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Abstract Machine downsizing, increased loading
and better sealing performance have progressively led
to thinner lubricant films and an increased chance of
direct surface interaction. Consequently, mixed and
boundary regimes of lubrication are prevalent with
ubiquitous asperity interactions, leading to increased
parasitic losses and poor energy inefficiency. Surface
topography has become an important consideration as
it influences the prevailing regime of lubrication. As a
result a plethora of machining processes and surface
finishing techniques have emerged. The stochastic
nature of the resulting topography determines the
separation at which asperity interactions are initiated
and ultimately affect the conjunctional load carrying
capacity and operational efficiency. The paper pre-
sents a procedure for modelling of asperity interac-
tions of real rough surfaces, from measured data,
which do not conform to the usually assumed Gaus-
sian distributions. The model is validated experimen-
tally using a bench top reciprocating sliding test rig.
The method demonstrates accurate determination of
the onset of mixed regime of lubrication. In this
manner, realistic predictions are made for load carry-
ing and frictional performance in real applications

M. Leighton - N. Morris - R. Rahmani (<) - H. Rahnejat
Wolfson School of Mechanical and Manufacturing
Engineering, Loughborough University, Loughborough,
UK

e-mail: R.Rahmani@Iboro.ac.uk

where commonly used Gaussian distributions can lead
to anomalous predictions.

Keywords Real rough surfaces - Contact load
carrying capacity - Friction

List of symbols

A Mean area of asperity contact in the apparent
area of contact

A Apparent area of contact

a Acceleration of floating plate

b Strip face-width

c Lubricant rupture boundary

d Surface separation of mean centrelines

d; Height above the centreline of a surface

E Composite modulus of elasticity

f Total friction

fr Boundary friction

f Viscous friction

Fs/,  Statistical function for asperity load carrying
capacity

F, Statistical function for asperity contact area

h Separation or film thickness

ho Initial gap between surfaces

hini  Height of the highest peak relative to the mean
centre-line of the surface

m Mass of floating plate

L Length of sliding strip

P Hydrodynamic pressure

Parm  Atmospheric pressure

Peav  Cavitation pressure
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P Load carried by one asperity pair

p Mean asperity load carried for the apparent area
of contact

r Radial distance between asperity tips

R Crown radius of the ring parabolic profile

t Time

U Sliding velocity

w Peak penetration

Wy Vertical interference between asperity tips
w Applied load on the strip (total contact load)
Wy,  Hydrodynamic reaction

Z; Topography height above the centreline of
surfaces
Z Pressure—viscosity index

Greek symbols

o Piezo-viscosity

B Asperity tip radius

0  Surface deformation

n  Lubricant dynamic viscosity

o Lubricant dynamic viscosity at ambient
conditions

) Stribeck parameter, . = h/a

& Asperity density per unit area

p  Lubricant density

po Lubricant density at ambient conditions

¢ Coefficient of the boundary shear strength

¢  Probability distribution function

¢~ Convoluted probability distribution function

o  Root mean square variation from mean surface
centreline

7o  Eyring shear stress of the lubricant

W Asperity tip curvatures

1 Introduction

A sufficiently thick low shear strength film of lubricant
is usually desired to form in all contact conjunctions to
carry the applied load and guard against the direct
interaction of asperities on the opposing surfaces, thus
reducing frictional losses. However, in practice this
ideal situation is often not achieved, owing to many
circumstances, such as stop—start or reciprocating
motions, which affect the entrainment of the lubricant
into the contact with relative motion of surfaces [1, 2].
There may also be a lack of lubricant availability at the
inlet to a conjunction as well as reverse and swirl flows
there [3, 4]. As the result, many contacts suffer from a
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lack of a coherent lubricant film where a proportion of
applied load is carried by the ubiquitous asperities on
the counterface surfaces. These interactions increase
the generated friction, for example in the cases of
piston-cylinder system at dead centre reversals [5—8]
and cam-follower contact in the inlet reversal posi-
tions [9]. Various palliative actions are undertaken in
order to mitigate these adverse effects within the
mixed regime of lubrication, including the use of hard
wear-resistant coatings. Another approach has been
surface modifications such as cross-hatching of cylin-
der surfaces or texturing in order to entrap reservoirs
of lubricant for instances of poor entraining motion. In
order to opt for any method of palliation, it would be
instructive to initially predict the extent of boundary
interactions in an accurate manner.

Greenwood and Tripp [10] and Greenwood and
Williamson [11] provided mathematical discourses for
asperity interactions between pairs of rough surfaces
for simplified asperity geometry and an assumed
Gaussian distribution of peak heights. A further series
of assumptions were made, most crucially an average
asperity tip radius and an average indentation depth at
given separations with the mutual approach of rough
counterfaces. The method also accounted for the
oblique interaction of any pair of opposing asperities.
These are usually regarded as necessary assumptions
to deal with the complex nature of rough surface
topography. The Gaussian assumption made in Green-
wood and Tripp [10] is not a prerequisite of the
method. Consideration of typical rough surfaces
suggests that a peak height distribution would have a
mean value above the mid-line of the surface as the
majority of the peaks would reside in the upper reaches
of the surface. It is, therefore, advantageous to develop
an asperity model which allows more representative
peak height distributions to be utilised, particularly for
lubricated contacts which were not discussed by
Greenwood and Tripp [10].

Greenwood and Tripp [10] used a Gaussian distri-
bution to approximate the probability of peak height
interactions at a given surface separation; A where this
is inversely proportional to ¢ (root mean square; RMS)
of the surface heights. As a result the mean of the peak
height distribution is set to the same mean as the
surface height distribution as a simplification for the
proof of concept which, for engineering surfaces,
tends to predict that the first surface interactions occur
at a lower value of / than is otherwise the case. This
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results in an estimate of asperity load carrying capacity
significantly below a real case at the upper reaches of
the surface and a lower separation limit at which the
mixed regime of lubrication is expected to commence.
One way to deal with this shortcoming is to measure
the mean peak height relative to the surface centre-line
and shift the mean of the Gaussian distribution to this
location. This requires the analysis of the surface and
identification of the peak height distribution. There-
fore, “the surface specific distribution” might as well
be used for the rest of the analysis, thus improving the
accuracy of surface representation with little extra
effort. Furthermore, the Gaussian distribution used to
describe the peak height distribution must have the
same standard deviation as the actual peak height
distribution, not the RMS roughness, ¢, which is
derived from the surface height distribution.
Greenwood and Williamson’s model [11] was
further developed to account for non-uniform radii of
curvature of asperity peaks by Hisakado [12], and for
elliptic paraboloid asperities by Bush et al. [13], as well
as for anisotropic surfaces by McCool [14]. The
Greenwood and Tripp model [10] was extended by
Pullen and Williamson [15] to account for the plastic
deformation of asperities and further improved by
Cheng et al. [16] for an elasto-plastic model. A recent
extension of the model for combined elasto-plastic and
adhesion of asperities for fairly smooth surfaces, using
fractal geometry was reported by Chong et al. [17].
Nevertheless, the original Greenwood and Tripp model
[10] has been widely used in many applications [18-21].

2 Background Theory

It is initially assumed that the surfaces are replaced by
an equivalent surface comprising a collection of
hemispherical asperities of an average tip radius, f8

Fig. 1 Geometry of
asperity pair interaction

(Fig. 1) and with the same peak height distribution as
the original surfaces themselves.

The asperity radii (f; and f3,) and the radial
separation r allow w,, (the peak height interference) to
be related to w (the asperity compression) this results
in the load carrying capacity of the surface. For the
interference of two spheres the asperity compression
can be shown to be:

v = (%3 g

where, () is a “Macauley bracket”. Let:

ﬁ — ﬁl ;ﬁZ (2)
where:
p = 2L 3

The average asperity density over both surfaces
is & and the apparent area of contact is .A. Therefore,
the probable load supported by this representative
equivalent surface at a given separation, P(d)
becomes:

B(d) = 21824 / / / P(w, /) b(21)(22)r - dza-
dz, - dr (4)

where, P(w, r) is the load carried by an asperity pair
with misalignment » and peak penetration of w.
Equation (4) states that the total carried load is as
the result of the load supported at a given penetration
between all pairs of opposing asperities at any given
surface height.

The surface specific contributions are the peak
height distributions, ¢(z;) and ¢(z2), and the asperity
peak density, &. Examples of measured surface height

Z2
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distributions can be seen in the work of Peklenik [22]
who also discussed some of the key variations between
measured and generated surface properties.

Combining the probabilities by taking the convo-
lution of the asperity peak height distributions for
counterface surfaces leads to:

¢ (2) = ¢(z1) * d(z2) (5)

Using Hertzian theory to express the load carrying
capacity as a function of the deformation (penetration)
of two spheres in elastic contact with the effective
composite elastic modulus, E':

4
P= gE’\{f‘zw% (6)

Where V¥ is the composite curvatures for two
contacting spheres defined as:

L1 1
YoB B

Equation (4) now reduces to:

d) =218 A / / ( )E"PZWZ “(Z)rdzdr  (8)

With the inclusion of Egs. (1) and (2) the equation for
the probable asperity carried load at a given separation
simplifies to:

et [(D)ew (oY v i
©)

Extracting the constants and setting the limits of
integration, yields:

Pld) = gnézE"P%A /d T () - dz

(7)

= (10)
[l e
Pd) = gnng’\P%A / T () - dz
4 jz 1~ an
S5ee-5),
32

P(d) = 57 2E"I’Z,B.A/ z—d ¢(z)-dz (12)

Standardising the form of the probability distribu-
tion as s = oz:

@ Springer

o) = 2wtz [~ (-4 (s
P(d)—lsnf‘Pﬁa-EA/d/a(s O_)(]S(s) ds
(13)

Equation (13) can then be rearranged to:
~ 32 5 d
Pld) = 22 neWhpotis AF, <;) (14)

In a similar manner, the mean asperity contact area
within the apparent contact area is found as:

A(d) = 27% (¢0)*WBAF(2) (15)

Where the probability functions in Egs. (14) and (15)
are defined as:

) = [ =iyt -ds (16)

It is of note that in the original theory proposed by
Greenwood and Tripp [10] the radii on each surface
are assumed to be equal and therefore:

. (17)
If Eq. (17) is true then Egs. (14) and (15)
respectively reduce to those given in [10] as

Pd) = 16[ \[AF( > (18)

A(d) = n*(£Bo)> AFs(2) (19)

The function, Fj /2(/1), represents the statistical
likelihood of interactions of deformed asperities at all
separations as one surface is lowered onto the other. In
order to improve the accuracy of the model for a
specific pair of surfaces the specific parameter must be
calculated. The parameters; &, 5 and ¢ can be readily
determined by many commercially available metrol-
ogy systems. Determination of the function Fs/,(%)
from measured surface topography is more involved.
As already noted, to correctly apply the assumption of
a Gaussian distribution of peak heights, the standard
deviation and mean of the peak heights are needed a
priori. However, it is more representative to determine
the peak height distributions of the surfaces through a
simple extension of the approach highlighted above,
using instead the surface specific data.

Fs)5(/) and the roughness parameter determine the
probable number of asperities which are penetrated at
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a given surface separation and the extent of their
deformation.

3 Extension to measured surface data

Measuring surface topography using a variety of
measurement techniques yields an array of surface
height data at discrete measured nodes. The discrete
surface data is then used in a probabilistic model, such
as that described above, with the frequency distribu-
tions required in the form of a histogram of each
surface. The distribution is dependent on the size and
resolution of the sampled area, as well as the surface
itself.

Identifying the asperity summits and their heights
leads to a discrete peak height distribution for each
surface. The convolution of these two peak height
distributions is then found, ¢*, must conform to:

/jo o (x)-dx=1 (20)

Then, the calculation of functions such as Fs, () is
a routine matter for any desired surface height through
integration of the histogram columns residing above
the A value being considered with a weighting as
shown in Eq. (16).

The remaining surface specific parameters consid-
ered in this model are: &, 5, ¥ are and o. The
determination of § and ¥ not considered satisfactory
techniques for measured surfaces. f represents the
mean radius of all the asperity pairs in contact at a
given separation. For multi-scale surfaces, such as
cross-hatched cylinder liners, the manufacturing pro-
cess often comprises several stages. Honing creates a
rough, isotropic surface with a negatively skewed
surface height distribution by machining away the
upper levels of the surface with successively smoother
machining processes. This means that there is a
variation in f at different heights of the surface. At the
upper levels there are likely to be smoother and more
rounded asperities, whilst any lower peaks formed by
the initial machining process and untouched by any
subsequent operation would have a lower asperity
radius (i.e. sharper peaks). As a result a variable f§
value is encountered at different separations.

For the individual surfaces, f8;(h) should be deter-
mined as the mean of all the asperity radii above a

given height, &, from the centre-line of the topography
as weighted by their heights since higher asperities
have a greater probability of contacting the counter-
surface. Taking a double integral, the variable asperity
radius can be determined from:

B, (h) = /h e Mds d (21)

Subsequently, the mean of the same with any
probability of contact at any given separation should
be used. With the variation of the asperity radii of the
individual counter surfaces determined, consideration
of the combined effect from two surfaces in contact
should then be considered. The two functions thus
found for the individual surfaces cannot be convoluted
in the same manner as the peak height distributions. It
is necessary to know the height of the upper most
asperity on each surface in order to determine the
maximum separation at which a contact can be made.
These peak asperity pairs represent the initial possible
direct contact of the surfaces as the mean centre-lines
are moved closer. They are designated as h;,; and
hinin. A variable asperity radius distribution can then
be found as:

ﬂ(h) — ﬁ] (h — him‘Z) '; ﬁg(h — hinil) (22)

Similarly, the variable asperity curvature W¥;(h) can
be determined from:

Bt phin S L
W, (h) = / / Mds dx (23)
h x n

2
W (h = higin) + Wa(h — higit)

Y(h) (24)

4 Results for measured surfaces

Measured data from real surfaces is used in order to
determine a more realistic Fs;,(4) function. The
surfaces considered in this study are those of a flat
plate with a skewed surface height distribution and a
surface finish similar to that of a plateau-honed
cylinder liner (surface 1 as shown in Fig. 2a) and a
corresponding flat surface with an approximately
Gaussian surface height distribution and low RMS

@ Springer
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Fig. 2 Images of surface
topography using an
Alicona Infinite Focus
Microscope at x50 optical
magnification applying the
focus variation technique:
284 x 216 pm. a Surface 1.
b Surface 2

1.60 120
1.40 ! 100
120 §
= N 3 080
. \ s
= 080 \ = 060
r‘g 0.60 %‘ _rgu
S0 \ & 040
0.40 \
\ 020
0.20 \
000 " \\\\\ LY 050
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(a) (b)

Fig. 3 Characteristic distributions for surface 1 averaged from 10 measured areas. a Peak height distribution. b Surface height
distribution

1.60 1.20
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Fig. 4 Characteristic distributions for surface 2 averaged from 10 measured areas. a Peak height distribution. b Surface height
distribution

roughness similar to that of a piston ring (surface 2 as It can be seen from the convolution of the peak
shown in Fig. 2b). The peak and surface height height distributions (Fig. 5a) that there are signifi-
distributions for these surfaces are shown in Figs. 3 cantly more asperities above the centre-line than
and 4. would be predicted by a Gaussian distribution with a

The convoluted distributions for the pairs of mean of 0. Not only is there a non-Gaussian peak
contacting surfaces 1 and 2 are shown in Fig. 5. height distribution, but also the mean height is non-
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Probability (¢)

-5 -4 -3 -2 -1 0 1 2 3 4
Distance from mean centre-line, (h) [um]

C))

b Surface height distribution

Surface Specific Function

= = = Gaussian Curve Fit Function

Probability Function (Fs ;)

3 5 6 7 8

4
Lambda (A)

Fig. 6 Comparison between Fs); functions from surface
specific data and from an assumed Gaussian distribution

zero which can also be seen for surface 2 with
approximately Gaussian peak height and surface
height distributions. This was given in the curve fit
process of Greenwood and Tripp [10] or subsequent
studies which have used this distribution assumption.

A comparison between the surface specific Fs/;(4)
function and the same function provided by Green-
wood and Tripp [10] for a Gaussian surface distribu-
tion, to which Arcoumanis et al. [23] fitted a 6th order
curve fit, is shown in Fig. 6.

Figure 6 shows significant differences between the
calculated functions. This is in part due to the
increased proportion of asperities in the higher regions
of the surface for the case of surface specific data.
There is also a greater cumulative effect in these
differences as the surfaces are moved together and the
asperities continue to deform to a greater extent. For
this case, the Gaussian assumption under predicts the
Fs, function for these surfaces by over 80 %.

Probability (¢)

Distance from mean centre-line, (h) [um]

(b)

Fig. 5 Convoluted characteristic distributions for contacting pairs averaged from 10 measured areas. a Peak height distribution.

Figure 7 shows the mean asperity radius, f;(h),
above a certain height as measured from the mean
centre-line of the surface topography.

It is clear from Fig. 7 that a mean value used for
contacting asperity radii, [, would not be a fair
representation. Therefore, a more complex analysis of
asperity radii is required. Determining f(h) as a
variable for the combination of the two surfaces under
consideration gives the curve shown in Fig. 8 as the
convolution of the asperity radii distributions for the
rough counter surfaces.

Figure 8 shows a significant variation in f3(h) at the
level of the upper asperities even though surface 2 has
a minimal radius variation (Fig. 7b). The characteris-
tic equations for asperity load share (Eq. 14) and
contact area (Eq. 15) show that the variation in the
asperity radius with mutually converging surfaces
would significantly alter the load carrying capacity
and thus any predicted generated friction. To apply the
variables () and ¥ (h), sixth order polynomial curve
fits are used in the numerical model. The full range of
the surface height distributions has bee shown in
Figs. 7 and 8 to demonstrate the convergence to the
mean. On the other hand, the Greenwood and Tripp
model [10] is concerned only with the upper reaches of
the topography.

5 Validation of methology
The methodology for representation of contact of a

pair of rough surfaces (described above) using surface
specific data is validated against experimental

@ Springer
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Fig. 7 Asperity radius
distributions for the counter
surfaces 1 and 2, averaged
from 10 measured areas.

a Surface 1. b Surface 2

Fig. 8 Convoluted asperity
radius and curvature
distributions averaged from
10 measured areas

measurements of friction from a precision sliding
tribometer.

5.1 Sliding tribometer
A reciprocating slider tribometer is used to measure
the generated friction between the two measured

rough surfaces. A ‘strip’ (surface 2 described above)
comprising a 20 x 20 mm flat area with 45°
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chamfered inlet and outlets slides on a flat sample
(surface 1 described above), the latter mounted onto a
floating flat plate, supported by frictionless bearings
and intervened from the solid base of the rig by piezo-
resistive load cells (Fig. 9). The floating plate is
dragged by the sliding contact conjunction, lubricated
by 1 ml of base oil applied to the plate surface,
furnishing a very thin lubricant film and significant
asperity interactions. The drag force (generated
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Fig. 9 Detail view of the
sliding tribometer

- Motor
- Test sample
- Laser Vibrometer

- Loading Mechanism
- Substrate Plate

- Load Sensor
- Coupling

- Encoder

- Optical Table
- Reciprocating strip slider holder

- Strip holder

- Siiding Strip

Table 1 Lubricant data Parameter

Value Unit

Eyring shear stress (7,)
Lubricant density (p)

Lubricant dynamic viscosity (1)

2 MPa
839.3 (at 20 °C) Kg/m®
0.1583 (at 20 °C) x107® Pa's

contact friction, f) equates the inertial force measured
by the load cells as:

ZF:f:ma (25)

The base oil used is a Grade 3 base stock (Highly
paraffinic with ultra-low Sulphur content, Viscosity
Index; VI > 125). By not introducing boundary active
lubricant species, which can adsorb to the surfaces and
form an ultra-thin low shear strength film, the
repeatability of the experimental work is improved.

The pertinent base oil rheological parameters are listed
in Table 1.

The rig is operated at low sliding velocity, repre-
sentative of poor kinematic conditions of piston
motion near the dead centre reversals and in this case
under isothermal conditions and at relatively low load.
The load is applied through the loading mechanism
shown in the figure. Mixed or boundary regimes of
lubrication would be expected under these conditions.
Further details about the slider rig and its operation are
provided in Morris et al. [24].

@ Springer
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Relatively low load and large apparent contact area,
A (contacting face of the strip) yields insufficient
lubricant pressures to cause any elasto-hydrodynamic
deformation of the surfaces. Furthermore, any lubri-
cant film thickness, &, above the mean surface height
of topography, d, is expected to be quite thin, yielding
a mixed regime of lubrication.

5.2 The numerical model

The generated friction under the anticipated mixed-
hydrodynamic regime of lubrication is obtained as:

=5+ (26)

where, the total friction, f is as the result of contri-
butions due to the viscous shear of a thin lubricant film
and boundary friction due to the interaction of
asperities on the counterfaces of the contacting
surfaces.

The viscous friction force is obtained as follow:

b/2

/ / b/2
Boundary friction is due to the interaction of
counterface asperities, as well as any pockets of
lubricant entrapped between them, which are assumed

to be subject to the limiting Eyring [25] shear stress as
[9]:

fo =10A +cP (28)

+= Vp vl dxdy (27)

where, A is given by Eq. (15). This value is clearly
different for the measured surface specific topography
and that based on the assumption of Gaussian distri-
bution of Greenwood and Tripp [10] model. There-
fore, the resultant friction predicted for an assumed
Gaussian peak height distribution, using Greenwood
and Tripp [10] model and that for peak height
distribution determined using the measured surface
data are compared with the directly measured friction
using the experimental rig.

The first term on the right-hand side of Eq. (28)
represents the non-Newtonian shear of thin pockets
of lubricant. The second term corresponds to the
direct interaction of asperities. ¢ is the coefficient of
shear strength of asperities, measured using an atomic
force microscope in the lateral force mode [8]. The
Eyring shear stress is given in Table 1, and ¢ = 0.17
[26].

@ Springer

It is clear that the lubricant film thickness, A is
required in order to predict the viscous friction
contribution in Eq. (27). Therefore, a quasi-static load
balance must be sought between the contact load
carrying capacity, comprising asperity load share and
any hydrodynamic lubricant reaction against the
applied load, thus:

W = Wy, + P(d) (29)

The hydrodynamic lubricant film reaction is
obtained as:

Wiy = / / pdxdy (30)

The hydrodynamic generated pressure distribution
is obtained through solution of Reynolds equation:

3 3
3 (PR 3 (PR 0leh) 2oh)
Ox \ 61 Ox Jy 6;7 dy Ox ot
(31)

where, U is the sliding velocity of the strip in the x-
direction. The strip is of finite length, thus the
Poiseuille side-leakage flow due to pressure gradient
in the lateral y-direction is also taken into account. The
final term on the right-hand side of the equation takes
the squeeze film effect into account due to the transient
nature of the problem.
The lubricant film shape is given as:

h(x,y) = h0+;2—R+5(x y) (32)
where, hy is the initial gap. As already noted there is no
localised elastohydrodynamic deformation of the
contacting surfaces for the relatively low generated
pressures, thus: d(x,y) = 0.

The boundary conditions used for the solution of
Reynolds equation are:

op

=0
axx

L

Px=-b/2) = szmp(x:c) = Pooy and —

(33)

These correspond to atmospheric pressure at the

inlet (x = fb/z), where b is the effective face-width of
the sliding strip and Swift-Stieber boundary condi-
tions at the film rupture point at the contact exit
constriction (x = ¢), where the cavitation pressure is
that of the lubricant at the environmental temperature
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Fig. 10 Comparison of
friction predicted by various Experimentally Obtained Friction Measurement
asperity models with
experimental data
Numerical Lubricant Model with Modified Asperity w
Model (Variable B(A) and Y(A)) and Surface Specific \
Probability Distributions &
Numerical Lubricant Model with Modified Asperity w
Model (Constant B and ) and Surface Specific \
Probability Distributions &
Numerical Lubricant Model with Original Asperity w
Model [10] (Constant B) and Gaussian Probability
Distributions &
20 2.2 24 2.6 28

of 20 °C. In this study the cavitation pressure is
assumed to be equal to the atmospheric pressure.
In the lateral direction (side-leakage direction):

P(y:o) = p(y:l) = Patm (34)

The rheological properties of the lubricant vary
with pressure in the current isothermal analysis. The
relationships given by Dowson and Higginson [27]
and Houpert [28] are utilised to take into account the
variations of lubricant density and dynamic viscosity
with pressure and temperature as:

6 X 10710([7 _patm)

— 1 35
P 'DO|: + 1+1.7 x 10‘9(p _putm):| ( )
and:
n= noexp{ (Ino +9.67)

([1 +5.1 % 109(p_l7atm)]z_l)} (36)
where:
X (37)

Z =
5.1 x 10~2(Inny + 9.67)

A second order finite difference method is used to
solve Reynolds equation by utilising Point-Successive
Over-Relaxation scheme. During the iterations the
lubricant properties are also updated. The procedure
used, including for convergence criteria, are described
in Rahmani et al. [29].

6 Results and discussion

Figure 10 shows a comparison of numerical pre-
dictions of friction with that measured using the

Friction [N]

sliding tribometer. In general, the numerical pre-
dictions show very good agreement with the
measured data, with a maximum deviation from
the measured friction of 3.98 % in the case of
boundary friction contribution, based on the Green-
wood and Tripp model with a constant average
asperity tip radius. This difference is further
reduced to 2.67 % when the boundary friction
contribution is based on the surface-specific distri-
bution data (Fs/, and F», thus P(d) and A) with an
assumed constant average asperity tip radius. An even
further reduced difference (i.e. 2.47 %) from mea-
sured friction is obtained when surface-specific topo-
graphic distributions are used with a variable
determined asperity tip radius f(h) for any given
separation h. Therefore, the results illustrate the
importance of considering the asperity radii as a
variable with respect to separation (i.e. f(h)). The
progressive improved predictions account for small
gains in accuracy, but represent significant gains in
practice.

7 Conclusions

The current analysis highlights the potential mis-
representation which may occur as a result of assum-
ing a Gaussian surface roughness distribution in
modelling asperity interactions. Considering real
surface-specific roughness distributions and compar-
ing with experimental data the potential difference is
clearly demonstrated. The repercussions of this for
asperity load carrying capacity and also the onset of
mixed regime of lubrication is described.

@ Springer
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It is also clear that the method of considering
variation in asperity radii at different separations,
developed here, offers additional improvements for
surface analysis and modelling. The use of measured
surface-specific distribution and separation-dependent
variable asperity radii are the main contributions made
to knowledge in this paper. The developed methodol-
ogy also shows very good agreement with experimen-
tal measurements of friction.
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