N
P University of

Central Lancashire
UCLan

Central Lancashire Online Knowledge (CLoK)

Title Effect of cylinder de-activation on the tribological performance of
compression ring conjunction

Type Article

URL https://clok.uclan.ac.uk/id/eprint/32142/

DOI https://doi.org/10.1177/1350650116684985

Date 2017

Citation | Bewsher, R, Turnbull, R, Mohammadpour, M, Rahmani, R, Rahnejat, Homer,
Offner, G and Knaus, O (2017) Effect of cylinder de-activation on the
tribological performance of compression ring conjunction. Proceedings of
the Institution of Mechanical Engineers Part J: Journal of Engineering
Tribology, 231 (8). pp. 997-1006. ISSN 1350-6501

Creators | Bewsher, R, Turnbull, R, Mohammadpour, M, Rahmani, R, Rahnejat, Homer,
Offner, G and Knaus, O

It is advisable to refer to the publisher’s version if you intend to cite from the work.
https://doi.org/10.1177/1350650116684985

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the
http://clok.uclan.ac.uk/policies/



http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

1) Check for updates

Journal of
ENGINEERING
TRIBOLOGY

Institution of

C.
ENGINEERS

Original Article

Proc IMechE Part J:

| Engineering Tribology

2017, Vol. 231(8) 997-1006
© IMechE 2016 ()
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/13506501 16684985
journals.sagepub.com/home/pij

®SAGE

Effect of cylinder de-activation on the
tribological performance of compression
ring conjunction
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SR Bewsher', R Turnbull', M Mohammadpour', R Rahmani',
H Rahnejat', G Offner? and O Knaus?®

Abstract

The paper presents transient thermal-mixed-hydrodynamics of piston compression ring—cylinder liner conjunction for a
4-cylinder 4-stroke gasoline engine during a part of the New European Drive Cycle (NEDC). Analyses are carried out
with and without cylinder de-activation technology in order to investigate its effect upon the generated tribological
conditions. In particular, the effect of cylinder deactivation upon frictional power loss is studied. The predictions show
that overall power losses in the piston—ring cylinder system worsen by as much as 10% because of the increased
combustion pressures and liner temperatures in the active cylinders of an engine operating under cylinder deactivation.
This finding shows the down-side of this progressively employed technology, which otherwise is effective in terms of
combustion efficiency with additional benefits for operation of catalytic converters. The expounded approach has not

hitherto been reported in literature.
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Introduction

The automotive industry is driven by the need to
manufacture more efficient vehicles, with ever-strin-
gent global emission directives and regulations to
reduce the effects of greenhouse gases. Better fuel
economy and reduced emissions are key motivation
for increased efficiency in internal combustion (IC)
engines.

Different technologies have been used to reduce
emissions and improve fuel economy. These include
variable valve actuation (VVA), turbo-charging, stop-
start and cylinder de-activation (CDA). Although
these technologies show potential for reducing emis-
sions and fuel economy, they also promote certain
undesired side-effects such as durability or increased
frictional losses in some engine conjunctions, which
are not often taken into account.

Frictional power losses typically account for
15-20% of the overall losses in an IC engine. These
include the piston ring and piston skirt friction,'
which are the major contributors with 40-50% of
the frictional losses.”> These can be affected by
changing the working conditions with the introduc-
tion of the aforementioned new technologies.

Uras et al.® showed that frictional losses increase
under stop-start conditions such as that experienced
in an urban drive cycle with modern vehicles.
Mohammadpour et al.* investigated the effect of
CDA on big end bearing performance. They found
that although the overall fuel efficiency was improved,
the bearing efficiency was reduced through increased
overall frictional power loss. This was caused as the
result of reduced minimum lubricant film thickness,
which can lead to higher wear of components and
generated contact temperatures.

CDA is particularly effective at low and partial
engine loading such as in congested traffic and in
urban driving.® This is represented by the urban driv-
ing section of the New European Driving Cycle
(NEDC).° Thus, to improve fuel economy, many
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modern IC engines utilise CDA technology. With
CDA the intake and exhaust valves of the deactivated
cylinders are closed during the combustion cycle. This
eliminates the pumping losses. On the other hand, in
order to maintain the required output power, the
combustion pressure is increased in the remaining
active cylinders, which leads to higher combustion
efficiency. Finally, the higher exhaust temperature as
a result of CDA aid the effective functioning of the
exhaust catalyst. A study conducted by Douglas
et al.” simulated the effect of CDA on emissions and
fuel economy, based upon the NEDC. It was found
that efficiency can be improved, but only for specific
parts of the fuel map. The report suggested that CDA
can be utilised for 75% of time spent under NEDC,
resulting in an estimated fuel consumption saving of
10%. The fuel consumption saving is also coupled
with an estimated 28% reduction in the NOx
emissions.

The effects of CDA on IC engine performance and
friction was studied by Boretti and Scalco® for a selec-
tion of deactivated cylinders. Although it was con-
cluded that CDA would improve fuel economy of
both petrol and diesel engines by 30% and 20%
respectively, their contribution was confined to an
overview of the piston-connecting rod-crank subsys-
tem, and did not specifically refer to the piston ring
pack.

The compression ring’s main function is to seal the
combustion chamber and prevent leakage of gases
into the crank-case and ingression of lubrication
into the chamber. Therefore, the compression ring
should conform well to the cylinder bore, thus result-
ing in increased friction. Baker et al.”"'° showed that
compression ring elastodynamic modal behaviour and
conformance to the bore surface results in a dispro-
portionate share of parasitic losses from such a small
contact conjunction.

The current study focuses on the effect of CDA
upon the piston compression ring-to-cylinder liner
contact conjunction. The analysis is based on the
combined transient solution of 2D Reynolds equa-
tion, lubricant rheological state equations and the
Greenwood and Tripp’s method'"'? for boundary
interactions. Viscous friction of a thin lubricant film
and boundary friction resulting from any asperity
interactions on the counter surfaces are predicted
and frictional power loss evaluated. A 4-cylinder 4-
stroke gasoline engine is considered in a snapshot
within the NEDC. The ring—liner conjunction is ana-
lysed assuming a required engine power with and
without CDA. In the case of CDA, the frictional per-
formance of both the active and de-activated cylinders
is considered. The frictional performance of the com-
pression ring conjunction under transient mixed
regime of lubrication with CDA has not previously
been documented in literature.

Methodology
Hydrodynamics

The 2D Reynolds equation for a compressible piezo-
viscous lubricant is

(0, (0 _ U, V)
ax\6nadx) ay\6nady)  ax Ay
a(ph)
2——= 1
t2—, (1)

where, for the current analysis, any side-leakage of the
lubricant in the lateral contact direction due to
Couette flow (along the periphery of the cylinder
bore) is ignored (¥ = 0). This condition is valid for
an assumed circumferentially symmetric film in the
ring-bore conjunction.

Furthermore, no axial motion of the ring relative
to the piston within its retaining groove is assumed. In
practice, the ring moves between the lower and upper
groove lands during the piston cycle. Inclusion of this
feature is only essential when gas flow analysis is con-
sidered, which is not the focus of the current analysis.
Therefore, the sliding speed of the compression ring is
taken to be that of the piston'”

1

. 0
Ulp) = —rosingq 1 + cos<p|:<r> —sin? <pj|

()

For the axial x-direction of the contact, Reynolds
(or Swift-Stieber)'*'> outlet boundary conditions are
used, which determines the lubricant film rupture
location. A fully flooded inlet is assumed. The bound-
ary conditions become

DPa=—b2 = Py
Px=x, = P
p

o =

A3)

where P, is the ring inlet pressure, which is assumed
to be the crank-case pressure in the piston downstroke
sense and the combustion chamber pressure in its
upstroke sense. The cavitation pressure, P., is con-
sidered to be the same as the atmospheric pressure
in this analysis. The position, x = x. denotes the
lubricant film rupture point. The current model does
not include any lubricant film reformation beyond the
point of lubricant film rupture.

Lubricant rheology

The lubricant viscosity and density are affected
by temperature and pressure. For viscosity,
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the Roelands!® equation is used, with the further
development of the same by Houpert!” yielding

n= noe"’ (4)

where 7 is the dynamic viscosity of the lubricant at
temperature 7. Morris et al.'® used an analytical con-
trol volume thermal mixing model to determine the
temperature of the lubricant in passage through the
contact. They showed that the lubricant temperature
in the compression ring-liner conjunction closely fol-
lows that of the cylinder liner, with generated heat due
to viscous shear heating accounting for less than 2%
of the same. Therefore, in the current analysis the
average temperature of the liner is used for the
value of 7. «* is a function of both pressure and tem-
perature, with 7; being the reference or ambient tem-
perature, thus'’

T—138\"%
To — 138

>{0+u§me”“ %)

Values of Z and S, are obtained as'’

ofp = [Inny+ 9.67]{ <

o
2= ST % 10°n(n0) + 9.67] 6)
BT —138)

(M

S _ T 7
*~ Tn(n) + 9.67

Variations of lubricant density with pressure and
temperature are obtained using the Dowson and
Higginson equation'”

_ 1+ 0.6 x 10™%p
L= T T 1T x 1079
x [1—=0.65 x 1073(T — Ty)] ®)

Conjunctional geometry

In the current study the compression ring is consid-
ered to be rigid, thus not undergoing its in-plane
radial, as well as out-of-plane twisting deformation.
A study including these features was carried out by
Baker et al.”'® The generated contact pressures are
also insufficient to cause any localised contact deflec-
tion as shown by Bolander et al.*® and Mishra et al.*'
Therefore, the lubricant film shape is a function of its
instantaneous gap and the ring axial profile, /; as

h(x,1) = hyu(t) + hy(x) )

Combustion chamber

A Piston
m
Fg
g Top Ring €«
Li
iner P—
E,
Figure 1. Radially applied forces acting on the compression
ring.
c(x — b/2)*
() = SS 2L (10)
(b/2)

Forces acting on the ring

Two outward forces act on the ring in its radial plane.
These are the ring tension, F,, and the gas force, Iy,
which acts behind the inner rim of the ring (Figure 1).
These forces strive to conform the ring to the cylinder
liner surface, thus

F=F,+F, (1n

where the gas force acting behind the inner rim of the
ring is
Fy = pgbl (12)

De 1s found using the combustion pressure curve.
The ring tension force is

Fe = pebl (13)

The elastic pressure is calculated using®
_ GEI
N 3rhr}

For a ring with an assumed rectangular cross
section

Pe (14)

1
1:51%13 (15)

Rahmani et al.*? considered an out-of-round cylin-
der where the compression ring only partially con-
forms to its surface in parts of the engine cycle. In
the current analysis an idealised right circular cylinder
is assumed, as in most studies reported in literature.
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Transience of regime of lubrication

For parts of the engine cycle, particularly in the com-
pression and power strokes at the piston dead centre
reversals or in its immediate vicinity, analyses show
prevalence of mixed or boundary regimes of lubrica-
tion.?> %> Under these conditions, the mechanisms
underlying generation of friction comprise viscous
shear of a thin lubricant film, as well as direct inter-
action of asperities on the contacting surfaces. In fact,
Styles et al.?® showed that most of the generated fric-
tion in an engine cycle from the compression ring
conjunction occurs in the vicinity of the top dead
centre in transition from the compression to the
power stroke. This prediction was in line with the
observations made by Akalin and Newaz®’ using a
motorised test rig, based on an engine cylinder and
by Gore et al.”® using a single-cylinder engine under
both motorised and fired operating conditions with
direct measurement of friction using a floating liner.
Therefore, inclusion of a boundary friction model is
an essential part of any representative analysis.

The applied load by ring tension and gas pressure
on the ring is supported by the hydrodynamic reac-
tion and the load share of asperities on the opposing
surfaces. The hydrodynamic reaction is obtained as

Wy, = //pdxdy (16)

The load share of asperities is obtained using the
Greenwood and Tripp'"'? model, which assumes a
Gaussian distribution of asperity heights with an
average asperity tip radius of curvature, k

W, = Mn@wf\ﬁE’AFsp(ﬂo (17)

15 K

tko, termed the roughness parameter, is found
using topographical measurements; in this case using
white light interferometry (Alicona infinite focus
microscope) with a vertical resolution of 1 nm and a
horizontal resolution of 0.175 pm with a focal magni-
fication of x80. o/x is a measure of a typical asperity
slope? and . = h/o is the Stribeck’s oil film param-
eter, with 1<l <3 taken as the region of mixed
regime of lubrication, and 4 < 1 corresponding to
boundary regime of lubrication.

Therefore, the total load carried by the contact
(contact reaction) is: W= W), + W,,.

The use of Greenwood and Tripp model
implies a roughness profile of fairly smooth surfaces
adherent to an idealised Gaussian distribution. In
practice, cylinder liner surface is cross-hatched and
honed and thus the topography deviates from an
ideal Gaussian distribution. The Greenwood and
Tripp model should therefore be adopted with mea-
sured topography to obtain a surface-specific non-
Gaussian model as highlighted by Leighton et al.*°
Therefore, the use of a Gaussian distribution in the

11,12

current study is for experimentally measured run-in
liner topography.?

In the same manner, the total generated contact
friction at any instant of time is

f=h+5 (18)

The boundary friction caused by the interaction of
the opposing asperities is obtained as

fb = 7-—OAa + §Wa (19)

where ¢ is the shear strength of asperities on the softer
of the two counter faces (in this case the cast iron
liner). ¢ is analogous to the asperity-scale coefficient
of friction and is measured using an atomic force
microscope operating in lateral force mode. Styles
et al.?® described the procedure in detail. 7 is the
Eyring shear stress of the lubricant,®' in this case
used for low to medium pressures and obtained
through viscometry. Equation (19) also requires the
determination of the area of asperity tips''"'?

A, = 12(Ko) AF>()) (20)

The viscous friction is calculated as

= /0//: dxdy (21)

where the shear stress, T is obtained as

| dph U

Method of solution

Reynolds equation has been discretised using a finite
difference central method. A point successive over-
relaxation method is then used to obtain the gener-
ated pressure distribution.*® The iterative process is
made up of the following steps:

1. An initial guess for the minimum film thickness is
made at each crank angle, ¢. This is used in equa-
tion (9) to find the film shape.

2. Using the film shape, a pressure distribution along
the piston ring is calculated using the discretised
Reynolds equation and lubricant rheological
properties from equations (1), (4) and (6). Two
convergence criteria must be satisfied.

3. The first criterion is for pressures, which is deemed
to be converged when

I J -
S S - |
I J
2 Zj:l Py

-5
Errpressure = <1 x10

(23)
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If the criterion is not met, then over relaxation is Table 1. Engine data.
applied
PP Parameters Values Units
pi=01- y)pzi_] +wis 0<y<2) (24) Torque 52.03 Nm
No. of cylinders 4 -
‘ The rfalaxation factor, y, is determined by numer- Engine type Gasoline S| -
ical testing. IF was found that an over-relaxation Crank-pin radius, r 39.75 mm
factor of 1.4 yielded the fastest solution. Connecting rod length, | 138.1 mm
. . B inal radius, 44.52
4. The second criterion is for load balance. The R(,)re nomm? r.ahlus o 0 mm
applied contact load, F, should equilibrate the Ing crown fielg ‘t’ ¢ Hm
contact reaction, W. Thus, at each crank angle Ring axial face widch, b .15 mm
Ring radial width, d 3.5 mm
W — F| Ring free end gap, g 10.5 mm
‘ ‘ <e (25)
F
where <1073, In the current analysis, the conver- Table 2. Lubricant properties in atmospheric pressure.
gence criteria is taken as: ¢ = 107>. When the equilib- Parameters Values Units
rium condition is not met the minimum film thickness
is altered as Lubricant viscosity, 1, 0.05 at 40°C0.009 kg/ms
at 100°C
_ Lubricant density, 833.8 at 40°C799 ke/m?3
iy, = (1 + BoY, ! (26) v po : g
at 100°C
~ : : - % I x10® m*/N
where B is a damping coeflicient with the value 0.01. ¢
is then calculated as Eyring shear stress, 1o 2 MPa
W—F
=~ 27
max{W, F}
Table 3. Material properties and surface topographical
parameters.
5. When both convergence priteria are met,'the crank Parameters Values Units
angle is advanced within the combustion cycle,
which for a 4-stroke process comprises 720°. Liner material Grey castiron -
Modulus elasticity of 92.3 GPa
liner material
. . Poisson’s ratio for liner material 0.211 -
Validation of methOdOIOgy Density for liner material 7200 kg/m®
The numerical simulations described here use an exist- Ring material Steel SAE 9254 —
ing and established CFD model.”>** These CFD Modulus elasticity of ring material 203 GPa
models take into account the 3D solution of Poisson ratio for ring material 0.3 _
NaVier'—Stokes .equation, but are computationally Roughness parameter (¢Ko)2 0.04 _
expensive. The input pargmeters fr.om Tables 1 to 3 Measure of asperity gradient 0.001 _
are used and the combustion curve in Shahmohamadi (0/K)2
33 . .34
?t 21;1[ at ;nhenglri:: spf.:e(.i of ISﬁOIO r/ rﬁmi( Thi resul}‘is Shear strength of asperities () 0.17 -
in Figure 2 show the minimum film thickness through- Density for ring materal 7700 kg/m®

out the 720° engine cycle. It can be seen that there is a
maximum deviation of 10% from the CFD results.
This shows good agreement with the more detailed,
but computationally intensive CFD model.**

Results and discussion

A C-segment vehicle with a 4-cylinder 4-stroke gas-
oline engine is used in the current analysis. The
engine, lubricant, material and surface parameters
are listed in Tables 1, 2 and 3, respectively. The
engine speed is 1500 r/min. This speed corresponds
to 35km/h vehicle speed on the NEDC, when the

All topographical data in Rahmani et al.*? were measured using white
light interferometry with Alicona with measurement sensitivity of | nm
normal to the surface and 0.175 um in horizontal directions.

car is driven in third gear. The delivered torque
from the engine is 52.03 Nm.

The results presented are for conditions which all
cylinders remain active, delivering the required
torque. Results are also presented for CDA with
two active cylinders delivering the same output
torque. Figure 2 shows the combustion pressure, P,
throughout the engine cycle. Figure 3 shows the
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Figure 2. Minimum film thickness validation against CFD.>33*
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=
T

Combustion pressure (bar)
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Exhaust Intake

—-—-—-- All cylinders active
— — — - Aclive cylinder
Deactivated cylinder

Crank angle (deg)

Figure 3. Combustion pressure.

corresponding measured variation in the liner tem-
perature. The results correspond to (i) all active cylin-
ders, (ii) an active cylinder in an engine with CDA and
(iii) a deactivated cylinder in an engine with CDA.

The results are for the predicted minimum film
thickness and the total friction in the piston top com-
pression ring-to-cylinder liner conjunction. Under
CDA, a considerable increase in the combustion pres-
sure is required in the active cylinders to allow for the
delivery of the same engine power as that with all the
cylinder remaining active. In order to achieve this, a
higher rate of fuel injection is required, which may not
essentially achieve improved fuel efficiency and reduce
engine emissions with CDA.

The crank angle 6 = 0° marks the position of the
TDC at the onset of power stroke, with combustion
occurring at 20° crank angle. For active cylinders
during CDA, combustion occurs later. The maximum
cylinder pressure for the deactivated cylinders occurs
at the TDC. Pressure in deactivated cylinders results
from entrapped air and any residual charge.

Figure 4 shows the equivalent liner temperature for
each mode of operation. This is required in order to
update the lubricant viscosity with the instantaneous
in situ temperature.

Figure 5 shows the minimum film thickness in the
piston ring to cylinder liner conjunction during
the engine cycle. It can be seen that at TDC
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Figure 5. Cyclic variation of minimum film thickness.
(p = 0°, 360°) the film thickness is reduced, with its calculated as
minimum value occurring in the power stroke. As a
result of the thinner film in the active cylinders of the P, =fU (28)

engine, there are larger contributions to friction
(Figure 6). For the activated cylinders, this is approxi-
mately double that experienced in a normal engine
without CDA. However, for the deactivated cylinders
it can be seen that there is a much lower predicted
friction.

Analysing the results as a whole, it can be said that
for multi-cylinder engines with CDA, frictional power
losses are not necessarily reduced with the application
of technology. The cause of this is the increased cylin-
der liner temperature in active cylinders at higher
combustion (Figures 3 and 4).

In order to evaluate the effect of CDA on the over-
all efficiency of the system, the frictional power loss is

Figure 7 shows the frictional power loss of com-
pression ring under different conditions. The magni-
tude of frictional losses follows the friction variations
in Figure 6. Table 4 shows the average power loss of
each ring during the whole combustion cycle. This is
105.76 W for the engine without CDA, 116.9 W when
CDA is used with two cylinders active. This amounts
to a 9.53% increase in the overall power loss of com-
pression rings with CDA. Therefore, although CDA is
progressively utilised to improve combustion effi-
ciency and catalyst performance, it has consequences
in terms of tribological performance and frictional
power loss.



1004

Proc IMechE Part J: | Engineering Tribology 231(8)

90 T T
Combustion ‘h Power Exhaust Intake
\
80 [~ Iy -
Iy
" | —-—-— Al cylinders active
or | ‘1 — — — - Active cylinder
(I Deactivated cylinder
- 1 _
60 -
I‘ |
1
S0 | | -
z b
e “ Nl
S 40 i il -
k] 1yl
i iy
i
1

Crank angle (deg)

360 540

Figure 6. Cyclic total friction.

-
@
(=]

Combustion il Power

s

@

o
T

e

Y

(=]
T

Y -
b= L)
(=] o
T T

Power loss (W)
8
T

2
T

~ )
40 - LET N H vy
4

20 -

Exhaust Intake

e All cylinders active
— — = - Active cylinder
Deactivated cylinder

Crank angle (deg)

360 540

Figure 7. Frictional loss.

Table 4. Average frictional power loss of the compression
ring.

Average power loss (W)
for each ring

All cylinders active 26.44
Active cylinder with CDA 33.87
Deactivated cylinder 24.58

Concluding remarks

This paper presents the effect of CDA on the tribo-
logical performance of piston ring to cylinder liner
conjunction. The analysis shows that CDA has a sig-
nificant effect on the film thickness and frictional

power losses for the active and deactivated cylinders.
It is shown that the total frictional loss in an engine
with CDA is 9.53% higher than that in a similar
engine under normal operational mode. Although
the effect of CDA on frictional losses is not negli-
gible, it is small in comparison with the higher gains
(10%) in fuel economy because of higher combus-
tion efficiency identified by Douglas et al.” The results
of this paper indicated that the tribological conse-
quences of this new technology should also be
considered.
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