b approaches the zero limit value.

This property may be extremely useful for energy harvesting

purposes in the presence of weak nonlinearity, emphasising

that parametrically induced vibrations can lead to higher output

power. On the other hand, the externally excited system

reaches a constant maximum power for all the values of b. As

long as strong nonlinearity is present, this class of harvesters is

favoured since it also leads to a broad frequency range.

However, this can also imply the converse argument that as b
decreases, the bandwidth of the response becomes narrower,

approaching essentially the response of an equivalent linear

system. This is evident in Fig. 4 where it is noted that for

b ¼ 2, the bandwidth is over 1 and for b ¼ 0:5, it is halved. In

contrast, the response of the parametric system appears to

extend over an invariant frequency range (extending from � �
2 up to � � 4 for all the b values considered). Most of the fre-

quency range corresponds to region C, where the periodic solu-

tion co-exists with the trivial solution, due to the relatively low

input amplitude. Overall, the transition from a strong to weak

nonlinearity does not narrow the response bandwidth, and

thus, broadband energy harvesting is not subject to the con-

straint set by it.

In this letter, parametric resonance was considered as a

direct alternative to forced nonlinear energy harvesting. The

response bandwidth for the latter depends, among other influ-

ential factors, on the magnitude of the nonlinear coefficient.

This calls for the presence of a source of strong nonlinearity

for effective broadband vibration energy harvesting. It was

shown that parametrically excited systems are not subject to

the same constraint since their response bandwidth is invariant

of the magnitude of nonlinearity. In addition, weakly nonlin-

ear systems lead to increased power output compared to their

strongly nonlinear counterparts. These properties suggest that

parametrically excited nonlinear systems are favoured alterna-

tives for broadband vibration energy harvesting in applica-

tions where strong nonlinearity cannot be achieved.
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Engineering and Physical Sciences Research Council
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