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Abstract

Previous work utilizing NASA’s High-resolution Coronal Imager (Hi-C 2.1) 172 A observations revealed that, even
at the increased spatial scales available in the dataset, there may be evidence for coronal structures that are still not
fully resolved. In this follow-up study, cross-section slices of coronal strands are taken across the Hi-C 2.1 field of
view. Following previous loop-width studies, the background emission is removed to isolate the coronal strands. The
resulting intensity variations are reproduced by simultaneously fitting multiple Gaussian profiles using a nonlinear
least-squares curve-fitting method. In total, 183 Gaussian profiles are examined for possible structures that are hinted
at in the data. The full width at half maximum is determined for each Gaussian, which are then collated and analyzed.
The most frequent structural widths are ~450-575 km with 47% of the strand widths beneath NASA’s Solar
Dynamics Observatory Atmospheric Imaging Assembly (AIA) resolving scale (600—1000 km). Only 17% reside
beneath an AIA pixel width (435 km) with just 6% of the strands at the Hi-C 2.1 resolving scale (~220-340 km).
These results suggest that non-Gaussian shaped cross-sectional emission profiles observed by Hi-C 2.1 are the result
of multiple strands along the integrated line of sight that can be resolved, rather than being the result of even finer
sub-resolution elements.

Unified Astronomy Thesaurus concepts: The Sun (1693); Solar coronal loops (1485); Solar corona (1483); Solar

atmosphere (1477)

1. Introduction

Observational investigations of coronal loop structure have
been undertaken since the 1940s (Bray et al. 1991); however,
due to insufficient spatial resolution of current and previous
instrumentation, the definitive resolved widths of these funda-
mental structures have not been fully realized. Recent high-
resolution data from NASA’s Interface Region Imaging
Spectrometer (IRIS; De Pontieu et al. 2014) and the High-
resolution Coronal imager (Hi-C; Kobayashi et al. 2014) have
led to coronal loop-width studies in unprecedented detail. For
short loops whose lengths are of the scale of a granule, Peter
et al. (2013) found widths <200 km within the Hi-C data.
Similarly, Aschwanden & Peter (2017) sampled 10° loop-width
measurements from the Hi-C field of view (FOV) with their
analysis finding the most-likely width ~550 km, arguing the
possibility that Hi-C fully resolved the 193 A loops/strands
This agrees with previous work (Peter et al. 2013) where it is
proposed that at least some of the wider loops with diameters
~1 Mm observed by NASA’s Solar Dynamic Observatory
Atmospheric Imaging Assembly (AIA; Lemen et al. 2012) do
not appear to show what they consider to be obvious signs of
substructure when compared to the coincident Hi-C dataset.
Combining IRIS data with hydrodynamic simulations, Brooks
et al. (2016) find transition region temperature loops with widths
between 266 and 386 km, and showcase that these structures
appear to be composed of singular magnetic threads.

Klimchuk (2015) investigates the widths of four EUV loops
as a function of position using Hi-C and AIA data, and obtain

Original content from this work may be used under the terms
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of the work, journal citation and DOI.

widths of 880-1410 km with Hi-C. They also find that, while
the analyzed loops have relatively constant cross section along
their lengths, those measured with Hi-C are typically less than
25% narrower than their AIA counterparts. Therefore, they
suggest that loops are not highly under-resolved by AIA and
these results further support previous findings of measured
widths along both EUV (Lépez Fuentes & Klimchuk 2006) and
soft X-ray (Klimchuk et al. 1992; Klimchuk 2000) loop
structures where no significant or observable expansion from
the loop base to apex is determined. This work has been
developed further by Klimchuk & DeForest (2020) where, for
20 loops from the first Hi-C flight data, intensity versus width
measurements tended to be uncorrelated or have a direct
dependence, implying that the loop flux tube cross sections
themselves are approximately circular (assuming that there is
non-negligible twist along the flux tube and that the plasma
emission is nearly uniform along the magnetic field).

Recently, Williams et al. (2020) investigated loops from five
regions within the FOV of the latest Hi-C flight but at 172 A
wavelengths (termed Hi-C 2.1; Rachmeler et al. 2019). As with
Aschwanden & Peter (2017), coronal strand widths of ~513
km were determined for four of the five regions analyzed. The
final region, which investigates low emission and low density
loops, finds much narrower coronal strands of ~388 km,
placing those structures beneath the width of a single AIA
pixel. The fact that these strands are above the smallest spatial
scale at which Hi-C 2.1 can resolve individual structures
(220-340 km; Rachmeler et al. 2019) suggests that Hi-C 2.1
may be beginning to resolve a key spatial scale of coronal
loops.

Notably, and the focus for this work, Williams et al. (2020)
also find example structures that may not be fully resolved
within the Hi-C 2.1 data. These relate to smaller “bumps” or
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Figure 1. Reverse color image showing the Hi-C 2.1 field of view (FOV) which has been time-averaged for =60 s and then, for the purpose of this figure only,
sharpened with Multi-Scale Gaussian Normalization (MGN; Morgan & Druckmiiller 2014). The locations of the cross-section slices where multiple-peaked structures
are observed are shown in blue, while the green slices are displayed more clearly in Figure 3. The cross-sectional profiles for the slices numbered 1-4 (5 and 6) are

shown in Figure 5 (4).

turning points in the intensity profiles that are larger than the
observational error bars but do not constitute a full, completely
isolated strand. Could these be the result of projection effects of
overlapping structures along the integrated line of sight for this
optically thin plasma, or are they the result of further structures
beneath even the resolving abilities of Hi-C 2.1?

Thus, this current paper outlines approaches to further
investigate the possible spatial scale of Hi-C 2.1 coronal strands
reported upon by Williams et al. (2020) but are not fully
resolved as defined above. In Section 2 the Hi-C 2.1 data
preparation is discussed including the Gaussian fit method
employed to estimate the width of these partially resolved
coronal features. The resulting distribution of fitted widths is
described in Section 3 with conclusions reached on the analysis
outlined in Section 4.

2. Data Preparation and Analysis Method

On 2018 May 29th at 18:54 UT, Hi-C 2.1 was successfully
relaunched from the White Sands Missile Range, NM, USA,
capturing high-resolution data (2k x 2k pixels; 4/4 x 44
FOV) of target active region AR 12712 in EUV emission of
wavelength 172 A (dominated by FeIX emission ~0.8 MK)
with a plate scale of 0”129. During the flight Hi-C 2.1 captured

78 images with a 2 s exposure time and a 4.4 s cadence between
18:56 and 19:02 UT. Full details on the Hi-C 2.1 instrument
can be found in Rachmeler et al. (2019).

2.1. Dataset Extraction and Background Subtraction

The basis of the sample dataset investigated here include a
number of subsets from the ten higher-emission cross-section
slices analyzed by Williams et al. (2020) plus nine other
additional slices from within the Hi-C 2.1 FOV (see Figure 1
where all dataset locations are indicated). In each case the
resulting emission profile across the structures would indicate
substructure strands that are not fully resolved i.e., a non-
Gaussian shape.

Following the method outlined in Williams et al. (2020), the
Hi-C 2.1 dataset under consideration is time-averaged over a
period ~60s that is free from spacecraft jitter. Each cross
section normal to each strand is taken to be 3 pixels deep and
the background emission is then subtracted. As outlined in

A consequence of the instability experienced during the Hi-C 2.1 flight is

that ghosting of the mesh could not be avoided (Rachmeler et al. 2019). This
leads to the diamond patterns across the entire Hi-C 2.1 FOV, which are
exaggerated when the data is enhanced with MGN (Figure 1).
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Figure 2. Left: an example cross-section slice from the Hi-C 2.1 FOV (slice 2 in Figure 1) is shown in black. The global background obtained by interpolating with a cubic
spline through the inflection points is shown via the dashed blue line. Right: the isolated coronal strands that are obtained by subtracting the global background from the Hi-C 2.1
intensity. The error bars denote five times the Poisson error (gray) due to the small magnitude (mean: 1.8 x 10~%) making them difficult to see without magnification.

Figure 2, this background subtraction is performed by first
finding all the local minima of a slice, and interpolating through
these values using a cubic spline (Yi et al. 2015) to obtain a
global trend (dashed blue line). The global trend is then
subtracted from the intensity profile along the slice, leaving
behind the background-subtracted coronal strands (similar to
Aschwanden & Schrijver 2011; Williams et al. 2020). Due to
the large number of counts detected by Hi-C 2.1 the Poisson
error associated with these isolated coronal strands is minimal
(Figure 2).

2.2. Gaussian Fitting and FWHM Measurements

The analysis method is based on the assumption that at rest,
an isolated coronal strand element has an observed emission
profile across its width and is normal to the strand axis that is
approximately Gaussian. It is important to note that, as
indicated by Pontin et al. (2017), instantaneously coronal
strands may not necessarily have a clear Gaussian cross
section. On the other hand, Klimchuk & DeForest (2020) have
shown from Hi-C observations that coronal strands are likely to
have circular cross sections. To attempt to address this and as
indicated previously, the data samples are time-averaged over
~60 s (the first 11 Hi-C 2.1 frames) to average out any short
timescale changes. While no obvious signs of motion within
the structures analyzed are noticed in this 60s window, the
authors acknowledge that as indicated by Morton &
McLaughlin (2013), small amplitude oscillations could be
present, which would lead to the measured widths being
broader than the structural width due to the time integration
performed.

Previous width studies (such as Aschwanden & Peter 2017,
Williams et al. 2020) would have considered the features under
examination here (e.g., those between 0” and 6”5 in Figure 5)
as individual, whole structures in spite of their outline.
However, due to their distinct non-Gaussian cross section that
is itself well resolved by Hi-C 2.1, in this study they are

considered to be subsequently modeled as the combination of
several Gaussian-shaped coronal strands.

The observed Hi-C 2.1 intensity profile of a cross-sectional
slice is reproduced by simultaneously fitting Gaussian profiles,
the number of which is determined by the Akaike Information
Criterion (AIC; Akaike 1974) along with a corrective term
(AICc) for small sample sizes. This is fully described in
Appendix. Subsequently, the full width at half maximum
(FWHM) of the Gaussian profile is measured to provide an
estimate of the possible width of the sub-structures likely
present within the Hi-C 2.1 data.

Thus, the method employed to fit Gaussian profiles to the
observed Hi-C 2.1 intensity is as follows. First, the following
expression for a Gaussian function, Y is used:

—(x — xp)z)

2w? M

Y —Aexp(

whereby x is the position along the cross-section slice, A and x,,
are the amplitude and location of the peak, and W is the
Gaussian rms width. This can be related to the FWHM
by: FWHM =2 2In2 W~ 235 W.

An estimate is made on the number of structures, N that
could be present within the intensity profile along with their
approximate location, width, and amplitude. Summing the Y
values for N number of Gaussian curves at each pixel yields the
model fit:

N
f@) =" You (). ()

i=1

The closeness of the fit at each pixel, x2(x) is then
determined by measuring the deviation of the fit from the
original intensity:

2
XZ(X) — (M) , 3)

o(x)
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Figure 3. A close-up view of slices numbered 1-6 in Figure 1, which have been sharpened using MGN. The color tables are normalized to each sub-region and are
shown in reverse color. The cross-sectional profiles of these slices are shown in Figures 4 and 5.

where y(x) and o(x) are the observed Hi-C 2.1 intensity and
Poisson error at each pixel. The overall closeness of fit is then
taken as 3" x2(x), which is then reduced to its smallest value by
simultaneously adjusting the free parameters A, x,, and W for
the N Gaussian curves in f (x). The minimization of 3" x2(x) is
performed by using the nonlinear least-squares curve-fitting
method, MPFIT’ (Markwardt 2009) which is based on the
MINPACK-1 FORTRAN library (Moré 1978). During the
fitting process the 1o uncertainties are returned from MPFIT.
These error values are only accurate if the shape of the
likelihood surface is well approximated by a parabolic function.
Whether fitting multiple Gaussian profiles to each slice satisfies
this condition or not would require analysis beyond the scope
of this study, however, it is likely the 1o uncertainties do
provide a lower-bound of the FWHM errors.

To determine the appropriate number of Gaussian profiles, N
within a given slice, the AIC model selection is employed. This
is done by first generating several candidate models, where the
number of Gaussian curves differs in each model. The
nonlinear least-squares curve-fitting method is then employed
for each candidate model and finally the AICc is then
computed. The model with the smallest AICc value is then
selected as the preferred model for that Hi-C 2.1 slice.

Once the number of Gaussian profiles contained within a Hi-
C 2.1 slice is determined, the strand width(s) are taken as the
Gaussian FWHM value(s). As with previous loop-width studies
(Brooks et al. 2013, 2016; Peter et al. 2013; Aschwanden &

> MPFIT is freely available at: http: //purl.com/net/mpfit.

Peter 2017; Williams et al. 2020) the width measurements are
then collated into statistical samples in order to deduce if key
structural widths can be extracted from the data.

3. Results and Analysis

Employing the nonlinear least-squares curve-fitting method
discussed in the previous section, a total of 183 Gaussian
profiles are fitted to 24 Hi-C 2.1 cross-sectional slices. As seen
in the FOV plot (Figure 1) it is not easy to completely isolate a
coronal strand. For example, to the north of slice 5 (Figure 3)
there is an increase in intensity due to a crossing of another
emitting feature along the integrated line of sight. Care is taken
to avoid contamination from such structures, though it is
possible that some residual emission may remain in the slices
selected. However, the relative intensity of the much brighter
strand to the often weaker contaminating emission means that it
is removed during background subtraction.

The following subsections compare the 24 cross-sectional
slices to those outlined in Williams et al. (2020) as well as
examining the frequency distribution of the newly fitted
Gaussian profiles.

3.1. FWHM Method Comparison

Here, comparison is made between the resulting strand widths
obtained by fitting multiple Gaussian profiles to Hi-C 2.1
structures versus the widths obtained using the previous method
(Williams et al. 2020) now with the improved background
subtraction discussed in Section 2.1. Two examples are outlined
(Figure 4) where a non-Gaussian distribution is seen. For slice
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Figure 4. A comparison between the FWHM measurement method of this paper with that of Williams et al. (2020) for slices 5 and 6 shown in Figure 1. The blue line is
the background-subtracted Hi-C 2.1 intensity, the Gaussian profiles obtained from using the nonlinear least-squares fitting method are shown in red and their FWHM are
denoted by the green asterisks. The solid gray bands indicate the FWHM of the Hi-C 2.1 structures as determined by our previous method (Williams et al. 2020).

5 (6), the AICc determined that six (four) Gaussian profiles are
supported by the Hi-C 2.1 data whereas measuring the widths of
the non-Gaussian profiles provides two (one) structures.

The Williams et al. (2020) method provides widths of ~745
and 980km yielding a mean of ~860 km for slice 5.
Comparatively, the nonlinear least-squares curve-fitting
method yields minimum and maximum widths of ~320 km
and =590 km, and a mean of ~480 km. The width of the single
structure in slice 6 measured with the Williams et al. (2020)
method is ~1145 km. As with slice 5, the nonlinear least-
squares curve-fitting method provides narrower widths with
the minimum, maximum, and mean now being ~405 km,
~530 km, and /450 km, respectively.

The width estimates of the structures centered at 1” (slice 5)
and 1074 (slice 6) may be artificially broadened by their shape
using the method employed by Williams et al. (2020) due to the
observable change in gradient that occurs in the vicinity of the
half-maximum intensity value. The structure at 3”8 (slice 5)
does not appear to be affected by this as the change in gradient
(or “bump”) occurs much lower along the structure than the half-
maximum intensity value. However, the measured width of this
structure is still ~300 km broader than the maximum AICc-
determined Gaussian width, which indicates previous analysis
methods may have over-estimated the strand widths of structures
that are potentially not completely isolated from the background
and/or other structures along the integrated line of sight.

3.2. Distribution of Fitted Widths

In Figure 5, the cross-sectional profiles (blue) are shown of
the Hi-C 2.1 slices numbered 1-4 in Figure 1 along with the
best AICc-determined fits and Gaussian profiles generated from
the nonlinear least-squares curve-fitting method, shown in red
and gray, respectively. From the four examples shown here, it
is seen that there is good agreement between the observed Hi-
C2.1 intensity and the generated fit though some minor
discrepancies may occasionally occur (e.g., slice 2 between
3”5 and 6”5). These discrepancies could be eradicated by

adding additional Gaussian profiles along the slices; however,
the additional parameters introduced are not supported by the
AICc model selection.

In Figure 6(a) the FWHM values of the 183 Gaussian
profiles are collated into an occurrence frequency plot binned at
125 km intervals so as to be consistent with the previous study
(Williams et al. 2020) where 1” ~ 725 km. A sub-section of
this data (200760 km) is shown in Figure 6(b) which is binned
at half the spatial scale of Figure 6(a) (62.5 km). Figure 6(c)
shows the 1o errors for the 183 Gaussian widths indicating the
majority of errors are <50 km.

The distribution of all analyzed widths in Figure 6(a) reveals
that the most populous widths are between 450 and 575 km;
this matches the high-emission region results from Williams
et al. (2020). The median width for this data is 645 km and is
akin to that obtained by Brooks et al. (2013); however, this
value is due largely to the presence of a number of broader
strands (>1000 km). Furthermore, ~21% of widths exceed
1000 km while ~32% of the strands studied are at the SDO/
AIA resolving scale of 600-1000 km. From this, ~47% of the
strands are beneath the resolving scale of AIA.

Figure 6(a) reveals the most populous strand widths in this
study occur between =200 and 760 km with the number of
width samples above this spatial scale rapidly decreasing.
Figure 6(b) shows a subset of the obtained widths having been
re-binned to 62.5 km intervals, which allows for further insight
on the distribution of widths for the most populous occurrence
frequency bins of Figure 6(a). The obtained Hi-C 2.1 strand
widths reveal the presence of numerous strands (=32% of
the 183 Gaussian widths) whose FWHMs are beneath the
most frequent high-emission strand widths seen previously
(Williams et al. 2020, ~513 km). Similarly, ~17% reside
beneath an AIA pixel width of 435 km. Comparatively then,
only ~6% of the strands are actually at the the scale at which
Hi-C2.1 can resolve structures (Rachmeler et al. 2019,
~220-340 km), indicating that current instrumentation may
now be beginning to observe a prevalent spatial scale.
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Figure 5. Intensity profiles of the Hi-C 2.1 cross-sectional slices (1-4 in
Figure 1) are shown in blue. The Gaussian profiles (gray) generated by the
nonlinear least-squares fitting algorithm and the subsequent fit, f(x) (red) are
also plotted for the four example slices.
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Figure 6. (a) Occurrence frequency plot of the 183 FWHM measurements for
the fitted Gaussian curves with a bin width of 125 km; (b) a subset of the
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populous widths in (a). The dashed vertical navy (red) lines indicate the low
(high) emission strand widths obtained in Williams et al. (2020). Panel (c) shows
the 1 — o errors for the 183 widths obtained for the Gaussian profiles in (a).

As with Williams et al. (2020), this analysis reveals that the
most-likely strand widths of 450-575 km are typically of the
order of an AIA pixel width. This result coupled with the low-
percentage (~6%) of strands at the Hi-C 2.1 resolving scale
suggests that the non-Gaussian structures observed are
predominately the result of multiple, potentially resolvable
strands overlapping along the integrated line of sight rather
than the result of finer strands that even Hi-C 2.1 is unable to
resolve into distinct features. It should be noted that these
results are 50-250 km narrower than previous Hi-C findings
that focused on 193 A emission (Brooks et al. 2013;
Aschwanden & Peter 2017).

Nevertheless, this does not rule out the possibility of strands
within or beneath the resolving power of Hi-C2.1. For
example, using CRISP Ha data, Scullion et al. (2014) find
that the most populous strand width is 2100 km. However, the
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temperature of those structures is 1-2 orders of magnitude
lower than that observed with Hi-C 2.1.

4. Summary and Conclusions

This work outlines a follow-up analysis to Williams et al.
(2020) where non-Gaussian shaped width profiles that are not
fully resolved within the Hi-C 2.1 data are further investigated.
To estimate the widths of possible strands, Gaussian functions
are first fitted to approximate the Hi-C 2.1 intensity profiles
using the method outlined in Section 2.2. The nonlinear least-
squares curve-fitting method employed automatically deter-
mines the Gaussian rms width due to W being a free parameter
(Equation (1)) used to reduce 3" x*(x). The number of Gaussian
profiles and subsequently the number of rms widths measured
are determined by the AICc, which are then converted to
FWHM for our width analysis study.

The FWHM are collated into occurrence frequency plots
(Figure 6) revealing the most frequent strand width is
~450-575 km. The spatial scales obtained in this study largely
agree with previous findings (Aschwanden & Peter 2017;
Williams et al. 2020) where typical widths the size of an AIA
pixel are seen. Additionally, the results reveal that only ~6% of
the strands analyzed reside at the smallest spatial scales that Hi-
C2.1 can resolve into distinct structures (Rachmeler et al.
2019, 220-340 km). Together, these findings strongly suggest
that structures emitting at 172 A that cannot be resolved into
distinct features by Hi-C 2.1 are likely to comprise of multiple
strands overlapping along the integrated line of sight rather
than being an amalgamation of strands at/below the resolving
scale of Hi-C 2.1. For coronal loop modeling, the onus must
now be on the determination of the spatial scale at which
heating occurs that leads to the formation of individual magnetic
strands that (i) have widths 450-575 km and (ii) are filled with
plasma around 1 MK.

Furthermore, recent work by Klimchuk & DeForest (2020)
investigated the widths along the length of isolated coronal
structures and found no correlation between width and
intensity. However, as is noted in Klimchuk & DeForest
(2020), if a structure indicated signs of any possible
substructure, then that particular example was not included in
the study data. Thus, employing the methods adopted in this
work on those rejected examples would allow for that type of
analysis to be performed along the observable length of coronal
structural sub-elements and not only the aforementioned
monolithic features. This will be addressed in a follow-up
study using the Hi-C 2.1 dataset examined here.

The highly anticipated ESA mission Solar Orbiter (SolO) will
provide close-up (=~0.28 au), high-latitude (34°) solar observa-
tions. During the mission there will be several observation
windows where the spatial resolution of EUV Imager (EUI) HRI
as well as the selected passband (174 A) will be similar to that of
Hi-C. However, it is likely SolO will have longer observation
windows over which any target active region may be studied
(Hi-C only captures 2.5 minutes of usable data per flight). This
will allow for significantly improved strand width determination
across many differing coronal structures.

Appendix
Akaike Information Criterion

To determine the number of strands that may be hidden
within the Hi-C2.1 data the Akaike Information Criterion
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Figure 7. First AIC model selection test case. The upper-left panel labeled
synthetic data is generated using three Gaussian functions. Using the Gaussian
fitting method employed in this paper, a number of Gaussian functions (shown
in gray) are used to replicate the synthetic data and their AIC and AICc values
are indicated.

(AIC; Akaike 1974) is employed to determine the optimal
number of Gaussian profiles supported by the data. Each
additional Gaussian that is added to the model introduces an
additional three parameters that may be tweaked to better allow
for the observed data to be replicated by Equations (1)-(3).
Employing a model selection method such as AIC helps
minimize the possibility of selecting a model with too many
(few) Gaussian curves, and thus the danger of over(under)-
fitting the Hi-C 2.1 data.

Often, the AIC is defined as AIC = 2k — 21n (L., ) Where
k is the number of parameters in the model and L., is the
maximum likelihood. In this study, a least-squares model fitting
is employed and thus the maximum likelihood estimate for the
variance of a model’s distribution of residuals is 52 = RSS/n,
where n is the sample size and RSS is the residual sum of
squares:

RSS = S, (3, — f(x)?. (A1)

Thus, the maximum value of a model’s likelihood function can
be expressed as:

1

267

RSS = —gln(@) +C,

n n
~Zin@r) - ZInE?) -
2 (2m) > (67) "

(A2)

where C is an independent constant that does not change unless
y does. Following Burnham & Anderson (2002, p.63), this



THE ASTROPHYSICAL JOURNAL, 902:90 (9pp), 2020 October 20

Synthetic Data 3 Gaussian profiles
T T (T

[AIC: 1311
0.8

0.6

0.2

4 Gaussian profiles 5 Gaussian profiles
0 AL \\AAARA anaaas 1 T

AlIC: 1010
AIC: 1015

[ AIC; 1024
0.8

0.8
0.6
0.4

0.2 0.2

0.0

0 1 2 3 4 5 0 1 2 3 4 5

Figure 8. Second AIC model selection test case. The upper-left panel labeled
synthetic data is generated using four Gaussian functions. Using the Gaussian
fitting method employed in this paper, a number of Gaussian functions (shown
in gray) are used to replicate the synthetic data and their AIC and AICc values
are indicated.

means the AIC for a least-squares model can be expressed as:

AIC =2k + nln(ﬁ) - 2C
n
=2k + nIn(RSS) — (nln(n) + 2C), (A3)

which can be further simplified to
AIC = 2k + n1n(RSS), (A4)

as (nln(n) 4+ 2C) is a constant (provided y does not change)
and only the differences in AIC are meaningful.

If n is small, AIC may prefer models which have more
parameters and lead to over-fitting of the data. As such, a
correction for this is to use the AICc, which provides an
additional term accounting for n and k:

2
AlCe = AIC + 2K T2k (AS)
n—k—1
that converges to 0 as n — 0o meaning AICc = AIC for large
values of n.

A.l. AIC Test Cases

To validate the AICc model selection, three test cases are
devised that are similar to what a Hi-C 2.1 cross-sectional slice
may look like in this study. The test cases are generated by
specifying a number of Gaussian profiles using Equation (1),
which are then combined using Equation (2) to generate the
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Figure 9. Third AIC model selection test case. The upper-left panel labeled
synthetic data is generated using three Gaussian functions. Using the Gaussian
fitting method employed in this paper, a number of Gaussian functions (shown
in gray) are used to replicate the synthetic data and their AIC and AICc values
are indicated.

synthetic data for each test case. This process allows for the
AICc model selection accuracy to be verified as the number of
Gaussian profiles required to generate the three test cases are
known.

The first test case is composed of three distinct Gaussian
profiles, which is shown by the blue plot in Figure 7. An initial
guess on the number of Gaussian profiles (2, 3, 4, 5, and 6
Gaussian curves) and their associated free parameters (A, x,,
and W) are made, which are then passed through our nonlinear
least-squares curve-fitting method. During this fitting method,
the AIC and AICc values are computed for each model shown
in Figure 7. This reveals that the smallest AIC/AICc values are
for the model consisting of three Gaussian functions, which
matches the number used to generate the synthetic data. Test
cases 2 and 3 (Figures 8 and 9) are more complex than the first
test case, and subsequently provide a closer representation of
Hi-C2.1 data. Again, the lowest AIC and AICc values
correspond to the models consisting of four and three Gaussian
profiles, which match the number of Gaussian profiles used in
generating the test data.

While both the AIC and AICc show agreement on the model
selection for the three test cases analyzed in this appendix,
some of the Hi-C 2.1 cross-sectional slices selected may be of
sufficiently small sample size that AIC would favor over-fitting
the data, which would lead to artificially narrow widths of the
strands in question. Therefore and as outlined above, the AICc
is employed in this case for determining the number of strands
within a given cross-sectional slice.
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