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Abstract

Raman spectroscopy is a fast and sensitive technique able to identify molecular changes in biological specimens. Herein, we
report on three cases where Raman microspectroscopy was used to distinguish normal vs. oesophageal adenocarcinoma (OAC)
(case 1) and Barrett’s oesophagus vs. OAC (cases 2 and 3) in a non-destructive and highly accurate fashion. Normal and OAC
tissues were discriminated using principal component analysis plus linear discriminant analysis (PCA-LDA) with 97% accuracy
(94% sensitivity and 100% specificity) (case 1); Barrett’s oesophagus vs. OAC tissues were discriminated with accuracies
ranging from 98 to 100% (97-100% sensitivity and 100% specificity). Spectral markers responsible for class differentiation
were obtained through the difference-between-mean spectrum for each group and the PCA loadings, where C—O—C skeletal
mode in B-glucose (900 cm ™), lipids (967 cm™"), phosphodioxy (1296 cm™"), deoxyribose (1456 cm™") and collagen (1445,
1665 cm™ ') were associated with normal and OAC tissue differences. Phenylalanine (1003 cm 1), proline/collagen (1066,
1445 cm Y, phospholipids (1130 cm '), CH, angular deformation (1295 cm 1), disaccharides (1462 cm ') and proteins (amide
I, 1672/5 cm ') were associated with Barrett’s oesophagus and OAC tissue differences. These findings show the potential of
using Raman microspectroscopy imaging for fast and accurate diagnoses of oesophageal pathologies and establishing subtle
molecular changes predisposing to adenocarcinoma in a clinical setting.

Keywords Barrett’s oesophagus - Oesophageal adenocarcinoma - Principal component analysis - Raman spectroscopy - Raman
mapping

Electronic supplementary material The online version of this article Introduction

(https://doi.org/10.1007/s00216-020-02637-1) contains supplementary
material, which is available to authorized users. Oesophageal adenocarcinoma (OAC) is an aggressive disease
which usually presents de novo and late with a poor prognosis.
In the UK, the overall OAC 5-year survival rate is as low as
19% [1]. It is uncertain if alcohol and smoking contribute to
the development of OAC. However, there is a proven associ-

ation between adenocarcinoma and Barrett’s oesophagus, a
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condition that appears to arise in response to chronic inflam-
mation from gastro-oesophageal reflux disease (GORD) [2,
3]. Other recognised risk factors for OAC include scleroder-
ma, achalasia and Zollinger—Ellison syndrome [2]. The meta-
plasia—dysplasia—adenocarcinoma sequence is not only relat-
ed to changes in ploidy and loss of heterozygosity, but genetic
alterations in P16 (CDKN2A) and 7P53 [4]. If dysplasia can
initially be diagnosed accurately with adjuncts to histology,
this would benefit earlier treatment and prevent the burden of
patients developing OAC.
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The application of Raman spectroscopy combined with
chemometric approaches is a novel approach to delineate
oesophageal diseases in human tissue. As an overall ap-
plication, it has the potential to provide non-invasive,
reagent-free and objective diagnosis of oesophageal dys-
plasia in vitro and aid histopathological diagnosis. To
date, Raman spectroscopy has been applied to investigate
diagnostic potential in the identification of oesophageal
pre-malignant and malignant conditions. There are only
a few studies using Raman spectroscopy looking at the
identification of benign disorders of the oesophagus. An
earlier diagnosis of dysplasia in benign oesophageal con-
ditions such as Barrett’s oesophagus patients would ulti-
mately enable the reduction of invasive and more expen-
sive surgical options when disease requiring intervention
has developed.

Herein, we report three cases of OAC where initial
previous pathologies of gastro-oesophageal junction
(GOJ) mucosa were normal squamous epithelium in one
case and intestinal metaplasia being the initial pathology
in the other two cases. The first case of OAC was
diagnosed 3 months after an initially normal
oesophagogastricduodenoscopy (OGD). The second was
2 years after their previous OGD for surveillance for
Barrett’s oesophagus. The third was 2 2 years after their
previous OGD for surveillance for Barrett’s oesophagus.
There is currently no clear recognition of biomarkers of
the tissue spectrochemical changes that distinguish be-
tween the different stages of disease in an individual pa-
tient’s disease progression to oesophageal adenocarcino-
ma. Our aim is to understand and identify spectral differ-
ences using Raman spectroscopic mapping between both
histological grades in these three illustrated cases.

Case 1 (de novo OAC) A 65-year-old lady presented to an
Upper Gastrointestinal (GI) Clinic with a long-standing
history of volume reflux. She had experienced dysphagia
to solids and liquids over the past 2 months, with a sen-
sation of food getting stuck at the level of her
epigastrium. At the time, she denied any sinister features
of malignancy such as weight loss or anaemia. Her past
medical history included mild chronic obstructive pulmo-
nary disease (COPD) and hypertension. She was a non-
smoker and was tee-total. An urgent upper GI endoscopy
revealed mild distal oesophagitis with normal squamous
epithelium encountered on biopsy. Her Campylobacter-
like organism (CLO) test was negative and she was sub-
sequently discharged.

She presented 3 months later with a history of progres-
sive dysphagia and a weight loss of 2 stone. Clinical ex-
amination was unremarkable and no sinister signs of pa-
thology was seen on haematological and biochemical test-
ing. An upper GI endoscopy however revealed a mid- to
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distal-oesophageal stricture suspicious of OAC. This was
confirmed on biopsy. Further staging computerised to-
mography (CT) imaging revealed metastatic OAC
(T4N2M1) with distal spread to her thoraco-lumbar spine
and proximal femurs bilaterally. She had a metallic stent
inserted under radiological guidance for symptomatic con-
trol. She declined further oncological input and unfortu-
nately passed away 2 months since her malignant
diagnosis.

Case 2 (Barrett’s oesophagus to OAC) A 69-year-old male with
a background of Barrett’s oesophagus and lower limb periph-
eral vascular disease presented at the endoscopy department
for his 2-year Barrett’s surveillance gastroscopy. He devel-
oped a short 1-month history of dysphagia to solids and a
weight loss of 1 stone with reduced appetite prior to his sur-
veillance gastroscopy. He was an ex-smoker (stopped 10 years
ago; previously 15 pack years) and was tee-total. Clinical
examination and prior haematological and biochemical tests
were unremarkable. His previous OGD revealed uncomplicat-
ed junctional intestinal metaplasia consistent with Barrett’s
oesophagus with no dysplasia. His most recent endoscopy
identified a junctional OAC.

Staging CT imaging identified T3N2 disease with no evi-
dence of distal metastatic disease. This was confirmed with
staging laparoscopy performed a month after his initial endo-
scopic malignant diagnosis. A metallic stent was inserted un-
der radiological guidance for symptomatic control and he has
had 2 cycles of neoadjuvant chemotherapy with a view to
cardio-oesophagectomy followed by adjuvant chemotherapy.

Case 3 (BO to OAC) A 75-year-old male with a background
of Barrett’s oesophagus and type II diabetes mellitus with
peripheral neuropathy presented at the endoscopy depart-
ment for his 2-year Barrett’s oesophagus surveillance gas-
troscopy. His past surgical history included recurrent hia-
tus hernia repairs resulting in exertional dyspnoea. He had
no new upper GI symptoms prior to his surveillance gas-
troscopy. He was an ex-smoker (stopped 20 years ago;
previously 25 pack years) and was tee-total. Clinical ex-
amination and prior haematological and biochemical tests
were unremarkable. His previous upper GI endoscopy re-
vealed uncomplicated junctional intestinal metaplasia con-
sistent with Barrett’s oesophagus with no dysplasia. His
most recent endoscopy identified findings consistent with
a junctional OAC (Fig. 1).

Staging CT imaging identified T3N1 disease with no
evidence of distal metastatic disease. This was confirmed
with staging laparoscopy performed 2 months after his
initial endoscopic malignant diagnosis. The patient is cur-
rently undergoing his first cycles of neoadjuvant chemo-
therapy with a view to cardio-oesophagectomy followed
by adjuvant chemotherapy.
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Fig. 1 Ulcerative lesion on background of Barrett’s oesophagus (35 cm from incisors, 1 cm length)

Materials and methods
Ethical approval

Ethical approval was granted by the East of England -
Cambridge Central Research Ethics Committee from 2015
(Archival gastro-intestinal tissue, blood, saliva and urine col-
lection; REC reference: 18/EE/0069; IRAS project ID:
242639).

Pre-sampling preparation

Archival oesophageal tissue samples were acquired from the
histopathology laboratory at the Royal Preston Hospital from
February to June 2019. Formalin-fixed tissue blocks are em-
bedded in paraffin wax at room temperature at 20 °C as this
ensures durability for long-term storage without deterioration
of the sample architecture. Presently in the field of Raman
spectroscopy, there is lack of consensus with regard to a stan-
dard protocol for de-paraffinisation of paraffin-embedded sec-
tions [5]. De-parrafinisation was hence performed prior to
commencing Raman measurements using local hospital pro-
tocols employing three washes in fresh xylene and ethanol.
Parallel sections of 10-pum thickness were prepared on
FisherBrand™ slides (aluminium foil-covered; for spectros-
copy) or of 4-um thickness were prepared on FisherBrand™
slides (for histology). Parallel samples are used so that each
section closely resembles the other sections, thus ensuring
correlation between histology and spectroscopic measure-
ments. An independent consultant histopathologist identified
sections of the cut biopsies for an overall accurate representa-
tive analytical study of the tissue. This was to ensure that
spectral measurements would be taken from the appropriate
area and from the same area for the differing technologies to
avoid heterogeneity in the cut tissue samples.

For each sample, the H&E section was scanned onto com-
puter software. This allowed the regions that best reflect the
overall diagnosis to be highlighted and labelled. Ten regions
were selected for each sample and for each modality of anal-
ysis. Once prepared, the slides were transported in wooden
slide boxes to the Biomedical Research Laboratory. All of

the samples were stored in a de-humidified glass container
to prevent condensation and physical damage.

Raman mapping measurement

Raman spectra and mapping were collected with an InVia
Renishaw Raman spectrometer coupled with a charge-
coupled device (CCD) detector and a Leica microscope. A
200-mW laser diode was used at a wavelength of 785 nm with
a grating of 1200 lines/mm. A silicon wafer was used to cal-
ibrate the Raman shift wavenumber value as it has a single
sharp peak at 520.4 cm ', which was used as the reference
point. Streamline mapping was performed by moving the
sample on the motorised stage under the laser beam. The size
and area of the section to be mapped was based on the regions
selected by the independent consultant histopathologist after
high-resolution H&E stain analysis. On average, ten regions
from each sample were mapped with a diverse range of size
area depending on the size of the area of interest. The larger
maps were typically from samples of adenocarcinoma, which
had a single larger section of interest as compared to the other
pathologies that had multiple smaller areas of interest. The
measurements were made using a 785-nm laser (10% power,
30 mW) with x 50 zoom magnification. For each pixel in the
Raman mapping image, a Raman spectrum in the range be-
tween 725 and 1813 cm ' (1 em ' spectral resolution) was
recorded.

Data pre-processing and analysis

The data analysis was performed within MATLAB® R2014b
(MathWorks, Inc., USA) using the Classification Toolbox for
MATLAB [6], the HYPER-Tools toolbox for MATLAB [7],
and in-house-developed algorithms. Firstly, the three-
dimensional (3D) Raman mapping images were loaded into
MATLAB and unfolded into two-dimensional (2D) structures
containing n rows (number of spectra) and m columns (num-
ber of wavenumbers). Thereafter, each spectrum underwent
pre-processing by Savitzky—Golay smoothing (21 points win-
dow, 2nd order polynomial fitting) and automatic weighted
least squares (AWLS) baseline correction. Then, the resulting
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Fig. 2 a Average raw Raman a b
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pre-processed spectra were split into training (70%) and vali-
dation (30%) sets using the Kennard—Stone algorithm [8], and
then they were used for exploratory analysis via principal
component analysis (PCA) and classification through princi-
pal component analysis linear discriminant analysis (PCA-
LDA). The training set was used for model construction and
optimisation, while the validation set for final model
evaluation.

PCA reduces the pre-processed spectral data to a small
number of principal components (PCs) responsible for the
majority of the spectral data variance [9]. Each PC is orthog-
onal to each other and they are generated in a decreasing order
of explained variance, where the first PC covers most of the
data variance, followed by the second PC and so on. Each PC
is composed of scores and loadings, where the scores repre-
sent the variance on sample direction, hence being used to
identify similarities/dissimilarities between samples; and the
loadings represent the variance on wavenumber direction, be-
ing used to identify possible spectral biomarkers responsible
for class differentiation. In PCA-LDA, a LDA classifier is
employed in the PCA scores space in order to systematically
distinguish the samples using a Mahalanobis distance calcu-
lation [10]. PCA-LDA models were optimised using cross-
validation venetian blinds with ten data splits.

The PCA-LDA models output in the validation set (blind
spectra) are used to calculate quality metrics or figures of merit

@ Springer
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in order to evaluate the model classification performance.
Metrics such as accuracy (total number of samples correctly
classified considering true and false negatives), sensitivity
(proportion of positive observations correctly classified) and
specificity (proportion of negative observations correctly clas-
sified) are calculated as follows [11]:

TP+ T
Accuracy (%) = (TP P ITII\\II+ FN) x 100 (1)
TP
Sensitivity (%) = (7“) n FN) x 100 (2)
TN
Specificity (%) = (TN n FP> x 100 (3)

where TP stands for true positives, TN for true negatives, FP
for false positives and FN for false negatives.

Results

Case 1 (de novo OA(Q)

The average raw and pre-processed (Savitzky—Golay smooth-
ing and AWLS baseline correction) Raman spectra for normal
and OAC tissue are depicted in Fig. 2 a and b, respectively. In
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Fig. 2b, there are clear spectral differences between normal
and OAC tissue, especially in the regions between 800—1000
and 1240-1280 ¢cm ™', and at the peaks at 1296, 1442 and
1670 cm™', where OAC has a higher intensity than the normal
tissue. The PCA scores plot (Fig. 2¢) shows a clear natural
difference between OAC and normal tissue along both PC1
(17.89% explained variance) and PC2 (13.86% explained var-
iance). A supervised classification via PCA-LDA using 5 PCs
(37% explained variance) shows a very clear separation be-
tween the two tissue types (Fig. 2d), where most of the spectra
in the training and validation sets are correctly classified with
an accuracy of 97% (94% sensitivity and 100% specificity) in
validation (see Electronic supplementary material (ESM)
Table S1).

The raw and reconstructed Raman mapping after PCA for
normal tissue and OAC are shown in Fig. 3a—d, and the
difference-between-mean (DBM) spectrum for normal vs.
OAC tissue along with the PCA loadings on PC1 and PC2
are shown in Fig. 3e. The reconstructed mapping after PCA

clearly shows the areas with cancerous tissue in red. Six spec-
tral markers were found as the most important discriminant
features between normal tissue and OAC: 900 cm ' (C—-O—C
skeletal mode in monosaccharides (B-glucose)), 967 cm '
(lipids), 1296 cm ! [phosphodioxy (PO, )], 1445 cm !
(CH,/CHj3 angular deformation in collagen), 1456 cm !
(CH, deoxyribose) and 1665 cem ! (amide I of collagen)
[12] (Fig. 3e). Peaks at around 900, 1440 and 1660 cm ! are
indicators of cancerous tissue, as well as changes in lipids,
collagen and amide I peaks [13]. Changes in deoxyribose-
phosphate spectral signatures have been also detected in can-
cer cells, which suggest partial destruction of the phosphate
backbone [13].

Case 2 (Barrett’s oesophagus to OAC)
Figure 4a and b show, respectively, the average raw and pre-

processed (Savitzky—Golay smoothing and AWLS baseline
correction) Raman spectra for Barrett’s oesophagus and
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Fig. 4 a Average raw Raman a 20— —
spectrum for OAC and Barrett’s —O0AC
oesophagus tissue (case 2). b —BO
Average pre-processed
(Savitzky—Golay smoothing [21
points window, 2nd order poly-
nomial fitting] and AWLS base-
line correction) Raman spectrum
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OAC tissue. In Fig. 4b, there are clear spectral differences angular deformation), 1445 cm ! (CH,/CH; angular de-
between Barrett’s oesophagus and OAC tissue, where OAC ~ formation in collagen), 1462 cm ™' (CH, angular deforma-
tissue has an overall higher Raman intensity than Barrett’s tion in disaccharides) and 1672 cm ! (amide 1 (C=0
oesophagus tissue through the whole spectrum. The PCA  stretching coupled to a N—H bending)) [12] (Fig. Se).
scores plot (Fig. 4c) shows a clear natural difference between
Barrett’s oesophagus and OAC tissue especially along PC1 ~ Case 3 (Barrett’s oesophagus to OAC)
(31.11% explained variance). PCA-LDA using 3 PCs (38%
explained variance) shows a clear separation between the two ~ The average raw and pre-processed (Savitzky—Golay
tissue types (Fig. 4d), where only a few OAC spectra are  smoothing and AWLS baseline correction) Raman spectra
inside the Barrett’s oesophagus class space. This PCA-LDA  for the second case of Barrett’s oesophagus and OAC
model generated an accuracy of 98% (97% sensitivity and  tissue are depicted in Fig. 6a and b, respectively. In Fig.
100% specificity) to distinguish Barrett’s oesophagus tissue  6b, there are clear spectral differences between OAC and
vs. OAC (ESM Table S2). OAC in this case largely originates ~ Barrett’s oesophagus tissue, where OAC has higher
from the Barrett’s oesophagus mucosa. Raman intensity especially in the regions between 1200—
The raw and reconstructed Raman mapping after PCA 1500 and 1600—1700 cm™'. The PCA scores plot (Fig. 6¢)
for Barrett’s oesophagus tissue and OAC tissue are shown  shows a clear natural difference between OAC and
in Fig. 5a—d, and the DBM spectrum for Barrett’s oesoph- ~ Barrett’s oesophagus tissue along PC1 (57.42% explained
agus tissue vs. OAC tissue along with the PCA loadings  variance). A supervised classification via PCA-LDA using
on PC1 and PC2 are shown in Fig. 5e. The reconstructed 2 PCs (60% explained variance) shows an almost perfect
mapping after PCA shows the areas with OAC tissue in  separation between the two tissue types (Fig. 6d), where
yellowish/light blue colour and the Barrett’s oesophagus  the spectra in the validation set were correctly classified
tissue areas in yellow/red colour. Seven spectral markers  with an accuracy of 100% (100% sensitivity and specific-
were found as the most important discriminant features  ity) (ESM Table S3).
between OAC and Barrett’s oesophagus tissue: Figure 7a—d show the raw and reconstructed Raman map-
1003 cm ' (C-C skeletal in phenylalanine), 1066 cm™'  pingafter PCA for Barrett’s oesophagus and OAC tissue (case
(proline/collagen), 1130 cm™' (phospholipid structural  3), and the DBM spectrum and PCA loadings on PC1 and
changes (trans vs. gauche isomerism)), 1295 cm ' (CH,  PC2 for Barrett’s oesophagus vs. OAC tissue (case 3) are
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shown in Fig. 7e. The reconstructed mapping after PCA
shows the areas with OAC tissue in a higher intensity
yellow/red colour and the Barrett’s oesophagus tissue map-
ping in lower intensity yellow. Seven spectral markers were
found as the most important discriminant features between
OAC and Barrett’s oesophagus tissue (case 3): 1003 cm '
(C—C skeletal in phenylalanine), 1066 cm ™' (proline/colla-
gen), 1130 cm ! (phospholipid structural changes (trans vs.
gauche isomerism)), 1295 cm ! (CH, angular deformation),
1445 ¢cm ' (CH,/CH; angular deformation in collagen),
1462 cm™' (CH, angular deformation in disaccharides) and
1675 cm ™' (amide I) [12]. The same spectral markers ob-
served in case 2 (Barrett’s oesophagus vs. OAC) were found
in case 3 (Barrett’s oesophagus vs. OAC), confirming the
consistency of this spectral methodology to provide repetitive
results in different patients and that these seven spectral
markers are highly associated with a chemical difference be-
tween Barrett’s oesophagus and OAC tissue.

Discussion

Raman spectra can be extrapolated as a direct function of the
molecular composition of tissue. Thus, there is potential that
Raman can be utilised as a pathological tool in validating
diagnoses. Raman spectroscopy has been utilised with prom-
ising results in the fields of neurosurgery [14, 15] and gynae-
cology [16, 17] using both biofluids and human tissue.
Morphological classification of certain tumours is becom-
ing more difficult even with the advent of staining and other
histopathological adjuncts. With such variability in malignant
disease as well as the need for more accurate classification
systems, spectroscopy has expanded as an aid in tissue diag-
nosis. Using sophisticated calibration transfer procedures, dif-
ferent sources of variation can be normalised into a single
model using computational-based methods. This can generate
measurements performed under different conditions which
generate the same result, eliminating the need for a full
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Fig. 6 a Average raw Raman
spectrum for OAC and Barrett’s
oesophagus tissue (case 3). b
Average pre-processed
(Savitzky—Golay smoothing [21
points window, 2nd order poly-
nomial fitting] and AWLS base-
line correction) Raman spectrum
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recalibration [18]. This could prove to be an invaluable tool
when evaluating data from different laboratories throughout
the UK.

Better understanding of the carcinogenesis of Barrett’s
oesophagus is an essential step in targeting the disease
and improving survival. The potential of the present en-
doscopic surveillance programmes to improve detection
of adenocarcinoma at an early stage has been questioned
by many studies [19, 20]. Case 1 is highly unusual as
finding OAC in a patient after a normal OGD 3 months
prior is rare. Furthermore, only a minority of patients
progress from metaplasia to low- and high-grade dyspla-
sia (0.12-0.6% annually) [21, 22]. Cases 2 and 3 describe
patients with an OAC diagnosis only 5 years post initial
Barrett’s oesophagus diagnosis. Few studies have directly
analysed spectral mapping in the same index patient, par-
ticularly in patients where the timing of diagnosis be-
tween benign disease and malignancy is <3 months. In
fact, we are of the opinion that this is quite unique.

There have been numerous applications of Raman spec-
troscopy for quantitative ex vivo sample analysis [23-27].
These studies all range from diagnostic accuracies for estab-
lishing non-dysplastic to dysplastic tissue from 88 to 97%
[23-27]. This compares with our group who has established
an accuracy of 97% (94% sensitivity and 100% specificity)
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between normal squamous epithelium and OAC.
Furthermore, our group has demonstrated a 100% accuracy
(98% sensitivity; 100% specificity) between Barrett’s oesoph-
agus and OAC.

The next stages of analysis would be in an in vivo
setting. The largest study to date interrogating Barrett’s
oesophagus specimens was performed by Bergholt et al.
[28] where 373 patients subjected to multimodal real-time
optical imaging were included. The authors focused on
three groups (columnar-lined oesophagus without goblet
cells, n=907 spectra; non-dysplastic Barrett’s oesopha-
gus, n =318 spectra; Barrett’s oesophagus positive for
HGD, n =177 spectra). Their method generated 79% sen-
sitivity and 74% specificity for detection of OAC.

Bergholt et al. [29] performed a smaller in vivo study
where a total of 75 oesophageal tissue sites from 27 pa-
tients were measured. An optical probe comprising a cen-
tral fibre of 200 um for delivery of the laser light (785 nm
wavelength) to the tissue surrounded by thirty-two
200 um collection fibres was introduced to establish
real-time spectra. Forty-two in vivo Raman spectra were
acquired on normal tissues and 33 on malignant tumours
(adenocarcinoma, n =27; squamous cell carcinoma, n =6)
as confirmed by histopathology. The OAC tissue showed
distinct Raman signals associated with cell proliferation,
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Fig. 7 a Raw and b PCA-recovered images for Barrett’s oesophagus tissue. ¢ Raw and d PCA-recovered images for OAC tissue. e Difference-between-
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lipid reduction, abnormal nuclear activity and neovascu-
larisation. Using a linear discriminant analysis algorithm,
the authors demonstrated an accuracy of 96% (sensitivity
of 97.0% and specificity of 95.2%) for in vivo diagnosis
of oesophageal malignancy.

Multiple studies have also qualified that the concentra-
tion of particular biomolecules elicited from Raman spec-
troscopy including phospholipids, proteins and collagen
increases from normal squamous epithelial tissue to dys-
plastic tissue [24-27, 30, 31]. This is in keeping with our
findings as these cases have clearly demonstrated spectral
markers mainly 3-glucose, lipids, phosphodioxy group,
deoxyribose and collagen changes associated with differ-
ences between normal squamous epithelium and OAC tis-
sue, and phenylalanine, proline/collagen, phospholipids,
disaccharides and protein peaks associated with differ-
ences between Barrett’s and OAC tissue. The findings
are particularly interesting as mapping analysis was per-
formed directly comparing tissue in the same index

patients. The subtle spectral differences established in
the normal squamous epithelial tissue sample may suggest
its propensity in developing OAC later down the line.

Conclusion

Establishing dichotomous biomarkers of commitment in tis-
sue at a non-dysplastic stage [32] can give clues to the pro-
pensity of developing OAC. Finding these markers early
would prevent costly further invasive management requiring
extensive treatment including chemotherapy, chemoradiother-
apy and/or surgical resection. This reinforces the potential of
using Raman microspectroscopy in clinical translation, where
sample diagnosis can be obtained in a computer-automated,
minimally destructive, fast and accurate manner. These pre-
liminary results need further substantive prospective studies in
an in vivo setting to confirm the results and to study more
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biochemical components, which may be elevated with the
level of dysplasia encountered.
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