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Abstract

Background: Directed acyclic graphs (DAGs) are an increasingly popular approach for

identifying confounding variables that require conditioning when estimating causal

effects. This review examined the use of DAGs in applied health research to inform rec-

ommendations for improving their transparency and utility in future research.

Methods: Original health research articles published during 1999–2017 mentioning ‘di-

rected acyclic graphs’ (or similar) or citing DAGitty were identified from Scopus, Web of

Science, Medline and Embase. Data were extracted on the reporting of: estimands, DAGs

and adjustment sets, alongside the characteristics of each article’s largest DAG.

Results: A total of 234 articles were identified that reported using DAGs. A fifth (n¼48,

21%) reported their target estimand(s) and half (n¼ 115, 48%) reported the adjustment

set(s) implied by their DAG(s).
Two-thirds of the articles (n¼144, 62%) made at

least one DAG available. DAGs varied in size but averaged 12 nodes [interquartile range

(IQR): 9–16, range: 3–28] and 29 arcs (IQR: 19–42, range: 3–99). The median saturation

(i.e. percentage of total possible arcs) was 46% (IQR: 31–67, range: 12–100). 37% (n¼53)
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of the DAGs included unobserved variables, 17% (n¼ 25) included ‘super-nodes’ (i.e.

nodes containing more than one variable) and 34% (n¼ 49) were visually arranged so

that the constituent arcs flowed in the same direction (e.g. top-to-bottom).

Conclusion: There is substantial variation in the use and reporting of DAGs in applied

health research. Although this partly reflects their flexibility, it also highlights some po-

tential areas for improvement. This review hence offers several recommendations to im-

prove the reporting and use of DAGs in future research.

Key words: Directed acyclic graphs, graphical model theory, causal diagrams, causal inference, observational

studies, confounding, covariate adjustment, reporting practices

Introduction

Estimating causal effects is a key aim of applied health re-

search.1 One approach is to conduct a randomized con-

trolled experiment, but practical and ethical constraints

mean this is only possible for a limited range of exposures.2

Most causal effects must therefore be estimated from ob-

servational data; a notoriously difficult task that requires

understanding, identifying and attempting to address the

many sources of bias that arise in non-experimental data,

including confounding bias, selection bias and information

bias.3

Observational studies exploring causal effects are never-

theless extremely common in health and medical research,

although their causal aims are rarely described explicitly.4

More often, observational studies adopt the language of

‘prediction’ or ‘association’, and they report ‘independent’

associations or ‘predictors’ after conditioning on one or

more other related variables, typically by including them

as covariates in a multivariable regression model. Many

approaches are available to assist with deciding which vari-

ables to adjust for from a list of potential candidates, in-

cluding various theory-free statistical criteria and

algorithms.5 Unfortunately, few of these conventional

approaches explicitly consider the role of each variable in

relation to the exposure and outcome, and it is often unclear

why some variables were chosen for consideration and

others not. Without this information, many of the reported

associations are uninterpretable, since estimating a specific

causal effect requires conditioning on a specific set of varia-

bles that are determined by strong theoretical principles.6,7

This is exemplified by the ‘Table 2 fallacy’, which occurs

when the coefficients for two or more ‘risk factors’ in a mul-

tivariable regression model are (mistakenly) interpreted as

estimates for meaningful causal effects.8

Causal inference approaches, such as the potential out-

comes framework, promote greater transparency by

Key Messages

• Directed acyclic graphs (DAGs) are an increasingly popular approach for identifying confounding variables that re-

quire conditioning when estimating causal effects.

• We identified and reviewed 234 original health research articles from Scopus, Web of Science, Medline and Embase

that were published during 1999–2017 and mentioned ‘graphical model theory’, ‘directed acyclic graph(s)’, ‘causal dia-

gram(s)’, ‘causal graph(s)’, or ‘causal DAG(s)’ in their title, abstract or keywords, or cited the DAGitty software

package.

• There was inconsistent reporting of several important technical details, such as the target estimand(s) of interest

(reported by 21%), the DAG(s) (reported by 62%) and the DAG-implied adjustment set(s) (reported by 48%).

• Where DAGs were reported (62%), these varied substantially in size and structure: the average number of nodes was

12, the average number of arcs was 29, the median saturation (i.e. percentage of total possible arcs) was 46%; 37%

included one or more unobserved variables; 17% included one or more ‘super-nodes’ (i.e. nodes containing more

than one variable); and 34% were visually arranged so that the constituent arcs flowed in the same direction (e.g.

top-to-bottom).

• We offer a list of eight simple recommendations to improve the transparency and utility of DAGs in future observa-

tional studies.
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encouraging observational data scientists to formally define

the causal effect(s) they seek (i.e. their causal ‘estimand’) be-

fore they begin their analysis.9 Estimating this effect is then

informed by external knowledge of the data-generating pro-

cess (i.e. how participants were identified and selected, how

and when each variable was determined, and how each vari-

able influenced each other), and by measuring and condi-

tioning (whether directly or otherwise) on all mutual causes

of the exposure and outcome (i.e. confounders).10,11

However, since the true data-generating process can never

be known, it must be postulated from expert knowledge,

relevant theory and plausible assumptions.10,11

Directed acyclic graphs (DAGs) provide a simple and

transparent way for observational data scientists to identify

and demonstrate their knowledge, theories and assump-

tions about the causal relationships between variables.12

The implied adjustment set for accurately estimating a

causal effect can then be deduced by inspection or algorith-

mically, depending on the DAG’s structure and complex-

ity.13–15 Although the accuracy of the resulting estimate is

contingent on how closely the DAG matches the (true)

data-generating process, the act of drawing and sharing a

DAG makes these assumptions more explicit and open to

scrutiny. Despite these benefits, DAGs are relatively rare

within the wider setting of applied health research, likely

due to a lack of awareness and cultural ambivalence.16,17

There is also limited practical guidance available on the

use and reporting of DAGs in applied research. Sauer and

VanderWeele have offered a list of core considerations and

highlighted the need for a ‘disciplined approach to devel-

oping DAGs’.18 In response, Ferguson et al. offered a struc-

tured protocol to aid with building DAGs,19 but there

remains little advice on various practical considerations,

including the reporting of: estimands of interest, DAGs

themselves, implied and analytical adjustment set(s), the

spatial arrangement of variables, and the justification for

including or omitting dependencies.

This review aims to examine and evaluate the use of

DAGs in applied health research to motivate some simple

recommendations to improve the transparency and utility

of DAGs in future observational research.

Methods

Overview

The review sought to extract, examine and summarise in-

formation on the use, implementation and reporting of

causal diagrams that satisfy the definition of a DAG, as

provided below, in observational health research. We were

primarily interested in reporting behaviours and technical

features of DAG specification that could motivate

subsequent recommendations. These included reporting of:

estimands of interest, DAGs, implied adjustment sets,

other adjustment set(s) and the estimates obtained from

these adjustment sets. They also included: the size of each

DAG, the inclusion of unobserved variables, the use of ‘su-

per-nodes’ (i.e. nodes containing more than one variable),

the assumptions and justifications for including or exclud-

ing causal relationships, and whether causal relationships

were visually arranged in the same direction (e.g. top-to-

bottom or left-to-right).

Definitions

DAGs are non-parametric diagrammatic representations of

the assumed data-generating process for a set of variables

(and measurements thereof) in a specified context.

Variables and their measurements are depicted as nodes

(or vertices) connected by unidirectional arcs (or arrows;

hence ‘directed’) depicting the hypothesized relationships

between them. An arc between two nodes denotes the as-

sumed existence and direction of a causal relationship, but

it does not specify the sign (i.e. positive or negative), mag-

nitude (i.e. large or small), shape (e.g. linear or non-linear)

or form of that relationship (hence ‘non-parametric’). A

node cannot be caused by itself (hence ‘acyclic’), because

no variable can cause itself at an instantaneous moment in

time, and the future cannot cause the past. A saturated

DAG is a DAG that contains all possible arcs, such that

each node in turn causes all future nodes.20

A path is a collection of one or more arcs that connects

two nodes. Paths may be either open or closed; open paths

transmit statistical associations, closed paths do not. A

causal path is one where all constituent arcs flow in the

same direction from one node to another. The total causal

effect of a specified exposure (i.e. cause) on a specified out-

come (i.e. consequence), which together form the focal re-

lationship, is the joint effect transmitted through all causal

paths connecting the exposure to the outcome. With re-

spect to the focal relationship, a confounder is a common

cause of both the exposure and the outcome, a mediator is

caused by the exposure and in turn causes the outcome (i.e.

falls on a causal path between the exposure and outcome),

and a competing exposure is a cause of the outcome that is

neither caused by nor causes the exposure. A direct causal

effect is the effect that does not act through one or more

specified mediators. Figure 1 shows the main components

of a DAG and the most common types of variable, defined

in relation to the focal relationship.

The (causal) estimand is the desired causal effect of the

exposure on the outcome (e.g. the total causal effect). A

confounding path is an open path between the exposure

and outcome that passes through one or more confounders
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(Figure 1). These paths introduce confounding bias, which

may be reduced by conditioning on one or more of the

nodes on that path such that it becomes closed; this is typi-

cally achieved by including those nodes as covariates in a

multivariable regression model. A collider path is a closed

path between the exposure and outcome that passes

through one or more colliders, which are nodes that receive

two or more arcs (Figure 1); the simplest example occurs

when the exposure and outcome both cause another vari-

able (i.e. the collider) directly. Collider paths do not trans-

mit statistical associations unless the constituent colliders,

or one of their descendants, have been conditioned on.

Such conditioning can introduce collider bias. For exam-

ple, conditioning on a mediator that is also caused by one

or more common causes of the outcome (known as

mediator-outcome confounders) is likely to introduce col-

lider bias, since the mediator in this situation is also a col-

lider on the path between the exposure and the

outcome.12

A sufficient adjustment set for a particular estimand is

any set of variables that, if fully conditioned on, will pro-

vide an unbiased estimate for that estimand by closing all

paths that are not causal and leaving all causal paths

open.21 Competing exposures are not always included in

sufficient adjustment sets, unless they are caused by one or

more unobserved confounders for which they can serve as

a surrogate confounder.22

Search and inclusion criteria

We searched Scopus, Web of Science, Medline and Embase

for articles published between 1 January 1999 and 31

December 2017 inclusive that contained any of the

following terms in their title, abstract, keywords or topic:

‘graphical model theory’, ‘directed acyclic graph(s)’, ‘causal

diagram(s)’, ‘causal graph(s)’ or causal DAG’. The starting

year was chosen to capture studies that appeared around or

after the publication of Greenland et al. (1999).12 Articles

citing DAGitty online or the DAGitty R software packages

were also identified.15,21 Results were restricted to ‘original

articles’ involving human participants (Medline and

Embase) indexed within medicine, health, social science,

psychology, dentistry, nursing and related fields.

Screening and exclusion criteria

Duplicates were identified and removed before P.W.G.T.

screened the titles and abstracts to determine eligibility.

Articles not describing original research (such as teaching

articles, review articles and commentaries) were excluded,

as were articles not examining health or healthcare in hu-

man populations (such as gene ontology and protein hier-

archy studies).

Extraction process

Data were extracted from each article into a standardized

database, which was designed, tested, refined, piloted, and

further refined before extraction. P.W.G.T., K.F.A.,

M.S.G., W.J.H., L.B., S.C.G., C.K. and G.T.H.E. were

each assigned a random sample of articles for data extrac-

tion. Where information was unclear, individual members

of the study team consulted with one or more other mem-

bers to reach consensus on the appropriate coding. All data

were then re-extracted and double-checked by P.W.G.T.,

G.D.T. and G.T.H.E. Discordances between the original

Figure 1 Illustration of the main components of a DAG, the most common types of contextual variables and the most common types of paths. The

DAG has been visually arranged so that all constituent arcs flow from top-to-bottom.
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data extraction and the subsequent re-extraction were

recorded and considered preliminary ‘errors’ in data

extraction.

Data of interest

Bibliographic information including author names, journal

names and year of publication were obtained for each arti-

cle. The topic of each article was approximated from the

indexing categories of the host journal in the 2017 Journal

Citation Reports from Clarivate Analytics (https://jcr.clari

vate.com/).

Data were extracted on: the country of the lead author’s

primary affiliation; the number of DAGs used and their

availability within the manuscript/supplementary materi-

als; and the analytical approach used (noting where media-

tion analyses or other less conventional methods were

used). For the largest DAG available for each article

(assessed by number of nodes; or number of arcs, if tied),

we extracted data on the total number of nodes and total

number of arcs, and we recorded whether: it was drawn

with DAGitty, it contained any unobserved variables or

‘super-nodes’,23 it was saturated, the arcs were visually ar-

ranged to flow in the same direction (e.g. left-to-right), and

citations were used to justify the inclusion or exclusion of

arcs. To identify the estimand(s) of interest, we searched

and examined occurrences of ‘estimand’, ‘effect’, ‘caus*’,

‘total’, ‘direct’, ‘indirect’. We inspected whether the im-

plied (sufficient) adjustment set was reported for each esti-

mand or apparent effect of interest, and whether estimates

were reported for these sets explicitly. We also examined

whether alternative adjustment sets were used and, if so,

what approaches were used for covariate selection. Finally,

we checked for attempts to evaluate the compatibility of

the DAG(s) with the observed dataset (e.g. testing whether

there are associations present in the dataset that are not im-

plied by the DAG).21

Errors in DAG data extraction

The probability of ‘error’ in the initially-extracted number

of nodes and arcs was explored in relation to the most

common diagrammatic features (i.e. whether drawn in

DAGitty, whether unobserved variables or ‘super-nodes’

were included, and whether arcs were visually arranged in

the same direction), and adjusted for number of arcs and

nodes by log-linear regression with robust standard errors.

Reported probabilities represent model marginal values,

with 95% confidence intervals (CI) approximated by the

delta-method.

Results

Sample description

Figure 2 summarises the derivation of the study sample. A

total of 234 eligible articles were identified, including 172

(73.5%) published since the start of 2015 (Figure 3). A to-

tal of 230 (98%) articles were written in English and four

(2%) were written in German. Brief details of each paper

are provided in Supplementary Table S1, available as

Supplementary data at IJE online.

Figure 3 shows the number of articles published by the

country of the first author’s primary affiliation. The most

prevalent countries were USA (n¼79, 34%), Germany

(n¼ 29, 12%), UK (n¼ 17, 7%) and Sweden (n¼16, 7%).

A total of 187 (80%) were led by North American or

Northern European authors.

Articles were published in 152 distinct journals. A total

of 33 (22%) journals published more than one article, the

most appearing in PLoS One (n¼ 18), Environmental

Health Perspectives (n¼ 10) and Environmental Research

(n¼ 8). These 152 journals covered 50 citation categories,

the most prevalent being Public, Environmental, and

Occupational Health (n¼75, 32%), Environmental

Science (n¼ 26, 11%) and Multidisciplinary Science

(n¼ 18, 8%) (Figure 3).

DAG availability, size and attributes

DAGs were available for 144 (62%) articles. Sixty (42%

of those with one or more DAGs available) included the

DAG in the manuscript directly, 81 (56%) in supplemen-

tary online material, 1 (<1%) provided the DAG on re-

quest,24 1 (<1%) provided a link to the DAG on www.

dagitty.net25 and 1 (<1%) referenced a DAG from a previ-

ous publication.26 No DAG was available for 90 (38%)

articles, including 4 (1%) articles that referred to

Supplementary online materials that were unavailable, 1

article where the DAG was missing from Supplementary

Material, 1 (<1%) where the printed figure was incorrect,

and 1 (<1%) that provided invalid weblinks to www.dag

itty.net.

Of the 144 articles with available DAGs, 116 (81%) in-

cluded a single DAG and 28 (19%) more than one. Full

details of the largest DAG in each of these 144 articles are

provided in Supplementary Table S2, available as

Supplementary data at IJE online, and summary details are

in Table 1. DAGs varied substantially in size and complex-

ity, with the number of nodes ranging from 3 to 28

(median¼ 12, IQR¼9–16) and the number of arcs ranging

from 3 to 99 (median¼ 29, IQR¼ 19–42). The median ra-

tio of arcs to nodes was 2.3 (IQR¼ 1.8–3.0, range¼ 1.0–

5.8) and the median saturation (i.e. percentage of total
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possible arcs) was 46% (IQR¼31–67, range 12–100). Just

four (3%) DAGs were saturated (i.e. included all possible

arcs).

Fifty-three (37%) DAGs included one or more unob-

served variables [see Supplementary Figures S1a and b),

available as Supplementary data at IJE online], 27 (19%)

included one or more specific unobserved variables, and 29

(20%) included one or more generic unobserved variables.

Twenty-five (17%) DAGs included one or more ‘super-

nodes’ (see Supplementary Figure S1c, available as

Supplementary data at IJE online). Forty-nine (34%)

DAGs were visually arranged so that the constituent arcs

flowed in the same direction (see Supplementary Figure

S1d and S1e, available as Supplementary data at IJE on-

line, for contrast; five (3%) flowed from top-to-bottom, 22

(15%) flowed from left-to-right, and 22 (15%) flowed di-

agonally from one corner to another. Eight (6%) provided

citations to support the inclusion of one or more arcs (see

Figure 2 Flow of bibliographic records into the final sample of 234 articles.
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Supplementary Figure S1f, available as Supplementary

data at IJE online). No articles reported attempting to eval-

uate the compatibility of their DAG(s) with their data.

The 84 (36%) articles with no available DAG (by in-

tent rather than error) generally offered limited informa-

tion beyond stating that the DAG(s) had been

‘constructed’ or ‘used’ to ‘guide’, ‘identify’, ‘determine’

and/or ‘select’ ‘confounders’ or ‘covariates’ for adjustment

[e.g. ‘Based on previous research, causal diagrams and di-

rected acyclic graphs were constructed to identify a mini-

mally sufficient adjustment set of confounders’27

(Supplementary Tables S4 and S5, available as

Supplementary data at IJE online). Only 36 (43%) explic-

itly stated using their DAG to identify a sufficient adjust-

ment set. A total of 41 (49%) explicitly reported using

Figure 3. Distribution of the 234 articles included in the review sample,

by year of publication, country of first author’s primary affiliation and

journal citation category.

Table 1. Summary information regarding the reporting of

estimands and adjustment sets in the 234 included studies,

and regarding the reporting and features of the largest DAG

in the 144 studies with �1 DAG

DAG reporting and featuresa n % (n¼144)

DAG available 144 100%

Single DAG available 116 81%

Multiple DAGs available 28 19%

DAG includes one or more unob-

served variables

53 37%

DAG includesa one or more spe-

cific unobserved variables

27 19%

DAG includesa one or more ge-

neric unobserved variables

29 20%

Visually arranged so all arcs flow

in the same direction

49 34%

Top-to-bottom 5 3%

Left-to-right 22 15%

Corner-to-corner 22 15%

Authors provide citations for one

or more arcs

8 6%

DAG nodes and arcs Median IQR Range

Number of nodes 12 9–16 3–28

Number of arcs 29 19–42 3–99

Ratio of arcs-to-nodes 2.3 1.8–3.0 1.0–5.8

Saturation (%)b 46 31–67 12–100

Reporting of estimand(s) and ad-

justment set(s)

n % (n¼234)

Report one or more estimand(s)

of interest

48 21%

Report seeking total causal

effects

18 8%

Report seeking direct causal

effects

12 5%

Report seeking multiple effects 18 8%

Report DAG-implied adjustment

set(s)

115 49%

Report results of DAG-implied

adjustment set(s)

101 43%

Report as primary results 95 41%

Report results of other or unclear

adjustment set(s)

171 73%

Report as primary results 159 68%

Use additional statistical criteria

for variable selection

42 18%

aDetails are for the largest DAG reported in each study.
bThe saturation percentage represents the proportion of all possible arcs

that have been included.
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DAGitty, including 22 (26%) who explicitly stated using

DAGitty to identify a sufficient adjustment set.

Errors in DAG data extraction

First round data extraction errors occurred among 56

(39%) DAGs; including 2 (1%) where the number of nodes

was miscounted, 48 (33%) where the number of arcs was

miscounted, and 6 (4%) where both were miscounted. The

proportion of errors increased with the number of nodes

[4.2% per node (95% CI: 1.5, 7.0)] or arcs [1.6% per arc

(95% CI: 1.0, 2.2)]. Conditional on these, the proportion

of errors was lower among DAGs drawn in DAGitty [32%

(95% CI: 23, 42) vs 50% (95% CI: 36, 64) among DAGs

not drawn in DAGitty] or that had been visually arranged

so that the constituent arcs flowed from top-to-bottom or

left-to-right [30% (12, 47) vs 41% (95% CI: 31, 51)

among DAGs without consistent direction] but not diago-

nally from corner-to-corner [44% (95% CI: 20, 67)]

(Supplementary Table S3, available as Supplementary data

at IJE online). There were negligible differences in the pro-

portion of errors among DAGs that included unobserved

variables [42% (95% CI: 28, 56) vs 37% (95% CI: 31, 51)

without unobserved variables] or super-nodes [39% (95%

CI: 17, 61) vs 39% (95% CI: 31, 48) without super-nodes]

(Supplementary Table S3, available as Supplementary data

at IJE online).

Reporting of estimands and adjustment sets

Of the 234 included articles, 208 (89%) conducted multi-

variable regression analyses, 13 (6%) conducted mediation

analyses, 4 (2%) conducted g-method analyses, and 9

(2%) conducted other or mixed analyses.

Full details regarding the reporting of estimands and ad-

justment sets are provided in Supplementary Table S4,

available as Supplementary data at IJE online, whereas

summary details are in Table 1. Only 48 (21%) articles ex-

plicitly reported one or more causal estimands of interest,

comprising 18 (8%) that sought total causal effects, 12

(5%) that sought direct causal effects and 18 (8%) that

sought multiple effects. A total of 115 (49%) articles

clearly reported the adjustment set(s) implied by their

DAG(s), including 90 (38%) who specifically stated one or

more sufficient adjustment set(s).

Of the 115 articles that reported one or more DAG-

implied adjustment set(s), 101 (88%) reported the causal

effect estimate obtained from this adjustment set specifi-

cally (i.e. with no covariates added or removed), including

95 (76%) where these formed the primary analyses.

Estimates from other (i.e. bespoke) or unclearly derived ad-

justment sets were reported in 171 (73%) of the total 234

articles, including 159 (68%) where these formed the pri-

mary analyses. A total of 42 (18%) studies applied addi-

tional statistical criteria or algorithms for covariate

selection, including 28 (12%) that used change-in-estimate

criteria and 14 (6%) that used P-value criteria.

Discussion

Summary of findings

This review examined the use of DAGs in applied health

research. Although they remain very rare within the wider

literature, an increasing absolute number of observational

studies in health, medicine and related areas are using and

presenting DAGs to aid confounder selection. There is

however substantial variation in the way these DAGs are

reported and used, with potential impacts on the study

results and the contributions towards increasing transpar-

ency and scrutiny of the analytical assumptions.

DAGs were not always presented, and in some instances

very little information was provided regarding their con-

struction or use (see Supplementary Tables S4 and S5,

available as Supplementary data at IJE online). Where

DAGs were presented, they varied substantially in the

number of variables and arcs included, the inclusion of

unobserved variables, the inclusion of ‘super-nodes’,

details on their design, and how they were used to inform

the subsequent statistical modelling. Some studies pre-

sented simplified illustrations of the relationships between

only a few variables considered key to the focal relation-

ship (e.g.28) while others presented large schematics with

multiple interconnected measured variables (e.g.29), but

few DAGs incorporated many, if any, unobserved varia-

bles. In general, DAGs included relatively few arcs per

node and very few were saturated.

Only half of the articles reported the adjustment set(s)

implied by their DAG(s), and only a fifth stated their target

estimands, with most instead referring to the ‘association’,

‘relationship’, or ‘effect’. Several studies used additional

statistical criteria or algorithms to reduce the number of

candidate variables, whereas others made bespoke modifi-

cations to their adjustment set(s) for other subjective rea-

sons not implied by their DAG(s) (e.g. ‘An additional set of

covariates was considered important to include in the full

model because of their well-established association with

exposure and outcome’30) (see Supplementary Tables S4

and S5, available as Supplementary data at IJE online). No
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articles reported attempting to evaluate the compatibility

of their DAG(s) with their data.

Observations and remarks

This review explicitly considered the use of DAGs in ap-

plied health research, where they were used not simply to

discuss causal inference theory but to ‘identify variables

necessary for adjustment’.31 Although such applications

are widely marketed as a key benefit of DAGs, it is con-

tested whether they actually lead to more accurate and/or

reliable effect estimates.16,17

Harder to dispute are the potential benefits for trans-

parency. Compared with traditional approaches to select-

ing candidate variables and adjustment sets, DAGs

encourage observational data scientists to declare their

assumptions about the data-generating process for the data

they are analysing, which clearly facilitates external scru-

tiny. Reporting the estimand(s) of interest and DAG-

implied adjustment set(s) offer similar benefits to the clar-

ity of the study aim(s) and the model interpretability.

Unfortunately, many of the articles reviewed did not re-

port their DAG(s) and fewer still declared their estimand(s)

of interest. Reluctance to share such details may reflect a

lack of awareness of the benefits of these details for read-

ers, lack of confidence, fear of criticism, cultural reticence,

and/or a lack of encouragement or facilitation from jour-

nals, editors and reviewers. These may also explain why

some articles adopted hybrid approaches to variable selec-

tion that combined DAG-based approaches with tradi-

tional statistical approaches, or where investigators

overruled the DAG-implied adjustment set(s) by adding or

removing covariates. Such actions suggest a need for prac-

tical guidance and supporting materials that are accessible

to data analysts, journal editors and reviewers. Regardless,

several recommendations emerge from recognising the best

practices among the studies reviewed (see below).

Further benefits may also be achieved by emphasising

the different assumptions made from the inclusion and

omission of arcs within DAGs. Although a small number

of articles reported saturated DAGs, the majority of the

available DAGs included less than half of all possible arcs.

Since a confounder must cause both the exposure and out-

come, inadvertently omitting either of these arcs may result

in a confounder being mislabelled and omitted from the

DAG-implied adjustment set, leading to unadjusted con-

founding. Such omissions are theoretically detectable by

testing the DAG(s)-dataset consistency, but this was not

attempted in any of the articles examined. Researchers

may not be aware that such testing is possible or may be

concerned about overfitting from post hoc modification;32

this indicates a need for additional clarity and/or guidance.

The tendency to omit arcs may be explained by a cultural

aversion to declaring potential causal relationships in ob-

servational data without a strong theoretical basis or defin-

itive empirical evidence.4 This may also explain why some

authors included citations to justify the inclusion of arcs

within their DAGs. This is arguably unnecessary since

omitting an arc invokes the greater assumption, because no

arc between two variables declares there is no causal rela-

tionship between the two variables, regardless of direction,

sign, strength or parametric form.12 Increasing the number

of arcs does however bring important practical challenges

that may also explain the absence of plausible arcs. In gen-

eral, it is difficult to draw DAGs with multiple nodes and

multiple arcs while ensuring that all potential arcs have

been included and that the DAG remains decipherable to

the reader. Larger and more saturated DAGs are often clut-

tered and unsightly, diminishing their appeal and utility.

We observed that the proportion of data-extraction errors

increased with the number of nodes and arcs, although this

could also result from an increasing number of objects

available for miscounting. Subjectively, we judged that

DAGs that had been visually arranged so that their constit-

uent arcs flowed consistently from left-to-right or top-to-

bottom were easier to interpret and critique. This appears

to be supported by the lower proportion of data-extraction

errors among DAGs that had been arranged in either of

these ways. Several algorithms exist to help with arranging

a DAG into strict temporal ‘layers’,33 but they do not ap-

pear to have been widely adopted in applied settings. For

saturated DAGs, it may be reasonable to simplify several

details (e.g. using paired arrow-heads indicating ‘arcs to all

future nodes’),34 because the sufficient adjustment set for

any exposure–outcome relationship will simply include all

variables that temporally precede the exposure. However,

no simplification should compromise the level of thought

and rigor given to considering the data-generating process.

Additional guidance, notation or software may be needed

to reconcile the task of drawing clear yet well-specified

DAGs in applied health research.

Recommendations

The focal relationship(s) and estimand(s) of interest should

be stated in the study aims

Causal inference methods separate the process of identify-

ing the quantity of interest (i.e. estimand) from the process
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of estimating that quantity, with the latter being informed

by the former. To reflect this, all estimands of interest

should be clearly stated in the study aims or at the begin-

ning of the article’s methods section before details on how

estimation was attempted (e.g. ‘This study aimed to esti-

mate the total causal effect of type-2 diabetes at aged 50-

years on the ten-year risk of myocardial infarction.’).

Where the estimand does not describe the average (treat-

ment) effect (ATE) in the population this should also be

stated (e.g. ‘The average treatment effect in the treated,

ATT, of type-2 diabetes on the ten-year risk of myocardial

infarction would be the effect observed in the subgroup of

people who develop type-2 diabetes.’).

The DAG(s) for each focal relationship and estimand of

interest should be available

DAGs explicitly depict the investigators’ assumptions

about the data-generating process of their dataset. The ac-

curacy of any ensuing effect estimate is fundamentally con-

tingent on the extent to which the DAG (as specified)

reflects the true data-generating process. The DAG used to

inform the model for estimating every causal effect esti-

mate should therefore be available to all potential readers.

This may be achieved by reproducing the DAG in the man-

uscript directly, in supplementary material or by providing

functional weblinks to a well-established open-source plat-

form such as www.dagitty.net.

DAGs should include all relevant variables, including those

where direct measurements are unavailable

The DAG for a specific focal relationship should include

all plausible confounding variables (i.e. that may plausibly

cause both the exposure and the outcome), regardless of

whether direct measurements are available or possible.

Explicitly depicting unobserved variables helps to highlight

potential sources of unobserved confounding.

Variables should be visually arranged so that all

constituent arcs flow in the same direction

Arcs depict causal processes that occur over time. DAGs,

and the relationships they symbolize, are therefore consid-

erably easier to interpret when the constituent variables are

arranged spatially in a way that clearly reflects the passage

of time, with arcs flowing in the same direction from left-

to-right or top-to-bottom.

Arcs should generally be assumed to exist between any two

variables

Omitting an arc between two variables implies that there is

precisely no causal effect of one on the other. This is a

much stronger statistical assumption than is implied when

an arc is included, which allows a causal effect of any sign,

magnitude or parametric form (including a very small ef-

fect). Omitted arcs should therefore be carefully considered

and ideally justified with theory and/or evidence.

The DAG-implied adjustment set(s) for the estimand(s) of

interest should be clearly stated

The DAG-implied adjustment set(s) for every estimand

of interest should be stated explicitly, including variables

for which measurements are not available for

conditioning.

The estimate(s) obtained from using the unmodified DAG-

implied adjustment set(s)—or nearest approximation

thereof—should be reported

The estimate(s) obtained from using the unmodified DAG-

implied adjustment set(s) should be reported, even if not

considered or interpreted as central to the study findings. If

one or more variables are not available, the estimate(s)

from the most complete subset should be reported; this

will usually comprise all observed variables within the

DAG-implied adjustment set. Where possible, bias analy-

ses should be performed to quantify the impact of unob-

served confounders and obtain more accurate causal effect

estimates.35

Alternative adjustment set(s) should be justified and their

estimate(s) reported separately

If alternative adjustment set(s) are used, they should be

clearly described and justified, and the ensuing estimates

should be reported separately to those reported using the

DAG-implied adjustment set. Modifications to DAG-

implied adjustment sets may comprise the inclusion of

competing exposures, surrogate confounders or variables

with ambiguous causal roles for the purposes of sensitivity

analyses. Where direct causal effects are sought, these

should be clearly stated in the aims as effects of interest,

and their adjustment sets derived accordingly. We encour-

age researchers to explore the consistency of all DAGs

with the observed data, but the details of, and estimates

from, any subsequently modified DAGs should again be

reported separately.21

Supplementary Table S6, available as Supplementary

data at IJE online summarises these recommendations in

the form of a checklist, to assist with preparing and review-

ing articles that use DAGs to identify confounders.

Strengths and weaknesses

This is the largest and most comprehensive review of the

use of DAGs in applied research, whether in health, medi-

cine or otherwise. We identified and examined >200

articles published over several years across a diverse range
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of fields. The sample is however somewhat ill-defined and

should not be considered to reflect the population of obser-

vational health research studies that have used DAGs. It is

not clear what proportion of such studies mention their use

of DAGs in their abstract or keywords, but we suspect

many do not. No articles were identified that reported us-

ing DAGs to aid with understanding or analysing random-

ized controlled trials or natural experiment approaches

(such as instrumental variables analyses), indicating that

users of these methods may be less familiar with, or enthu-

siastic towards, DAGs.

A large proportion of the sample was therefore identi-

fied from having cited the DAGitty.net software package.

Studies that used DAGitty.net for drawing their DAG(s) or

determining their adjustment set(s) are likely over-

represented. A lower proportion of data-extraction errors

occurred among DAGs that had been drawn using

DAGitty, which may indicate some feature differences, but

it may also indicate a training effect due to increased re-

viewer familiarity. We believe that the issues we describe,

and their implications, are likely to be applicable to the use

and reporting of DAGs irrespective of the tools used to

construct and scrutinize these DAG(s).

Extracting data for the 234 articles included in this re-

view was laborious and a substantial time therefore passed

between when the sample was identified and extraction

was completed. We nevertheless decided not to update our

search to include more recent articles (i.e. published from

2018 onwards) because we do not believe there will have

been any substantial changes in practice in the intervening

time.

Because of the quantity of information sought and the

diversity of the studies examined, it was impossible to de-

velop a data-extraction form that was entirely compatible

with all the included articles. Some data items therefore

required subjective judgement, inter-rater discussion, and/

or further simplification, and others simply could not be

synthesised due to a lack of standardization in reporting.

Even when using a reduced set of items for data extrac-

tion, clarity and transparency varied substantially be-

tween studies, making it challenging to accurately

identify all relevant information. All data were therefore

extracted in triplicate, with the first extraction used to

evaluate the ‘readability’ of the most objective DAG fea-

tures. Occasional data extraction errors or discordances

between the authors’ intended message and our interpre-

tation are nevertheless still inevitable; but these should

not materially alter the review results, messages and/or

recommendations.

We offer several recommendations for improving the

reporting, specification and application of DAGs in ap-

plied health research where causal effect estimates are

sought from observational data. These recommendations

are supported by our innovative approach to data extrac-

tion, which allowed us to empirically identify features that

led to fewer data-extraction errors and clearer DAGs.

Studies that did not follow these recommendations should

not however be considered necessarily less rigorous, less

accurate or less valuable. DAGs represent the investigators’

assumptions and hypotheses about the data-generating

process for a specific dataset. Where the DAG does not ac-

curately reflect the true data-generating mechanism, the

ensuing estimates are likely to be unreliable. However,

since the true process can never be known, a DAG can ar-

guably only be wrong if it fails to correctly represent those

assumptions and hypotheses. We therefore did not attempt

to evaluate the plausibility of individual DAGs and instead

focussed on identifying those areas where the implications

of the DAG may not have met the investigators’ intentions.

We offer no negative judgements on the intentions of indi-

vidual authors or the veracity of individual studies. On the

contrary, we welcome the large and growing number of ap-

plied health researchers who have used DAGs to assist

with estimating causal effects in observational data and ex-

plored their benefits for declaring their assumptions, iden-

tifying potential sources of bias, identifying data for

collection and improving statistical analyses. These ‘early

adopters’ have not only helped to reveal some potential pit-

falls in the use of DAGs but have provided a growing

wealth of innovative exemplars that will inspire future

developments in this evolving field.

Conclusion

DAGs are increasingly popular in applied health research

as a transparent means of identifying confounding varia-

bles that require conditioning to estimate causal effects.

This review examined their use in >200 empirical studies

of health, medicine and related disciplines, and found sub-

stantial variation in their size, structure, complexity, avail-

ability and implementation. Whereas such variety partly

reflects the inherent flexibility and subjectivity of DAGs, it

also helps to highlight several potential pitfalls and aspira-

tional practices. Consequently, we offer a list of simple rec-

ommendations for improving both the transparency and

benefits of DAGs in observational research that we hope

will help towards the ongoing development of these

techniques.

Supplementary Data

Supplementary data are available at IJE online.
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13. Knüppel S, Stang A. DAG program: identifying minimal suffi-

cient adjustment sets. Epidemiology 2010;21:159.

14. Breitling LP. dagR: a suite of R functions for directed acyclic

graphs. Epidemiology 2010;21:586–87.
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