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New Findings
o What is the central question of this study?
Type 2 diabetes is associated with a higher rate of ventricular arrhythmias compared to
the non-diabetic population, but the associated myocardial gene expression changes are
unknown; furthermore, it is also unknown if any changes are due to chronic
hyperglycaemia or a consequence of structural changes.
e What is the main finding and its importance?
We found downregulation of left ventricular ERG gene expression and
increased NCX1gene expression in humans with type 2 diabetes compared with control
patients with comparable left ventricular hypertrophy and possible myocardial fibrosis.
This was associated with QT interval prolongation. Diabetes and associated chronic
hyperglycaemia may therefore promote ventricular arrhythmogenesis independently of

structural changes.

Abstract

Type 2 diabetes is associated with a higher rate of ventricular arrhythmias, and this is
hypothesized to be independent of coronary artery disease or hypertension. To investigate
further, we compared changes in left ventricular myocardial gene expression in type 2

diabetes patients with patients in a control group with left ventricular hypertrophy. Nine



control patients and seven patients with type 2 diabetes with aortic stenosis undergoing
aortic valve replacement had standard ECGs, signal-averaged ECGs and echocardiograms
before surgery. During surgery, a left ventricular biopsy was taken, and mRNA expressions
for genes relevant to the cardiac action potential were estimated by RT-PCR. Mathematical
modelling of the action potential and calcium transient was undertaken using the O'Hara—
Rudy model using scaled changes in gene expression. Echocardiography revealed similar
values for left ventricular size, filling pressures and ejection fraction between groups. No
difference was seen in positive signal-averaged ECGs between groups, but the standard
ECG demonstrated a prolonged QT interval in the diabetes group. Gene expression

of KCNH2 and KCNJ3 were lower in the diabetes group,

whereas KCNJ2, KCNJ5 and SLC8AL expression were higher. Modelling suggested that
these changes would lead to prolongation of the action potential duration with generation of
early after-depolarizations secondary to a reduction in density of the rapid delayed rectifier
K+current and increased Na+-Ca2+ exchange current. These data suggest that diabetes
leads to pro-arrythmogenic changes in myocardial gene expression independently of left

ventricular hypertrophy or fibrosis in an elderly population

Abbreviations. 2D, 2-dimensional; AP, action potential; BMI, body mass index; CACNAlc-
d, L-type voltage gated Ca?channel a subunit 1c-d; CX40-43, connexin 40-43; EAD, early
after-depolarisation; EF, ejection fraction; ERG, ether-a-go-go-related gene; DAD, delayed
after depolarization: IFCC, international federation of clinical chemistry and laboratory
medicine; HCN 1-4, Na*/K* hyperpolarisation-activated cyclic nucleotide gated channel 1-4;
IcaL, L type Ca?* current; I, funny current; I 1, inward rectifying K* current; lx ach ,
acetylcholine activated inward rectifying current; Ik, r, rapid delayed rectifier K* current; Ik, ur,
ultra-rapid delayed rectifier K* current ; Ik, s, slow delayed rectifier K™ current; Ina, fast Na*
current; Inaca, Na*-Ca?* calcium exchange current; I, late transient inward current; lio.r, fast-
transient outward K* current; l.s, Slow transient outward K* current; KChIP2, K* voltage

gated channel interacting protein 2; KCNAA4-5, K* voltage gated channel subfamily A
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member 4 and 5; KCND2/3, K* voltagegated channel subfamily D member 2-5; KCNJ2/-5,
K* voltage gated channel subfamily J member 2- 5; KCNQ1, K* voltage gated channel
subfamily Q member 1; LV, left ventricle; MAPSE, mitral annular longitudinal excursion;
MRI, magnetic resonance imaging; NCX1, Na*-Ca?* calcium exchanger; OCT, optimal
cutting temperature compound; qPCR, quantitative polymerase chain reaction
measurement; RYR2, ryanodine receptor 2; SAECG, signal averaged ECG; SCN5a, Na*
voltage gated channel subunit a5; SERCAZ2a, sarcoplasmic reticulum Ca?-ATPase; Ti,

spin—lattice relaxation time

Introduction

Type 2 diabetes is becoming increasingly common worldwide and is associated with
ischaemic heart disease and other macrovascular diseases. A cardiomyopathy related to
chronic damage from hyperglycaemia has been described and termed ‘diabetic
cardiomyopathy’(Miki et al., 2013). Higher rates of cardiac arrhythmias are observed in
diabetes (Suarez et al., 2005) and specifically in type 2 diabetes (Panova & Korneva, 2006)
compared to control patients without diabetes, both in patients with established coronary

artery disease and in the general population (Movahed et al., 2007).

The mechanisms predisposing to increased arrhythmogenesis in patients with type 2
diabetes are complex but it does seem to be independent of coronary artery disease and
cardiac ejection fraction (Junttila et al., 2010; Eranti et al., 2016). Suggested potential
disease specific mechanisms from animal studies include an abnormal responses to
catecholamines (Frier et al., 2011), inhibition of the ERG channel (Zhang et al., 2006) or
alterations in cardiac ryanodine receptor number/function, as a result of chronic

hyperglycaemia (Yaras et al., 2005). In addition to effects of type 2 diabetes, the treatment of
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this condition can potentially be arrhythmogenic, with hypoglycaemia as a result of treatment
with insulin or sulfonylureas linked to arrhythmias (Lindstrom et al., 1992) and specifically as
sulfonylureas also have an effect on cardiac K* channels (Brady & Terzic, 1998). In addition
to pro-arrhythmic cellular and channel level changes, arrhythmogenic structural changes
such as left ventricular hypertrophy (LVH) and myocardial fibrosis are common in type 2
diabetes (Karagueuzian, 2011). Cardiac hypertrophy and fibrosis in the absence of
hypertension or ischaemia, can be seen in other cardiac diseases such as valvular aortic

stenosis (Weidemann et al., 2009).

In this study, we measured the gene expression of key ion channels and associated
molecules to investigate what changes may underpin the higher arrhythmic event rate in
patients with type 2 diabetes and how, using mathematical modelling based on gene
expression data the action potential may be affected. We undertook this study in patients
with aortic stenosis, a condition which also causes LVH and myocardial fibrosis, to try and

identify changes specific to diabetes.

Methods

Ethics approval

The study was approved by the NHS Liverpool East Research Ethics Committee
(11/NW/0290) and conducted in accordance with the principles established in the
Declaration of Helsinki sixth version. The study was not registered in a research database
and this is an exception to clause 35 of the Helsinki declaration. All participants gave

written informed consent.

Study population

Criteria for inclusion were patients over 18 years of age, male or post-menopausal female,
with or without type 2 diabetes, undergoing aortic valve replacement for aortic stenosis

(calculated aortic valve area of 1cm?or less) with preserved left ventricular function defined
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by European Society of Cardiology and an ejection fraction of over 50% (Nagueh et al.,

2009) at Liverpool Heart and Chest Hospital.

Exclusion criteria were patients in atrial fibrillation, patients with type 1 diabetes, chronic renal
impairment with an estimated glomerular filtration rate of less than 30ml/minute (Levey et al.,
1999), need for surgery in addition to the aortic valve replacement other than coronary artery
grafting, other conditions which may cause LV impairment such as regurgitant valvular lesions

graded moderate or more, thyroid dysfunction and excess alcohol consumption.

Our control group had their available medical records reviewed for previous random blood
sugar measurements and fasting samples. All patients in the control group had not had any
abnormal fasting glucose measurements (>7.0mmol/L) or random samples over 11.0mmol/L

with typical symptoms(American Diabetes Association, 2015).

Patients had their height, weight and waist circumference measured, body mass index (BMI)
calculated and patients with diabetes had their most recent glycated haemoglobin( HbA1c)
recorded using the International Federation of Clinical Chemistry and Laboratory Medicine
(IFCC) method(John et al., 2007). In addition, medications for each patient’s diabetes

treatment and any cardiac specific medication was recorded.

ECG assessment

All patients had a standard 12 lead ECG and their QT interval measured using the Bazett
formula (Luo et al.). All patients underwent signal averaged ECG monitoring (SAECG)
following a 10-minute rest in the supine position using a MAC 500 machine (GE
healthcare,Madison, WI,USA) prior to cardiac surgery. Digital filtering was performed with a
40-250HZ band pass bidirectional filter and averages were taken over 250 beats with

maximum acceptable noise of 0.5uV.

All ECGs were analysed for late potentials (Okin et al., 1995).



Echocardiography

All patients underwent 2-dimensional (2D) echocardiography study prior to cardiac surgery
using commercially available vivid Q, vivid 7 (GE healthcare, Hatfield, Hertfordshire, UK) and

IE 9 (Phillips, Guilford, Surrey) systems and a 3.5 MHz transducer.

Assessment of strain was made using offline software (EchoPAC, GE healthcare) and
measurements were made in apical 2, 3 and 4 chamber for global longitudinal strain with
values from each segment being averaged for a mean score. Circumferential and radial
strain was measured using a mean score from 6 segments in the parasternal short axis at

the mid wall level as previously described (Hung et al., 2010).

Several studies have reported that myocardial fibrosis can associated with higher rates of
arrhythmias(de Jong et al., 2011) and is widely reported in patients with diabetes (Picatoste
et al., 2013) and when trying to allow for this potential confounder we have tried to match our
experimental group to a control group reported to also exhibit signs of myocardial fibrosis
(patients with aortic stenosis). Myocardial fibrosis can be assessed by cardiac MRI
(magnetic resonance imaging) or histological examination, but there have been studies in
aortic stenosis (Weidemann et al., 2009) and diabetes (Ng et al., 2012) looking at the
correlation of 2D speckle tracking strain rate using echocardiography with fibrosis in patients
with normal ejection fraction values. A global contrast-enhanced myocardial T: mapping time
(spin—lattice relaxation time) on MRI of less than 500ms has been shown to correlate with
fibrosis(lles et al., 2008) and a T1 mapping time of less than 500ms has been correlated with
a global longitudinal strain of less than -18% using 2d speckle tracking echocardiography

(Ng et al., 2012).

Left ventricular biopsy

Patients had a biopsy sample taken by a consultant cardiothoracic surgeon through the LV

apex in the position normally used for transapical aortic valve implantation at the time of
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aortic valve replacement surgery. The biopsy was performed using a single TRUCUT™
biopsy needle (Cardinal Health, Dublin, Ohio, USA) just prior to the insertion of cardioplegia
solution. The sample was then taken and immediately placed in physiological Hartmann’s
solution (Baxter Health, Berkshire, UK) before immediate transfer to the lab for processing.
All samples were mounted in OCT (optimal cutting temperature compound, Tissue Tek,

Fisher Scientific, Loughborough, UK) before flash freezing in liquid nitrogen.
RNA isolation and quantitative polymerase chain reaction measurement (QPCR)

Briefly, from frozen tissue, RNA was isolated using mirVana RNA isolation kit (Life
Technologies, Paisley, UK) and then amplified to cDNA using high-capacity RNA to cDNA for

guantitative PCR (Applied Biosystems, Warrington, UK).

Quantitative PCR was performed using custom preloaded low-density Tagman array micro-
fluidic cards which contain multiple specific individual custom gene primer sequences and
universal Mastermix Il and a 7900HT fast real-time PCR system (all Applied Biosystems).
Samples were run with one control sample with distilled water for every gene target run per
card. Expression of the gene targets was referenced to an abundant abundant housekeeper
gene, 18-S in this study. We chose 18-s as the housekeeper gene for this study based on
previous experimental work(Sharma et al., 2004; Pérez et al., 2007) and preliminary animal
data from a previous study performed within the department (Ashrafi et al., 2016). |Initial
mRNA expression data was logarithmically transformed using the 22T method as previously

described (Livak & Schmittgen, 2001).

The list of target genes analysed with their context sequences is listed below in Table 1:

Gene Gene name Context sequences

18-S Eukaryotic 18-S CCATTGGAGGGCAAGTCTGGTGCCA

ATP2A2 Cardiac Sarcoplasmic Reticulum Ca?*Activated- ATPase AGATGTCTGTCTGCAAGATGTTTAT
2a

CACNA1 L-type Voltage-Gated Ca?* Channel Alpha Subunit 1c ACCAATTCCAACCTGGAACGAGTGG

C



CACNA1
D
HCN1
HCN2
HCN4
KCNA4
KCNA5
KCND2
KCND3
KCNH2
KCNIP2
KCNJ2
KCNJ3
KCNJ5
KCNQ1
RYR2
SLCB8A1
SCNS5A

L-type Voltage-Gated Ca?* Channel Alpha Subunit 1d

Hyperpolarisation Activated Gated K* Channel 1
Hyperpolarisation Activated Gated K* Channel 2
Hyperpolarisation Activated Gated K* Channel 4

K* voltage-gated channel, shaker-related subfamily, 4
K* voltage-gated channel, shaker-related subfamily, 5
K* voltage-gated channel, Shal-related subfamily, 2
K* voltage-gated channel, Shal-related subfamily, 3
Human Ether Related a Go-Go

K, channel-interacting protein 2

K* inwardly-rectifying channel, subfamily J, 2

K* inwardly-rectifying channel, subfamily J, 3

K* inwardly-rectifying channel, subfamily J, 5

K* voltage-gated channel, KQT-like subfamily, 1
Ryanodine Receptor 2

Na*-Ca?* Exchanger

Na* Channel, Voltage-Gated Type Va

GAATGGAAACCATTTGACATATTTA

ATCAGTGGGAGGAGATCTTCCACAT
CCCTACAGTGACTTCAGATTTTACT
ATGATGGCTTATTACAGTGGCAATG
ATGGGAGGCTTGCTGAACATGGATA
TCTAACAGCCGATCCAGTTTAAATG
CACAACCAGTCGCTCCAGCCTTAAT
CTCTGGCTCTGAGGAGCTGATCGGG
CAGTTCTTTCCTCAAGGAGACTCCA
CCTGCGCCAGCAACAGGACATGTTC
AAGCTGCTCAAATCTCGGCAGACAC
GTGGAAGCCACAGGCATGACCTGCC
CACCCACATCTCACAGCTGCGGGAA
CATTACTGCAGGCCACCTACTCATG
CCCGCCAGACACGACCACGCCATCG
TCACTGTCAGTGCTGGGGAAGATGA
TGAGAAAGTGTACCACATCTGTGTG

Table 1: Gene targets and primer sequences

Mathematical modelling of the action potential

In this study we used the O’Hara-Rudy dynamic model (O'Hara et al., 2011), which is a math-
ematical model simulating the human ventricular myocyte action potential transmurally, to look
at the effect of the changes in mRNA seen in the diabetes group. This model has been used
in a wide variety of experiments and experimental conditions with good validation(Bartos et
al., 2013). Using this model, channel conductance was scaled per the measured average ratio
of MRNA between the control and the diabetes groups. In the control and the diabetes groups,
the models were run for a 5-s period to obtain a stable state condition before a sequence of
external stimulus pulses (with an amplitude of 0.8 nA, duration of 5 ms and frequency of 1 Hz)
were applied, to evoke an action potential. To evaluate the relative role of each of the remod-

elled ion channels, simulations were also performed by looking at the change to each individ-

ual ion channel alone.

Statistical analysis



Patient characteristics are shown as mean and 95% confidence intervals. Experimental data
are reported as mean + SD .All single variable experimental work was analysed for
significance using a Student’s unpaired t-test comparing the control group to the type 2
diabetes group. As previously described multiple t-tests with a Benjamini-Hochberg false
discovery rate correction (<0.05) was used to assess the significance of the mRNA
expression results (Tsay et al., 2015). . Results were taken as being significant with a P

value of <0.05.

Results

Patient characteristics

A summary of patients recruited and their mean baseline information is shown in Table 2
and there were no were no significant differences in baseline patient characteristics (P=ns).
Patient medication breakdowns are shown in Table 3 with no significant difference in
medications usage between groups for B-blockers, angiotensin blocking drugs (ACE/ARB) or

statin use.

Table 2: Patient characteristics

Table 3: Patient medications

ECG assessment

Standard ECG assessment of the corrected QT intervals revealed a higher mean QT interval
in the diabetes group (n=9) (467ms+2.32) compared with the control group(n=7)
(451ms+5.26; P=0.011). SAECG assessment of our 2 groups yielded 1 patient in each

group with a positive SAECG for late potentials.

Echocardiographic assessment
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Our results show that both study groups were comparable in terms of traditional
measurements of left ventricular function (ejection fraction (EF)) and left ventricular wall
thickness (septal width). Both groups showed significant hypertrophy of the left ventricular
septum when compared to reference values (Lang et al., 2005) and the left ventricular
hypertrophy seen was felt to be due to pressure loading from the aortic stenosis and
therefore by European society of cardiology guidance is appropriate and not suggestive of
hypertrophic cardiomyopathy(Authors/Task Force et al., 2014). However longitudinal
function was lower in the diabetes (n=9) group measured using mitral annular longitudinal
excursion (MAPSE) and there was greater left atrial size compared to the control group

(n=7), consistent with other studies (Table 4) (Ha et al., 2007).

Table 4: Standard echocardiographic parameters with mean and SD

Speckle tracking strain analysis is a more detailed measurement of myocardial function and
pathology(Gorcsan & Tanaka, 2011) as it measures myocardial deformation using tissue
tracking and this is more accurate than looking at simple movement (MAPSE) or volume
change (ejection fraction) to truly understand the myocardium’s tissue function. Strain
analysis was undertaken between the groups to look for subtle left ventricular
dysfunction/pathology and was assessed in the circumferential, radial and longitudinal
directions. Global circumferential strain in the diabetes group was nearly 50% lower
(11.6+6.2) compared to the control group (-20.5+1.9; P=<0.01) and similarly longitudinal
strain was lower in the diabetes group (-12.7+1.09) compared to the control group (-16.5+
0.75; P=0.013). As myocardial fibrosis progresses, replacing tissue between myocytes, this
leads to reduced myocardial deformation which can be measured using strain analysis. In
our control and diabetes groups we observed longitudinal strain measurements (below -
18%) in the range associated with myocardial fibrosis in diabetes (Ng et al., 2012) and in

aortic stenosis alone when a normal ejection fraction has been recorded in patients without
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diabetes (Weidemann et al., 2009). These figures suggest our diabetes group and control

group are similarly matched with regards to potential fibrosis.

Ventricular mRNA expression

Results from the gene expression part of the study are summarized in Table 5,with
significant increases in the diabetes group for SLC8A1, KCNJ2 and KCNJ5. Therewas a

reduction in the diabetes group in the expression of KCNH2 and KCNJ3.

Table 5: mRNA expression with mean and SD. Raw P values and adjusted P values for

false discovery

Action potential modelling

Using the mRNA results discussed above, we used the relative percentage difference in
gene expression to alter current density in the diabetes group and utilising the O’Hara-Rudy
dynamic model we were able to produce action potentials (AP) for the control and diabetes

group at both the endocardial and epicardial levels (Table 6).

Figure 1 shows a modelled Aps from the endocardium, A, and epicardium, B. In both
modelled wall layers, changes in the diabetes groups produced increased amplitudes of the
action potential, elevation in the plateau phase and prolongation in the AP. We were also
able to show at the endocardial layer modelled creation of an early after-depolarisation

(EAD) at the plateau phase, the trigger for many types of ventricular arrhythmias.

12



In Figure 2 panels A (for the endocardium) and B (for the epicardium) the effects of all the
individual currents are modelled to identify which of the currents are responsible primarily
for the AP prolongation and EAD generation we have seen at the endocardial layer. Most
of the currents modelled individually do not have much input into the AP prolongation
suggested above, apart from Inaca encoded by SLC8A1 and |IKr coded by
KCNH2. There was also a very slight acceleration in the final phase of repolarisation,
creating a steeper rate of descent in the diabetes group which appeared to be created by

the modelled increase in Ik 1.

Discussion

In this study, we report for the first-time lower left ventricular expression of KCNH2 and in-
creased SLC8A1 in humans with type 2 diabetes and aortic stenosis (compared to non-dia-
betic patients with the same condition) with the corresponding clinical sequelae of prolongation
of the QT interval. Whilst QT interval elongation in humans with type 2 diabetes (Rutter et al.,
2002) and KCNH2/SLC8al mRNA cardiac expression alteration in animal models of diabetes
(Hattori et al., 2000; Zhang et al., 2007) have been reported previously, the combination has
not been reported in humans before. The other novel aspect of our study was the use of a
control group with a condition other than diabetes that produces LVH and myocardial fibrosis
(aortic stenosis(Weidemann et al., 2009) and this helps support the theory that gene expres-
sion changes in our diabetes group were as a result of diabetes/hyperglycaemia not just a

final common downstream pathway linked to fibrosis and LVH.

The major gene expression change found was a marked reduction in ventricular expression
of ERG mRNA which encodes the pore forming subunit of the Ik, r channel, the major outward
K* delayed rectifying current with a marked prolongation of the modelled AP. Ik, is a K* volt-

age gated current which begins to be activated as the membrane potential drops at the end
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of phase 2, the plateau phase, reaching a current maximum at -40mV during phase 3 allow-
ing for a large outward current. I, is at positive voltages in quickly inactivated maintaining
the AP plateau, but is also quick to recover from inactivation, allowing the generation of the
large outward current which is largely responsible for phase 3 in humans and limits the AP
duration(Vandenberg et al., 2012).

Our AP modelling shows that down-regulation of ERG creates EADs at the endocardial level
at, which has been reported previously in long QT syndromes with normal cellular cou-
pling(Viswanathan & Rudy, 2000), this being thought to be due to reactivation of Ics (, Cre-
ated by extension of the plateau phase due to reduced ERG. The endocardium seems to be
more vulnerable to EADs than the epicardium predominantly as the sharper electrical gradi-
ent between the epicardium and mid-myocardium allows formation of a ‘sink’ for excess cur-
rent in the epicardium reducing EADs in the mid- and epicardial layers(Viswanathan & Rudy,
2000). Reduced ERG expression and or ERG blockade clinically in arrhythmogenesis(Gong
et al., 2007) has been previously reported, particularly in patients with diabetes. (Zhang et
al., 2006) In previous studies looking at ERG down-regulation, it has been shown that both
myocardial hypertrophy(Hu et al., 2011) and myocardial fibrosis (Chu et al., 2012) are asso-
ciated with reduced ERG and it was not clear that diabetes had a specific effect on ERG ex-
pression within the myocardium or whether down-regulation of ERG was a function of hyper-
trophy/fibrosis. As discussed above by comparison with a similar control group there seems
to be a specific effect of diabetes on ERG expression within the myocardium and that this
may go some way to explaining higher arrhythmia rates in patients with diabetes, particularly

in the light of the modelled EAD formation and longer QT intervals seen.

As well as reduced ERG expression, we also observed NCX1 over expression which would

prolong the AP as was shown in our modelling and this with reduced Ik, r, leads to EAD gen-

eration at the endocardial level.
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As well as EAD formation, prolongation of the action potential leads to stimulation of NCX1
forward mode, and generation of a late transient inward current, I, in phase 3 of the action
potential, which is more likely with a sharper membrane potential drop as we have observed
in our modelled AP (largely the result of increased Ik1) and in patients with hyperglycaemia
secondary to increased Na' levels. I, can cause delayed after depolarizations (DADSs) if the
current generated is large enough.

NCX1 expression has been seen to be increased in LV hypertrophy(Menick et al., 2013) and
by comparing our diabetes group who would be expected to have increased LV mass, with a
control group with LV hypertrophy (as a result of aortic stenosis) we are able to show sup-
port for the theory that diabetes specifically does seem to be associated with NCX1 overex-
pression.

The role of NCX1 on the AP has been the subject of much discussion and findings have
been variable in differing experiments due to the forward and reverse modes of NCX1. It has
been shown previously in failing canine hearts with high Na*that NCX 1 acts in the outward
mode to shorten the AP but in low Na* states it acts in the inward mode to prolong the
AP(Armoundas et al., 2003). In similar pathological states with hypertrophy and fibrosis, in-
creased NCX1 has been shown prolong repolarisation at the end of the AP(Wang et al.) and
over expression of NCX1 in diabetes has been shown in animal models to prolong the AP
and increase systolic function(LaRocca et al., 2012). There has been conflicting data on
NCX1 expression in the streptozocin rate model with several papers showing a reduction in
NCX1 expression(Zhao et al., 2014; Akhtar et al., 2016). In these studies, the studied rats
were comparatively young with significantly lower body weights and left ventricular function
and our results may reflect a different diabetes process related to insulin resistance and obe-
sity.

Contrary to the above changes in KCNH2/SLC8AL1, the diabetes group had an up-regulation

of KCNJ2, the gene responsible for the main component of Ik1 channel, which sets the rest-
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ing membrane potential. Our AP modelling has shown that this probably has only a small ef-
fect on the AP, most obviously in acceleration in phase 3 of repolarisation to give a sharper
terminal part of the AP and acts to limit the AP duration. The role of Ik this setting is difficult
to be certain of but it is possible that the increase in mMRNA may be compensatory in the face
of the AP prolongation caused by Ik, and NCX1

The final significant mMRNA changes observed were in KCNJ3/5, with reduced expression of
KCNJ3 in the diabetes group but increased KCNJ5. KCNJ3 codes for a tetrameric, acetyl-
choline activated inward K* rectifying channel (I, ach) that is expressed in the atria and ventri-
cles. Most prior experimental work is mainly on the atrial effects of Ik, ach and we did not in-
corporate this into our biophysical model as the channel is only active with acetylcholine. In
atrial studies, inhibition of the Ik, ach channel resulted in prolongation of the action potential in
the atria(Bingen et al., 2013). Whether this effect would be reproduced in the ventricle would
require physiological testing but seems in keeping with the prolonged AP we have modelled.
KCNJ5 codes for the remaining two of the four subunits of the Ik, ach channel and has stretch
related properties and in high stretch situations inhibits channel function (Tamargo et al.,
2004) This upregulation of the stretch sensitive subunits would suggest, that the higher LV
filling pressures commonly seen in diabetes, may present a mechanism for further Ik, ach

channel inhibition which would merit further physiological testing.

As with many studies similar to ours, a major limitation is the small sample size and before
extrapolation to the wide human population with diabetes, larger studies would be needed.
In our study population, we have had a relatively older group of patients with mean ages
over 70 years in both groups and fewer women than men which is an important limitation as
age (Ocorr et al., 2007; Rabkin, 2014) and gender (Cheng, 2006) are asscoaited with differ-
ences in cardiac repolarisation. A larger study would be needed to assess the importance of
these factors in the changes we have observed and whether the results could be extrapo-

lated in younger people and by gender specifically. One area of potential limitation is in the
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medication background of our diabetes group as sulphonylureas have been shown to have
some effect on the cardiac ATP dependent K* channel(Aronson et al., 2003) and whilst this
channel was not assessed in this study, some overlap with the other K* channel genes stud-
ied here cannot be excluded. Similarly, as metformin has wide ranging effects on growth fac-
tors and anti-fibrotic effect (Bai et al., 2013), some reduction in the gene expression changes
we may have seen in the study could have occurred. In this study, we used a combination of
QT prolongation on the ECG with AP modelling and mRNA change to look at the effect of
diabetes and confirmatory protein measurement of the mRNA results with direct electrophys-
iology measurement of myocytes from the diabetic human hearts would be required for con-
firmation of the effects reported here. Review of the existing literature currently suggests that
there is reasonable correlation of MRNA with protein measurements(Ellinghaus et al., 2005;
Brioschi et al., 2009; Ferdous et al., 2016) and with electrophysiological measure-
ments(Howarth et al., 2009) but that correlation is not universal and post-transcriptional
mechanisms do play an important role in multiple settings(Panguluri et al., 2013), something

which would need further analysis.

Conclusion

Patients with type 2 diabetes have a prolonged QT interval compared to a control population
with similar levels of LV hypertrophy and that this is associated with gene expression
changes likely to cause AP prolongation. These findings may partly explain the higher rates

of ventricular arrhythmias seen in patients with diabetes.
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Group Number Caucasian Age (Years) Male Waist (Cm) BMI (kg/m?) HbAlc (mmol/mol?)

Control 9 9 78.8 (8.29) 6 35.8 (2.73) 27.8 (2.28) Not recorded

Diabetes 7 7 74.9 (12.80) 4 39.7 (8.81) 31.2 (6.86) 57.9 (14.57)

Table 2: Patient characteristics. Values are means (SD). Abbreviations: BMI, body mass

index and HbA1, glycated haemoglobin
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Group Number Beta blocker ACE/ARB  Insulin Metformin  Sulphonylureas  Statin

Control 9 3 5 0 0 0 4

Diabetes 7 3 5 0 4 2 6

Table 3: Patient medications. Abbreviations: ACE, angiotensin-converting enzyme and ARB,

angiotensin receptor blocker
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Echocardiographic parameter Control Diabetes group P value
group

Ejection fraction (%) 63.9 (6.53) 58.2 (2.59) 0.09
LV septal width (cm) 1.6 (0.23) 1.7 (0.44) 0.53
End systolic volume (mls) 31.6 (14.5) 37.8 (6.22) 0.39
End diastolic volume (mls) 76.2 (26.5)  89.6 (15.59) 0.33
MAPSE (cm) 1.6 (0.23) 1.1 (0.20) <0.01*
Left atrial area (cm?) 20.4 (2.20) 26.9 (5.52) 0.01"
E/A ratio 0.9 (0.21) 0.9 (0.23) 0.81
Ele’ lateral 11.2 (3.27) 12.8 (3.42) 0.44

Table 4: Standard echocardiographic parameters. Values are mean (SD). Abbreviations: LV,

left ventricle and MAPSE, mitral annular longitudinal excursion. *= statistically significant.
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Gene Channel | Control mean and | Diabetes mean Raw P- Adjusted P-
SD and SD value value

ATP2A2 SERCA2a | 4.68x 108 9.61x 10° 0.630 0.795
(1.76x 10°7) (1.06x 10°7)

CACNALC | Cavl.2 0.000302 0.000346 0.551 0.795
(0.0000795) (0.000192)

CACNA1D | Cavl.3 2.47 x 107 2.61x 107 0.876 0.876
(1.94 x 107) (1.53x 107)

HCN1 HCN1 7.1901e-007 5.48x 10° 0.105 0.249
(1.19x 10°6) (0.00000820)

HCN2 HCN2 0.000119 6.00x 10°° 0.0173 0.0546
(0.0000411) (0.0000454)

HCN4 HCN4 3.27x 10° 1.62 x 10 0.139 0.273
(0.0000237) (0.0000164)

KCNA4 Kvl.4 3.04x 10° 2.40x 10°° 0.438 0.756
(0.0000156) (0.0000162)

KCNA5 Kvl.5 5.63 x 10° 5.11x10° 0.759 0.811
(0.0000432) (0.0000243)

KCND2 Kv4.2 2.80x 107 5.86x 107 0.0679 0.184
(2.33x 107) (3.83x107)

KCND3 Kv4.3 3.23x 10° 5.55x 10° 0.143 0.273
(0.0000257) (0.0000343)

KCNH2 ERG 0.000327 0.000114 0.00004 0.000750*
(0.0000747) (0.0000684)

KCNIP2 KChiIP2 0.000109 0.00014957 0.567 0.795
(0.0000822) (0.000187)

KCNJ2 Kir2.1 0.000165 0.000306 0.000400 0.00254*
(0.0000348) (0.0000832)

KCNJ3 Kir3.1 2.06 x 10 2.94x 10 0.00223 0.0106*
(0.00000629) (0.0000124)

KCNJ5 Kir3.4 6.02x 10® 1.45x 10 0.000190 0.00184*
(1.06x 10°6) (4.96x 10°6)
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KCNQ1 KWLQT1 | 0.000136 0.000128 0.770 0.811
(0.0000413) (0.0000561)

RYR2 RYR2 0.00409 0.003601 0.669 0.795
(0.00111) (0.00249)

SCN5A Nav1.5 0.000787 0.000952 0.610 0.795
0.000225) (0.000927)

SLC8ALl | NCX1 0.000312 0.00107 0.00394 0.0150*
(0.000179) (0.000637)

Table 5: mRNA expression. Values are mean (SD). Raw P values and adjusted P values for

false discovery. *=Statistically significant.

Expression change in the diabetes

Channel Current

Group
Nay1.5 INa +21.08%
Ca/l.2and 1.3 Ica, L +14.18%
Kvl1.4, 4.2 and 4.3 Ito +26.04%
ERG Ik, r -65.24%
K\LQT1 Ik, s -5.38%
Ki2.1 Ik 1 +85.23%
NCX1 INaca +243.83%
RYR2 SR Ca?" release -10.07%

Table 6: Relative mRNA expression changes in the diabetes group used to mathematically

model the AP
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Fig 1: Modelled APs at the endocardial level, A and epicardial level, B for the control and
diabetes groups using relative mRNA expression changes. Run with external stimulus

pulses at an amplitude of 0.8 nA, duration of 5 ms and frequency of 1 Hz.
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Fig 2 Individualised APs from the endocardium, A and epicardium, B analysing the effect of
each current singularly on the AP with control in black and diabetes group in red with scaled
current change labelled. Run with external stimulus pulses at an amplitude of 0.8 nA,

duration of 5 ms and frequency of 1 Hz.
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