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Abstract - The coronavirus 2 (SARS‐ CoV‐ 2) induces severe acute respiratory distress syndrome (ARDS)via the 

coronavirus receptor angiotensin‐ converting enzyme 2 (ACE2) in the host cell to facilitate entry into the lungs Over 

activation of the renin‐ angiotensin system (RAS) and the down regulation of ACE2 expression are involved in 

SARS‐ CoV induced lung injury. RAS is the main system that has a regulatory roleinmaintaining electrolyte 

balance, blood pressure, vascular tone and cardiovascular remodeling in the body. Angiotensin II receptor blockers 

(ARBs) and Inhibitors (ACEIs) are vital medications that are widely used for the treatment of cardiovascular 

diseases (CVDs). The question which now arises is: It is possible to continue using either ARBs or ACEIsor both 

medications in patients with SARS-CoV2? Both ARBs and ACEIs can facilitate COVID-19 entry into the host cell 

due to increase expression of ACE2. On the other hand, ARBs have a greater potential to reduce downstream 

pathogenicity of the SARS-CoV2 via different cell signaling pathways including free radical generation, up 

regulation of NF-κB pathway, toll-like receptors (TLRs) and pro-apoptotic protein by blocking the renin–

angiotensin system more severely compared to the effect of ACEIs. The current hypothesis is that ARBs can 

perform better therapeutically compared to ACEIs in respiratory disorders such as ARDS which is induced by viral 

infection especially since more than 40 % of angiotensin II can be synthesized by other enzymes such as chymase, 

cathepsin. ARBs treatment can increase the levels of both angiotensin II (Ang II) and the ACE2 enzyme making 

Ang II a target substrate for hydrolysis by ACE2 into Ang 1-7 which in turn exerts anti-inflammatory, anti-apoptotic 

and anti-oxidant activities. These effects are achieved by the binding of Ang 1-7 to both angiotensin-type 2 receptor 

(AT2) and receptor mas’ axis (Mas) and also by its ability to block Ang II/AT1 receptor-induced TLR4/MyD88 

signaling thereby highlighting the potential therapeutic use of ARB sin preventing injury induced by COVID-19 

virus. It is concluded that patients who are already on ARBs medications must continue to use them daily since 

ARBs have protective effects against COVID-19 virus. Moreover, ARB sexert their beneficial effects via their anti-

inflammatory, anti-apoptotic, anti-oxidant and anti-fibrotic properties. On the other hand, those patients who are on 

ACEIs medications must change to other safe drugs since ACEIs can facilitate an increase in COVID-19 virus 

entry into the body as well as reducing levels and protecting effect of Ang 1-7. 

Keywords: SARS-CoV2, RAS, ACEIs, ARBs, Ang II, ACE2 

INTRODUCTION 
The novel coronavirus (2019-nCoV) was first originated in Wuhan, China and it caused many cases of 

human infection, suffering and deaths in all the continents and most countries globally. It is more severe in 

some countries such as Brazil, China, France, India, Italy, Great Britain, Spain, Iran, USA and few others. 

People, especially the sick, the old, and those who are clinically and extremely vulnerable, are at higher of 

infection risk. Currently, around 1 million people died from the novel coronavirus (2019-nCoV and more 

than 25 million are infected globally. The genomic structure, binding site and symptoms of 2019-nCoV, 

are similar to those caused by SARS coronavirus SARS-CoV [1]. Figure 1shows a schematic diagram 

illustrating the pathogenesis of nCOVID-19in inducing host cell injury. A spike receptor-binding domain 

http://www.hindawi.com/19760173/
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(RBD) of 2019-nCoV recognizes angiotensin-converting enzyme 2 (ACE2) receptor on the host cell 

membrane which is considered as a critical step in the virus entry into the body via an endocytosis process 

[2]. The viral RNA is released into the cytoplasm, translates and then newly genomic RNA, nucleocapsid 

proteins and envelope glycoprotein are formed [3]. The virus-induced infection is due to the activation of 

a numbers of cell signaling pathways either directly via the virus itself or indirectly via reactive oxygen 

species (ROS), nuclear factor-kappa B-dependent mechanism and apoptosis [4]. In turn, the generation of 

such free radicals as O-, H2O2, OH-and peroxidation of membrane phospholipids such as malondi-

aldehyde (MDA) can cause cellular injury via a disturbance of membrane phospholipids and 

mitochondrial respiration, leading to DNA damage and dysfunction [5]. Moreover, ROS in turn can also 

activate other mediators and inflammatory factors such as tumor necrotic factor (TNF-α), myocytes 

chemoattractant protein-1 (MCP-1] interleukin, IL-1, IL-6, and C - reactive protein (CRP) [6]. 

 

Figure (2): A schematic diagram showing the pathogenesis of nCOVID-19 and its interaction with ACE2 

receptor. 

Following its penetration into the cell, it induces mainly inflammation and ROS via binding to ACE2 

receptor leading to the generation of free radicals, increase dissociation of NF-κB from its complex, 

translocation, DNA binding and gene expression of pro-apoptotic proteins, pro-inflammatory cytokines 

that bind to TLR on the same cell or neighboring cells to induce further NF-κB activation. Finally, all 

these processes can lead to injury of the host cell and subsequently, death (apoptosis), adapted from 

reference [6]. Figure (3) shows a schematic diagram illustrating the ACE/Ang I/AT 1 receptor and 

ACE2/Ang 1-7/Mas receptor pathways. The renin-angiotensin system (RAS) has a regulatory role in 

maintaining blood pressure as well as electrolyte and fluid in the body. Ang I is converted to Ang II by an 

angiotensin-converting enzyme (ACE). Thereafter, Ang II binds to G-protein-coupled receptors AT1 and 

AT2 receptors [7]. Activation of AT1 receptor leads to the stimulation of pro-inflammatory mediators, 

pro-oxidants, pro-apoptotic proteins and fibrosis in the infected cells of the body [8]. In addition, other 

enzymes such as cathepsin-G and chymase-Ang I can also convert angiotensinogen into Ang II [9-10]. In 

this system, ACE2 has negative regulatory mechanism via converting of Ang-I to Ang-1–9 and Ang-II to 

Ang-1–7 which binds to the Mas receptor [11]. The Mas receptor has negatively role throughout the 

process by reducing not only leukocyte migration and cytokine expression and release, but also inhibiting 

anti-fibrotic, anti-oxidant, anti-apoptotic effect [12-13]. The affinity of Ang II to ACE2 was 

approximately 400-fold, much more than Ang I. Therefore, any therapeutic agent(s) that can increase 

ACE2 level has protective effect in severe acute lung injury (SALI) that induced by SARS-COV infection 

[14]. In human, Ang II has the ability to increase ACE level and down-regulate ACE2 level via binding to 

the AT1 receptor that initiates ERK/p38 MAP kinase pathway [15]. 
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Figure (4): A schematic diagram showing the ACE/Ang I/AT 1 receptor pathway and ACE2/Ang 1-7/Mas 

receptor pathway 

The figure illustrates where Ang I is converted to Ang II via ACE, cathepsin, chymase and Ang II bind to 

AT 1 receptor and to lesser extend to AT 2 receptor. However, Ang II is also converted to Ang 1-7 via 

ACE2 and Ang 1-7 binding to Mas receptor, taken form reference (15). Angiotensin-converting enzyme 

inhibitors (ACEIs) are therapeutic agents that block the ACE both in the circulating system and in tissues 

of the body. In addition, they can also block the breakdown of bradykinine leading to a rise in bradykinine 

levels which can induce adverse effects in the body [7]. ACEIs have many beneficial effects on the 

endothelial function in the body especially in improving vasodilatation and blood flow during 

hypertension by preventing the vasoconstriction action of angiotensin II. Moreover, ACEIs can also 

reduce other the risks associated of endothelial dysfunction and subsequently, cardiovascular diseases [8]. 

On the other hand, ARBs are drugs which act by inhibiting the interaction between angiotensin II and the 

AT1R and they are developed to overcome some adverse effects of ACEIs, especially in the elevation in 

bradykinine level. As such, ARBs are deemed to improve the side-effect profile of ACEI drugs [9]. 

Generally, the ACEIs and ARBs are effective in the management of hypertension [10], post myocardial 

infarction, reduce mortality after myocardial infarction in patients with heart failure and low ejection 

fraction and delay the progression of chronic kidney disease in diabetic and even non-diabetic patients 

[11-12]. 

Mechanistic effect of ACEIs and ARBs on SARS-Cov2 entry 

Figure5shows a schematic diagram illustrating the proposed mechanisms of the protective effect of ARBs 

against SARS-CoV2. The common receptor for both SARS-CoV and SARS- CoV2 is ACE2which is 

expressed on the apical surface membrane of human airway epithelia as well as lung parenchyma [13]. 

ACE-2 is also expressed in the lung, kidney, testes, heart, and gastrointestinal tract [14]. ACE2 expression 

is reduced during SARS-CoV infections that lead to an increase in Ang II / AT1 R pathway thereby 

inducing host cell damage [15]. However, agents which can increase the expression of ACE2 can also 

facilitate the entry of the virus into host cell. Therefore, patients treated with ACEIs and ARBS will be 

more susceptible to the viral entry than others since these agents can increase the numbers of ACE2 

receptors in lungs of the patients [16]. The hypothesis in this mini review is that ACEIs and ARBs may 

increase susceptibility to the virus entry and severity of the disease due to increased expression of the 

receptor. However, both ACEIs and ARBs have different effects on ACE2/Ang II/ Ang 1-7. ACEIs, in 
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clinical use, do not directly affect ACE2 activity [17], while ARBs increase messenger RNA expression as 

well as protein levels of ACE2 [18]. Duncan et al. [19] reported that ACE inhibitors had no significant 

effect on the level of Ang 1–7, while the level of Ang I was increased by 2.4- to 2.8-fold which was 

accompanied by a decrease in the level of Ang II by 54–58%. The level of ACE2 in patients who received 

long-term treatment with the ARBs was higher compared to untreated control patients, but this was not 

observed with the treatment of ACEIs. Long-term treatment of ARBs has been reported to decrease the 

plasma level of Ang II in hypertensive patients. This was due to increased activity of ACE2 leading to the 

hydrolysis of Ang II to Ang-(1–7) [20]. 

Anti-inflammatory and anti-oxidant role of ACEIs and ARBs 

It is now well known that approximately little less than half 40% of Ang II molecule is synthesized via 

non-ACE pathways employing cathepsin and chymase. Therefore, ARBs have a greater potential to block 

the renin–angiotensin system than ACE inhibition in human subjects [21]. Furthermore, ARBs provide a 

theoretical additional advantage compared with ACEIs since they exert a potential effect on Ang II and 

Ang 1-7 via the activation of the individual receptor for AT2 and Mas, respectively. As a result of these 

mechanisms, ARBs are able to exert their protective anti-inflammatory, anti-oxidant, anti-apoptotic and 

anti-fibrotic actions in the body. Currently, there is no evidence that ACEIs can reduce plasma levels of 

major inflammatory mediators such as fibrinogen and CRP in hypertensive models. In contrast, ARBs 

seem to be highly potent as anti-inflammatory drugs compared to ACEIs since they can block AT1 

receptor (22). Other beneficial effects of ARBs, over ACEIs, are their potential ability to block Ang 

II/AT1 receptor to induce TLR4/MyD88 signaling which in turn promotes cellular oxidative injury, 

apoptosis and a reduction in the release of cytokines [23]. ARBs, and to a lesser extent ACEIs, exert anti-

oxidant and anti-inflammatory properties by increasing the level of ACE2 which in turn enhances Ang 1–

7 level. It is well known that Ang 1–7 can induce protective effects in the body. These include its 

vasodilator effect, anti-inflammatory properties, endothelial protection from damage, anti-cell 

proliferative activity, anti-hypertrophic action and anti-fibrosis effects via it binding and subsequent 

activation of the Mas receptor [18]. Sukumaran et al. [24] found that the ARBs, Telmisartan and 

olmesartancan exert anti-inflammatory effect in the body via a reduction of pro-inflammatory cytokines 

such as TNF-α, IL-1β, IL-6. In turn, these cytokines reduce the level of p38 MAPK and down-regulate the 

expression of PI3K and phosphor-Akt. In another study, Dandona et al. [25] investigated the effect of the 

ARB, valsartan on ROS generation and on the expression of NF-κB p65. They concluded valsartan 

inhibited ROS generation and suppress the expression of NF-κB and p65 at both cellular and plasma 

levels. Together, these results indicate that valsartan can induce an anti-inflammatory effect at cellular, 

molecular and plasma levels, Likewise, Wu et al. [26] reported that mice infected with influenza A virus 

and then treated with losartan showed alleviated lung edema and improved lung histopathology. These 

findings demonstrated a lowered lung injury scores and a reduced number of infiltrating leukocytes. The 

authors of the study concluded that ARBs should be considered as a potential candidate for therapies in 

clinical treatment of viral infected patients. Ang II regulates the production of ROS through various 

signaling targets such as, MAP kinases, RhoA/Rho kinase, transcription factors, protein tyrosine 

Phosphatase and tyrosine kinases. Activation of these redox-sensitive signaling pathways can induce cell 

growth and inflammation [27]. In another study, Kim et al showed that both SH-containing and non-SH-

containing ACE inhibitors have superoxide anion-scavenging properties and as such, they concluded that 

ACEI can protect the cell against free radical-induced injury [28]. Figure (3) illustrates the cellular 

mechanisms where by ACEIs (A) and ARBS (B) can exert their protective effects in the body following an 

infection with SARS-CoV2. 
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Figure (6): Schematic flow diagrams (A and B) showing the mechanisms via which ACEIs (A) and ABRs 

(B) can exert their protective effects against SARS-CoV2 in the body 

Firstly, ARBs can block harmful AT1 receptor and increase Ang 1-7 which then binds to Mas receptor 

(figure 3A).Secondly, ARBs can reduce inflammation by blocking the NF-κB pathway and its 

downstream, as well as ROS generation, TLRs expression, and apoptosis, figure (3B). 

CONCLUSION 
In conclusion, the literature data reveal that ARBs can block the renin–angiotensin system in the body by 

.decreasing inflammation and ROS generation through different cellular mechanisms. These involve the 

inhibition of NF-kB, an increase in anti-oxidant activity, and the down regulation of TLRs. In addition, 

ARBs can also increase the level of Ang 1-7 via the ACE2 enzyme which synthesizes it from Ang II. In 

turn, Ang 1-7 can bind to both AT2 and Mas receptors to produce anti-inflammatory, anti-apoptotic, anti-

oxidant activities. Finally, ARBs can also block the Ang II/AT1 receptor to induce TLR4/MyD88 

signaling. It is concluded that ARBs are preferentially more useful than ACEIs to treat SARS-CoV2. 
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