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ABSTRACT

Quasi-periodic pulsations (QPPs) are routinely observed in a range of wavelengths during flares but in most cases
the mechanism responsible is unknown. We present a method to detect and characterise QPPs in time series such as
light curves for solar or stellar flares based on forward modelling and Bayesian analysis. We include models for QPPs
as oscillations with finite lifetimes and non-monotonic amplitude modulation, such as wave trains formed by dispersive
evolution in structured plasmas. By quantitatively comparing different models using Bayes factors we characterise the
QPPs according to five properties; sinusoidal or non-sinusoidal, finite or indefinite duration, symmetric or asymmetric
perturbations, monotonic or non-monotonic amplitude modulation, and constant or varying period of oscillation. We
demonstrate our method and show examples of these five characteristics by analysing QPPs in white light stellar
flares observed by the Kepler space telescope. Different combinations of properties may be able to identify particular
physical mechanisms and so improve our understanding of QPPs and allow their use as seismological diagnostics. We
propose three observational classes of QPPs can be distinguished; decaying harmonic oscillations, finite wave trains,
and non-sinusoidal pulsations.
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1. INTRODUCTION

Quasi-periodic pulsations (QPPs) are frequently ob-
served in solar and stellar flares (e.g. Anfinogentov et al.
2013; Pugh et al. 2015, 2017b; Namekata et al. 2017;
Hayes et al. 2020).  There is no precise definition
but it is generally acknowledged that the amplitude
and period modulation are important features (e.g.
Nakariakov et al. 2019). Numerous mechanisms have
been proposed which can potentially explain QPPs
though it remains an open question which are most
common (see, e.g., reviews by Van Doorsselaere et al.
2016; McLaughlin et al. 2018; Kupriyanova et al. 2020).
Due to their non-stationary nature, wavelet analysis
is commonly used to reveal QPPs in light curves al-
though care is needed to distinguish oscillations from
noise particularly when there is a strong background
trend (e.g. Lépez-Santiago 2018). The temporal and
frequency resolution can also be sensitive to the choice
of mother wavelet (e.g. De Moortel et al. 2004). The
problem of robust identification of QPPs was ap-
proached by Broomhall et al. (2019) who tested var-
ious methods against synthetic data, demonstrating
that forward modelling with Bayesian analysis (e.g.
Anfinogentov et al. 2020) and empirical mode decom-
position (EMD; e.g. Kolotkov et al. 2015) are the most
suitable methods for QPPs with non-stationary periods.

Bayesian analysis is widely used in astronomical data
analysis (see review by Sharma 2017), such as the es-
timation of cosmological parameters (Lewis & Bridle
2002; Wraith et al. 2009) and the search for exoplan-
ets Nelson et al. (2020). Bayesian analysis is increas-
ingly being applied to data analysis in solar physics
(see review by Arregui 2018) such as heliosesmol-
ogy (e.g. Broomhall et al. 2010; Howe et al. 2015),
the inference of longitudinal structuring of coronal
loops (Arregui et al. 2013a), and forward modelling
of their EUV intensity profiles (Pascoe et al. 2017b;
Goddard et al. 2017). In particular, Bayesian analysis
has been extensively applied to study transverse os-
cillations in coronal loops, allowing them to be used
as a seismological tool to infer the transverse den-
sity structure. These transverse oscillations are sim-

be revealed through methods such as wavelet anal-
ysis (De Moortel et al. 2002) or least-squares fitting
(Pascoe et al. 2016a,b; Morton & Mooroogen 2016) but
Bayesian methods allow the density profile parame-
ters, which in some cases may only be partially con-
strained by the data, to be calculated (Arregui et al.
2013b; Pascoe et al. 2017a,d, 2018). Forward modelling
of the observed time series also allows detailed prop-
erties to be investigated by directly incorporating our
physical understanding in the model. For example,
Pascoe et al. (2017a) were able to detect the signature
of low amplitude higher longitudinal harmonic kink
modes by modelling them as having periods that are
approximately integer multiples of the fundamental,
having the same start time as the fundamental, and a
frequency-dependent damping rate appropriate for res-
onant absorption. Fourier and wavelet techniques were
shown to be unsuitable for the same problem of low-
amplitude harmonics (Figure 18 of Pascoe et al. 2017a)
since frequency-dependent damping reduces the spectral
signature of higher harmonics whereas forward mod-
elling can correct for this bias. Recently, Pascoe et al.
(2020) used Bayesian analysis to distinguish between
models of kink oscillations containing either one or two
perturbations to test if loops in an active region had
been affected by both solar flares that occurred nearby.

The techniques that have been applied to analyse
strongly damped kink oscillations are therefore well
suited to study QPPs. In particular, Pascoe et al.
(2017d) modelled kink observations which feature rapid
shifts in the equilibrium position of the coronal loop in
addition to a smoother background trend, including a
contracting loop (Simdes et al. 2013) whose period of
oscillation decreased commensurate with the shortening
loop length. In this work we use a similar approach
in constructing a model comprised of an oscillation, a
smooth background, and a rapidly varying background
which in this case represents the sharp increase in flux
during the rise phase of a flare.

QPPs have been observed in a range of elec-
tromagnetic frequencies, for example; white-light
(Mathioudakis et al. 2003; Anfinogentov et al. 2013),

microwave (Kupriyanova et al. 2010), EUV (Dominique et al.
2018), X-ray (Mitra-Kraev et al. 2005; Pandey & Srivastava
2009; Hayes et al. 2020), and gamma-ray (Nakariakov et al.

pler that QPPs in having an accepted interpretation
in terms of a standing kink mode damped by reso-

nant absorption (e.g. review by Nakariakov & Kolotkov
2020). Kink oscillations were first analysed by fitting an
exponentially damped sinusoid (e.g. Nakariakov et al.
1999) but modern techniques attempt to accurately
measure the (non-exponential) amplitude modulation
which contains information about the density profile
of the loop (e.g. Hood et al. 2013; Pascoe et al. 2013a,
2019). The non-exponential damping profile may also

2010; Li et al. 2020), and often in multiple bands simul-
taneously (e.g. Van Doorsselaere et al. 2011; Dolla et al.
2012; Hayes et al. 2016; Kupriyanova et al. 2019). In
this paper we analyse white-light flares observed by the
Kepler space telescope (Borucki et al. 2010), though
the same method would be applicable to other obser-
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vations with appropriate models for the behaviour of
background trends.

Balona et al. (2015) analysed 257 flares observed by
Kepler and found 47 which contained additional peaks,
and seven which showed evidence of damped oscillations
lasting several cycles. The lack of a correlation for the
periods with stellar parameters suggested the oscilla-
tions were due to magnetohydrodynamic (MHD) pro-
cesses similar to those observed in the Sun. Pugh et al.
(2016) analysed 56 Kepler flares which contained QPPs
and found that their properties are independent of
global stellar parameters. QPPs have also been de-
tected in stellar flares using the Galaxy Evolution Ex-
plorer (GALEX; Doyle et al. 2018), the Transiting Ex-
oplanet Survey Satellite (TESS; Vida et al. 2019), and
XMM-Newton (e.g. Broomhall et al. 2019b). A compar-
ison of damped oscillations in solar and stellar flares by
Cho et al. (2016) demonstrated that the ratios of damp-
ing times to periods were statistically identical and that
both exhibited a scaling consistent with MHD oscilla-
tions.

Bayesian analysis is particularly useful for quantita-
tive model comparison. Since numerous mechanisms
for QPPs have been proposed, ideally each mechanism
could be tested against observations to identify those
most likely. However, detailed theoretical models de-
scribing the observable signal for most QPP mechanisms
do not currently exist. Therefore, it is currently not pos-
sible to test mechanisms directly but instead we can con-
struct a series of models to investigate particular prop-
erties of QPPs with the aim of reducing the possibilities.
The properties we focus on are;

1. Confirmation of the presence of an oscillation.
We examine previously-studied examples of stel-
lar QPPs for which confirmation of a QPP is sim-
ple. However, since our general model also in-
cludes flaring emission we can test an alterna-
tive interpretation of periodically triggered flares
(Nakariakov et al. 2006) rather than an oscillation
based on a sinusoidal function.

2. The oscillation has a finite or indefinite duration,
depending on whether it has a well-constrained
end time or not.

3. Perturbations are either symmetric or asymmetric
relative to the background trend.

4. Amplitude modulation is monotonic (decreasing)
or non-monotonic.

5. Period of oscillation is constant or varying.

Our models for the light curves are described in Sec-
tion 2, with application to Kepler data in Section 3.
Further discussion and conclusions are presented in Sec-
tion 4.

2. MODELS

Our method is based on modelling an arbitrary time
series i.e. without detrending and with no particular
choice of start and end time for the data. Pugh et al.
(2017a) use a method to identify QPPs based on power
spectra which does not require detrending but does re-
quire that the background trend is not too steep, and
that the start and end times of the time series are chosen
carefully. Inglis et al. (2015) also use a method based on
modelling power spectra without detrending and per-
form model comparison using the Bayesian information
criterion (BIC). The avoidance of detrending is impor-
tant since the assumption of a particular fixed trend can
bias subsequent analysis of an oscillation. This is par-
ticularly important for asymmetric oscillations such as
strongly damped oscillations or those with higher har-
monics present. A longer time series may also better
reveal other background trends or noise levels, and al-
lows the flare to be studied simultaneously with the
QPP, convenient for investigating any dependence of
QPP properties on flare properties.

Our general model for a time series consists of three
components (though components may be excluded for
particular analyses)

1. a general background trend which is based on
spline interpolation (for three or more interpola-
tion points). The number of interpolation points
is chosen to allow an accurate description of the
background behaviour, depending on factors such
as the length of the time series and any long-term
trends which are evident (the periodicity associ-
ated with the spline background must be longer
than that of any QPP).

2. an asymmetric function describing a localised in-
crease in flux due to a flare.

3. a component based on a sinusoidal function repre-
senting an oscillatory QPP.

We model the flaring emission using asymmetric expo-
nential and Gaussian functions with different temporal
scales for the rising and decay phases (see examples in
Figure 1). We note that the Gaussian profile, previously
used in the analysis of synthetic data in Broomhall et al.
(2019a), was found to provide a poor description of the
light curves in this paper and so we will focus on ex-
ponential profiles, though a Gaussian profile may be
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more suitable for soft X-ray emission (e.g. Gryciuk et al.
2017). The exponential flare profile is

Ay exp ((t— tf)/Trise)
Ay exp (=(t —tf)/Tdecay)

t <ty
yy (t) =
t>ty

where Ay is the amplitude at the peak time ¢, Tyiqe is the
rise time, and Tqecay is the decay time. We impose that
the decay time is greater than the rise time, as expected
for flares, by considering that Tgecay = TriseTratio Where
Tratio 1S defined to be greater than 1, typically by using
a uniform prior with the limits 7yatio = [1,100]. The
rise time can vary significantly for different events but a
range of Tyise = [0.1, 50] minutes was found to be suitable
for those in this paper. Flare amplitude can also vary
significantly but our normalisation of the time series en-
sures a range of Ay = [0,1.5] is sufficient. Here, values
above 1 are permitted for estimation of uncertainties
when Ay ~ 1. (Similarly, in some cases the background
trend may be very close to 0 and so a suitable prior for
background parameters is [—0.1,1].) For models with a
single flare the prior ¢; = [min (¢) , max (¢)] may be used
but for cases with multiple flares more specific estimates
preserve the order of the flares and so avoid degeneracy.

Davenport et al. (2014) studied the temporal mor-
phology of thousands of white-light flares on the M dwarf
star GJ 1243 (KIC 9726699) and found the decay phase
is best described using two exponential regimes. These
two decay profiles describe impulsive and gradual cool-
ing phases associated with blackbody and red contin-
uum emission, respectively (Kowalski et al. 2013). In
our models the spline component is capable of describ-
ing slower variations in the background, but we can also
explicitly include a second decay phase in our model as
required, with the form

Apexp((t —tf)/Trise) T <1y
Yr (t) =4 Afexp (—(t — tf)/Tdecay) ty <t <t
AQGXp(—(t—tQ)/TQ) t >ty

(2)
where the amplitude A = Ay exp (—(t2 — t7)/Tdecay) at
the start of the second decay phase to, after which the
decay time is 75, which is defined to be greater than 7yige,
as with Tqecay-

We consider two main forms for the sinusoidal function
describing the QPP, and a generalised model which can
reduce to either case. The first (Type O; oscillatory) is
the common form

yo = Asin (wt), (3)

Gaussian flare profile, Type O QPP, Linear envelope
T T T T

60F

50

40F-

flux

30F

0 3
time (mins)

Exponential flare profile, Type P QPP, Cosine envelope
T T T T

60F

flux

time (mins)

Two decay phase flare profile, Type G QPP, Spline envelope
T T T T 3

60F

flux

time (mins)

Figure 1. Examples of light curve models featuring a flare
and QPP. The light curve (green line) is comprised of a back-
ground (solid blue line) and a QPP modelled as an oscillation
with a finite duration. The QPP component is shown sepa-
rately as a solid red line, with the dashed red line represent-
ing zero perturbation (shifted for visibility). The thin black
line represents the envelope of the QPP. The background
consists of a flare (dotted blue line) and a spline component
(dashed blue line). Type O, Type P, and Type G QPPs are
distinguished based on how they contribute to the total flux,
as described by Equations (3) — (5), respectively.

with amplitude A, period of oscillation P, frequency w =
27/ P, and start time to, with t =t —tg. The second
form (Type P; positive) is

yp = A [1 — cos (wi)], (4)

which defines the oscillatory perturbations to be strictly
positive. The second form is related to the square of
the first form via the identity 2sin?z = 1 — cos (2x)
but the version given in Equation (4) retains the same
definition of the amplitude and period of oscillation as
Equation (3). This is convenient for parameter estima-
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tion since the same values may be used for both models.
We note that we model the periodicity associated with
the observed signal which is not necessarily the period-
icity of the underlying physical mechanism since it also
depends on how the observed emission is generated.

We can also consider a general (Type G) form for the
oscillation

ya = 2Asin (wt/2) cos (wt/2 — ¢), (5)

with a phase shift ¢ = [0,7/2], where lower and upper
limits correspond to Type O and Type P oscillations, re-
spectively. Alternatively, we can characterise the asym-
metry of the QPP in terms of the positive fraction

Fp =05(1+sing), (6)

with limits of 0.5 (Type O) and 1 (Type P). A compar-
ison of models for Types O, P, and G allows us to test
for and potentially quantify any asymmetry in the oscil-
lation. The asymmetry of the oscillation may be related
to the mechanism which generates the observational sig-
nal. For a particular mechanism this could be modelled
directly. We note however that these functions do not
describe any distortion to the sinusoidal profile which
might also arise for a nonlinear relationship between the
physical perturbation and the observed emission.

For the oscillations described above the start time ¢g is
a time for which the sinusoidal function is zero. The lo-
calisation of the QPP in time is described by the chosen
form of the amplitude modulation. A common choice is
a decay profile of the form exp (—f"/m'”) with a decay
time 7 and exponent n. Exponential and Gaussian decay
profiles are given by n = 1 and 2, respectively. An ex-
ponential profile or half-Gaussian profile, each nonzero
for ¢ > 0, describe monotonic amplitude modulation but
without a defined end time. Asin Pugh et al. (2016), we
can also consider a full Gaussian profile to describe non-
monotonic amplitude modulation, in which case there
is also no defined start time and ¢y corresponds to the
time of maximum amplitude.

However, our main focus is on models which describe
QPPs as having an explicit end time rather than, or
in addition to, harmonic oscillations defined on an in-
finite or semi-infinite interval. The detection of a well-
defined end time can assist in the identification of the
QPP mechanism or interpretation of the the signal du-
ration. For example, in the case of quasi-periodic wave
trains generated by an impulsive perturbation of an in-
homogeneous plasma the duration of the wave train is
determined by dispersion (e.g. Roberts et al. 1983), with
a characteristic ‘tadpole’ signature generated by pertur-
bations that are sufficiently localised in space and time
(e.g. Nakariakov et al. 2004, 2005; Goddard et al. 2019).

We consider several oscillation envelopes which have
explicit start and end times. The amplitude of each of
the envelopes is defined as 1 at the start time t¢g, and 0
at the end time ¢1. A finite lifetime for the QPP also has
the practical benefit of providing a finite time for which
any period modulation also needs to be considered. In
contrast, for an exponential damping profile the QPP
would continue to exist indefinitely with a vanishingly
small amplitude unconstrained by the data (which is
often quite noisy) and so any period modulation would
also be unconstrained. This is a key issue since accurate
detection of amplitude and period modulation in QPPs
is essential to identifying the mechanism responsible.

Oscillation envelopes considered in this work are; a
linear decrease

F(t)=1+(t—to)/ (o — t1) 7)
a cosine function (quarter of a cycle from 1 to 0)

F (t) = cos (0.5m (t —to) / (t1 — to)), (8)
and a spline envelope

F (t) = spline ([to, t;, t1], [1,¥:,0],t) . 9)

The spline envelope starts at 1 and ends at 0 with one
or more points (¢;,y;) in between which are free param-
eters of the model. The linear and cosine envelopes are
monotonically decreasing by definition, whereas for the
spline envelope the priors for the interpolation points
y; can include values greater than 1 which allows this
envelope to describe non-monotonic amplitude modu-
lation. Examples of these three envelopes are shown in
Figure 1. The linear, cosine, and spline envelopes shown
are qualitatively similar to exponential, half-Gaussian,
and full Gaussian decay profiles, respectively, but having
explicit start and end times rather than being defined
on a semi-infinite or infinite interval.

3. RESULTS

We demonstrate our method by applying it to sev-
eral QPPs observed during white light stellar flares by
the Kepler space telescope and compare our results to
previous analysis. The observational data are the simple
aperture photometry (SAP) light curves. The statistical
study by Pugh et al. (2016) demonstrates that the QPP
properties are not correlated with the emission ampli-
tude so for convenience we normalise each of our light
curves to the range [0,1]. The dates and normalisation
fluxes for our observational data are noted in Table 2.
We compare our models to the observational data using
a version of the Solar Bayesian Analysis Toolkit (So-
BAT; Pascoe et al. 2017a; Anfinogentov et al. 2020) for



6 PASCOE ET AL.

Markov chain Monte Carlo (MCMC) sampling. Our cal-
culations are based on 2 x 106 MCMC samples for each
model, with a burn-in stage of 10° samples, which is
found to be sufficient for the problems in this paper.
The burn-in stage ensures our parameter results are in-
dependent from their initial estimates and that the main
sampling begins in a region of the parameter space with
high probabilities. Model parameters use uniform prior
probability density functions, except where stated that
results from previous analysis by Pugh et al. (2016) are
used to define a normal prior. By definition Fp must
be in the interval [0.5,1] but for other model parame-
ters estimates are used to define the limits, which are
checked using the posterior probability density function
to ensure they are not unreasonably restricting the pa-
rameter values. Prior limits are also used to avoid un-
necessary degeneracy in models, for example in a model
with multiple flares their times are restricted so as to
preserve the order in which they occur.

SoBAT generates samples using the Metropolis-
Hastings algorithm (Metropolis et al. 1953; Hastings
1970) with the multivariate normal distribution used
as the proposal distribution. The covariance matrix is
automatically tuned to keep the acceptance rate in the
range of 10 — 50% during sampling, to ensure efficient
sampling of the high-dimensional parameter space. If
the acceptance rate becomes too high or too low the step
size is retuned and the chain is restarted. We assume
that the error in our data is normally distributed with a
standard deviation of o,, which is considered as an ad-
ditional free parameter in our models. In this paper we
consider models with 6 — 27 free parameters which the
SOBAT code is well suited to consider. For problems
with a far greater number of free parameters alternative
MCMC strategies can be used (e.g. Haario et al. 2004).

3.1. KIC 2852961

In their analysis of this QPP, Pugh et al. (2016) calcu-
late an adjusted flux by subtracting a smoothed version
of the time series. This method can generate spurious
results when applied to a rapidly changing signal, such
as the rising phase of a flare. This problem is avoided
in Pugh et al. (2016) by only considering the decaying
phase of the signal and cropping the time series accord-
ingly. Here we first consider a similarly cropped time se-
ries but model the background simultaneously with the
QPP rather than detrending. In this case, the general
background component (a spline with 5 interpolation
points) is found to be sufficient to describe the slight
rise and subsequent decay of the flux, so here we do not
include a flare component such as Equation (1) which
includes a large, rapid rise phase.

Pugh et al. (2016) take the time of maximum flux to
be the start time for their adjusted flux (with times
before this considered to be negative). However, it is
evident in the top left panel of their Figure Bl that
the QPP likely starts before this time, in which case
their first zero of the sinusoidal oscillation might actu-
ally be closer to a maximum. (This also means their
QPP oscillation has an initially negative perturbation.)
Their fitting method estimates the period of the QPP as
P = 67+ 1 minutes and a decay time of 7 = 27 + 2 min-
utes, with a Gaussian decay profile found to be bet-
ter than an exponential one. In general the Gaus-
sian profile of Pugh et al. (2016) includes the increas-
ing phase as well as the decreasing phase, with the time
of maximum amplitude determined by their parameter
B = 35+ 2 minutes 2. In Figure B1 of Pugh et al.
(2016) the fitted damping profile appears to significantly
underestimate the maximum at ~ 100 minutes, suggest-
ing a Gaussian profile eventually becomes too strong,
though the behaviour for the first few extrema justifies
its choice over an exponential decay profile.

Results of our analysis are shown in Figure 2. Here
our time series starts and ends at approximately the
same times as that shown in Figure Bl of Pugh et al.
(2016). However, each of our models is applied to the
full time series shown, whereas in Pugh et al. (2016)
only the time after peak flux (here ~ 55 minutes) was
considered. In the top panels we first consider a model
with no QPP component, i.e. just a spline background
using five interpolation points. The total number of pa-
rameters in this model is therefore n,, = 6 including the
observational noise o,.

The significance of an oscillatory QPP in a time series
can be quantified by comparing the Bayesian evidence
for the model which includes the oscillation to a model
without the oscillation but otherwise the same. How-
ever, this relies on the Bayesian analysis for the model
with a QPP having already been done. We can con-
sider the problem of identifying the need for a QPP
from a model containing only the background compo-
nents. From the posterior predictive distribution (PPD)
for our model without a QPP (top right panel of Fig-
ure 2) it can be seen that the data points which ex-
ceed the 1-0 confidence level do so in a manner which
is consecutive, oscillatory, and mainly during the first
part of the signal. This is consistent with there being
a localised oscillatory feature missing from the model.
The PPD histograms in this paper are based on nor-
mally distributed noise, with the level of the noise o,
being an additional free parameter of the model. We
expect for a reasonable model that approximately 68%
of the data points should fall within the 1-o region and
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Figure 2. Model for the decay phase of KIC 2852961 without a QPP (top panels) and for our strongest QPP model (bottom
panels). The middle panels correspond to a Gaussian decay profile similar to that considered by Pugh et al. (2016). The left
panel shows the model fit based on the maximum a posteriori probability (MAP) parameters, with line styles as described in
Figure 1 (as for other figures). n, is the number of free parameters in the applied model. The right panel shows the posterior
predictive distribution (PPD) with contours corresponding to one-sigma, two-sigma, and three-sigma confidence levels. o, is
the estimated level of noise in the data when described by the corresponding model.

those which lie outside it should be distributed through-
out the time series in an unbiased manner. The lack
of a QPP in the model means the level of the noise
is overestimated to attempt to account for the system-
atic error from the oscillatory behaviour. We can per-
form quantitative tests to check our assumption that
the model residuals x are normally distributed. Fig-
ure 3 shows the one-sample Kolmogorov-Smirnov tests
for the models shown in Figure 2. This test is based
on the maximum absolute distance (located by the dot-
ted line and highlighted in red) between the cumulative
distribution function (CDF) for the proposed distribu-
tion (here a normal distribution) and the empirical cu-
mulative distribution function (ECDF) for the model

residuals based on the maximum a posteriori probabil-
ity (MAP) values for model parameters. We also calcu-
late the one-sample Anderson-Darling test, which con-
siders the difference over the entire CDF rather than just
the maximum difference. Our Kolmogorov-Smirnov and
Anderson-Darling tests use ;1 = 0 and o,, as estimated
from our MCMC sampling to calculate the CDF. We
also apply the Lilliefors test for normality which uses a
mean and standard deviation calculated from the resid-
uals themselves. This tests if the residuals are described
by some normal distribution even if not the specific dis-
tribution N (u = 0,0721) that our MCMC sampling es-
timates. Using critical values based on a significance
value of @ = 0.05 we find that the model without a
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Figure 3. One-sample Kolmogorov-Smirnov tests for the
models shown in Figure 2. For a significance value of a@ =
0.05 the model with no QPP (top) fails the test for normality
while the models with QPPs with Gaussian (middle) and
spline (bottom) envelopes both pass.

QPP fails all three of these normality tests whereas the
models with a QPP pass all three. We note that model
residuals might also fail normality tests in the case of a
different noise distribution, such as a Poisson distribu-
tion for very low flux measurements, though this is not
the case for the observations in this paper.

The above tests are therefore useful in identifying a
weak model which can be improved, but we will focus
on the use of Bayes factors to quantitatively compare
detailed models for the purpose of characterising the
QPPs. A strength of the Bayes factor is that it con-
siders the model behaviour over the entire parameter
space rather than tests which only make use of a single
point (e.g. the MAP values) such as the three mentioned
above and others such as BIC. Furthermore, Bayes fac-
tors are suitable for comparison of non-nested models,

for example our comparison of different QPP envelopes,
and Type O versus Type P QPP models.

We applied different QPP models for the different
properties described in Section 2. The middle panels of
Figure 2 show results for a Type O QPP with a Gaus-
sian decay profile, similar to that used by Pugh et al.
(2016) except here the analysed time series extends ear-
lier than the time of peak flux (= 55 minutes). As in
the previous analysis, we find that the imposition of the
Gaussian profile underestimates the peak at ~ 160 min-
utes due to the constraint that the oscillation appears to
end shortly after this time which requires a short decay
time.

The bottom panels of Figure 2 show the results for
our model which best describes the time series (based
on Bayes factors discussed below), which is a Type G
QPP (Fp =~ 0.8) with spline envelope and constant pe-
riod of oscillation. This model has explicit start and end
times and so the localisation of the QPP in time does
not depend on the shape of the amplitude modulation
alone, as is the case for the Gaussian decay profile for
which the localisation is implied through the decay time.
This allows us to characterise the amplitude modulation
independently of the localisation in time by consider-
ing different envelopes, such as the additional examples
shown in Figure 4 and summarised in Table 1.

The Gaussian and spline models discussed above each
provide a good description of the oscillatory behaviour in
the light curve and the results are qualitatively similar.
Both models pass all three normality tests for residu-
als whereas the model without a QPP failed all three.
The sums of the absolute values of the residuals are also
nearly identical, so these tests based on the MAP pa-
rameters do not allow us to differentiate the models.
The Bayes factor (Jeffreys 1961) provides more robust
model comparison by taking the entire parameter space
into account. The Bayes factor comparing model i with
model j is

Kij = 2111B1'j (10)

where B;; is the ratio of Bayesian evidence for model i to
model j. The Bayes factor for the spline envelope model
compared with the Gaussian decay model is Kgg = 19.
The value being greater than 10 indicates very strong
evidence (e.g. Kass & Raftery 1995) in favour of the
model with a spline envelope. We can consider this
as a measure of our confidence in the QPP having a
finite duration since it compares our strongest model
with explicit start and end times to our strongest model
without these. On the other hand, the Gaussian decay
model outperforms models with cosine (Kgc > 40) and
linear (Kgr > 69) envelopes, indicating that the non-
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Figure 4. Models for KIC 2852961 with Type O (left) and Type P (right) QPPs, with linear (top), cosine (middle), and spline

(bottom) envelopes.

monotonic amplitude modulation is a much stronger fea-
ture of the QPP than the finite duration.

In Table 1, the Bayes factor Kqo compares each model
to that with no QPP (top panels of Figure 2) and as ex-
pected all of them greatly exceed the threshold for very
strong evidence. The Bayesian evidence favours Type
O QPPs over Type P for both the linear and cosine
envelopes, but favours Type P when using the spline
envelope. The Bayes factor for the Type P spline com-
pared to the Type O spline is Kpo = 24, indicating
very strong evidence. These results demonstrate the im-
portance of accurately modelling the amplitude modula-
tion since the evidence for a Type P QPP only becomes
apparent when allowing the non-monotonic amplitude
modulation. This is due to the large amplitude of the
second peak which cannot be accounted for by either
the linear or cosine envelopes which are monotonically

decreasing. However, for Type O models there is flex-
ibility to adapt to this by shifting the location of the
equilibrium, whereas for Type P models the equilibrium
is effectively constrained to follow the local minima of
the flux since the perturbations are defined to be posi-
tive only. When the spline envelope is used and the am-
plitude modulation is permitted to be non-monotonic
the constraint on the background trend no longer dis-
advantages the Type P QPP model and it provides the
best description of the light curve. This behaviour is
also seen in the results for the Type G models, with the
positive fraction being Fp ~ 0.5 for linear and cosine
envelopes, but being well constrained with Fp ~ 0.8 for
a spline envelope.

We also see how the asymmetry of the QPP affects the
estimate for the start time, with Type P models having
an earlier start time in accordance with the longer time
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Type Envelope to (min) ¢; (min) PFPp (min) Pi (min) Ao Aq Fr Kqo
0 Linear 415173 223118 550107 ~ 0207592 - 0.5 361
Cosine 411103 211t 554100 — 01700 - 0.5 390
Spline 40.0713 1817 56.3173 —0.0970:0% 1.9707 0.5 418
Spline 4017358 18272 563730 563115 0.097008  1.8752 0.5 414
P Linear 303716 228720  53.5t13 ~ 016109 - 1 255
Cosine  20.871%  217+10  538%1] ~ 0141992 - 1 310
Spline 26215 18375 562110 0.047005, 4.5797 1 442
Spline 282755 18375  m2.7tYY 564ty 0.057005 3.3%0 1 442
G Linear 414710 222711 55177 ~ 020159 — 0501008 355
Cosine  40.8712 21379, 554799 — 01759 ~ 051704 385
Spline 342723 1842 56.01L2 —0.061007 2.7Tyd 0.827017 449
Spline 35.215:2 18277 52.8%%%  56.6111 0071593 25t0L 0.847002 447

Table 1. Models for KIC 2852961 (cropped time series). Posterior summaries correspond to the MAP value and 95% confidence
interval. Pp is the constant or initial period of oscillation. P; is the final period of oscillation for models with a linear variation.
Ap is the initial amplitude of the envelope. A; is the additional free parameter for the spline envelope, corresponding to the
amplitude at the centre of the envelope relative to the initial amplitude. Fp is the positive fraction given by Equation (6). Kqo
is the Bayes factor for each model compared with the model without a QPP.

required to reach the first maximum. This difference
is approximately a quarter of the period of oscillation.
The period of oscillation is approximately 56 minutes
compared to 67 + 1 found by Pugh et al. (2016) though
this difference can be accounted for by the different in-
terpretation of the start time of the QPP. The associ-
ated uncertainty is slightly smaller in our method with
op =~ 0.5 minutes.

We examine if the QPP has a varying period of os-
cillation by considering models with a linear variation
from Py to P; at the start ({9p) and end (¢1) times, re-
spectively, i.e.

(Po— P1)

P(t):P0+(t—to)m

to<t<t;. (11)

The results in Table 1 show that for models with a vary-
ing period the credible intervals significantly increase
compared to those for a constant period, indicating poor
constraint of the parameters by the data. The Bayes fac-
tor for the equivalent non-stationary model compared to
the strongest stationary model is Kygs = 1.9. The value
is positive, i.e. in favour of a varying period, but the
magnitude is less than 2 which is the minimum thresh-
old to be considered “positive” rather than “not worth
more than a bare mention” (Kass & Raftery 1995).

To summarise (see Table 2) we find the evidence for
the QPP is conclusive and the strongest model is a Type
G oscillation with finite duration, non-monotonic ampli-
tude modulation, and a constant period of oscillation.

Our conclusion of a constant period of oscillation
applies to the time series used in this section which
is cropped around the decay phase of the flare as in
Pugh et al. (2016). Next we consider an extended time
series for the same event and find evidence for a decreas-
ing period. However, we stress that this is not due to
our method itself being sensitive to the choice of start
and end times (as can be the case with Fourier/wavelet
analysis). Instead, extending the time series presents
an additional local maximum (at =~ 300 minutes in Fig-
ure 5) which we model as also being part of the QPP.
This additional oscillation cycle has a longer periodicity
than the subsequent ones and so the QPP model bet-
ter describes the data when using a varying period of
oscillation.

Figure 5 shows the same event with the time series
extended on both sides of the QPP to include the rise
phase of the flaring emission. This demonstrates the in-
clusion of the flare component(s) of our model. There
appear to be three flares during the extended time series
which we model with exponential rise and decay phases.
We assume that the rise and decay times are the same for
each flare. To avoid degeneracy, the priors for the times
of the flares are defined by the non-overlapping inter-
vals [125,140], [275, 300], and [755, 780] minutes. There
appear to be significant deviations from an exponen-
tial decay, seen most clearly during the decay phase of
the third flare (~ 1000 minutes). This behaviour does
not resemble two exponential decay phases either, and
appears to be approximately linear. Our spline back-
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Figure 5. Analysis of KIC 2852961 using an extended time series featuring multiple flares. The top left panel shows the
PPD for a model without a QPP. The right panels show the MAP components of models with Type O (top) and Type P
(bottom) QPPs. The bottom left panel shows wavelet analysis for the detrended light curve. The green line shows the signal
after detrending with the background from the Type P QPP model (shifted for visibility). The colour contour represents the
normalised wavelet power and the hatched region is the cone of influence. The dashed line shows the modelled period variation

(MAP values).

ground component (dashed blue line) is able to describe
this behaviour without the need to modify the form of
the flare component.

The right panels of Figure 5 show the results for Type
O (top) and Type P (bottom) QPP models. For this
extended time series, the very strong evidence for an
asymmetric QPP remains (Kpo = 809), although Type
G is no longer stronger than Type P (Kpg = 5.7). The
evidence for a (linearly) varying period of oscillation,
described by Equation (11), is very strong (Kyg = 96)
for this extended time series which includes the addi-
tional cycle at ~ 300 minutes. The period of oscillation
decreases by 19% over the lifetime of the QPP and the
shape of the QPP resembles an impulsively generated
quasi-periodic wave train formed by the dispersive evo-
lution of MHD waves. This is also seen in the bottom
left panel of Figure 5 which shows the wavelet analy-
sis (using the code by Torrence & Compo 1998) of the
detrended light curve with the characteristic tadpole sig-
nature (Nakariakov et al. 2004).

3.2. KIC 12156549

Figure 6 shows our time series for this event which is
again extended in comparison to Figure 1 of Pugh et al.
(2016) to show more of the background behaviour. This

highlights a smaller flare just before the main one, and a
long term background that appears to be flat (which we
model as being constant rather than using a spline back-
ground component). There are four strong peaks in the
light curve. Unlike the previous example, the difference
between peaks which should be attributed to flares and
those which are part of an oscillation is not so clear.
This suggests two alternative models; two flares with
an oscillatory QPP, or four flares without an oscillatory
QPP. The latter case could still be considered a QPP
as the repetitive triggering of flares is also a proposed
mechanism for generating quasi-periodic pulsations in
emission. Quantitatively comparing these two interpre-
tations is a non-nested model comparison problem which
Bayesian analysis is well suited to.

Results of models without an oscillatory component
are shown in Figure 6. As in the previous example,
for multiple flares we assume that the rise and decay
times are the same for each flare. For the model with
four flares, the priors for the flares times are defined
by the intervals [245,260], [310,325], [345,360], and
[395, 420] minutes (models with two flares use the first
two of these). The model with two flares is clearly insuf-
ficient and the residuals fail our three tests for normality
(see Figure 7). However, the model with four flares pro-
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Figure 6. Models for KIC 12156549 with a constant background and no QPP component; two flares (top) and four flares
(bottom), each of which is modelled using the asymmetric exponential profile in Equation (1).
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Figure 7. One-sample Kolmogorov-Smirnov tests for the
models shown in Figure 6. For a significance value of
a = 0.05 the model with two flares (top) fails the test for
normality while the model with four flares (bottom) passes.

vides a very good description of the light curve and its
residuals pass the three normality tests. The Bayes fac-
tor for four flares compared with two is K40 = 562.

Previous analysis of this event is shown in Figure 1
of Pugh et al. (2016) and was found to have a period of
44.6 £ 0.6 minutes and Gaussian profile with decay time
36 &2 minutes and B = 28 £+ 2 minutes—2. In the previ-
ous example (Section 3.1) we had a different interpreta-
tion of the start time of the oscillation and so obtained
a different period of oscillation. That is not the case
here and so we can make use of the previously reported
mean period and its standard deviation to define a nor-
mal prior for the period in our analysis. Based on the
Gaussian decay profile with B > 0 we can also expect a
spline envelope to provide the best description. Results
of models with two flares and an oscillatory component
are shown in Figures 8. For the oscillatory QPP models,
we find Type P is better than Type O (Kpo = 60), and
Type G provides no further improvement (Kpg = 0.1).
There is also strong evidence against a varying period of
oscillation (Kyg = —6.1) based on comparing a model
with a linearly varying period to one with a constant pe-
riod. However, the four flare model remains remarkably
better than the Type P model (K4p = 112).

These results demonstrate very strong evidence for a
multi-flare model over an oscillation model for this QPP
(or at least over the simple sinusoidal oscillations con-
sidered in this paper). The apparent periodic nature of
the three later flares may simply be coincidental. How-
ever, we can also consider the mechanism of the quasi-
periodic modulation of flaring emission by an MHD os-
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Figure 8. Models for KIC 12156549 with two flares and a QPP with spline envelope; Type O (top) and Type P (bottom).

cillations (Nakariakov et al. 2006). We can speculate
that the first flare generated an oscillation in a loop or
structure which then triggered periodic flaring energy
release in an associated active region. This is consistent
with the amplitude and timing of the first flare appear-
ing to be different from the three subsequent ones. The
decrease in flare amplitude in time may also be inter-
preted as each subsequent flare having less energy stored
in the flaring system to release. Oscillatory reconnection
can also generate periodic outputs, without the need for
an oscillating structure. An impulsive phase is followed
by a stationary phase resembling a damped harmonic
oscillator (McLaughlin et al. 2012). Alternatively, the
signal might be better described by a nonlinear or multi-
harmonic oscillation with cycles that are more triangu-
lar than the sinusoidal function used in this paper. In
both our analysis and previous by Pugh et al. (2016),
the main limitation of sinusoidal models appears to be
the significant underestimation of the local maximum at
~ 350 minutes.

3.3. KIC 9726699

Here we consider an example for which the strongest
QPP model is that of an exponentially damped sinu-
soid. This was selected from the examples in Pugh et al.
(2016) on the basis of their analysis supporting an ex-
ponential decay profile with a large decay time, and
we again use their estimates (P = 24.2 + 0.1 and
7 = 133 £ 33) to define our Bayesian priors.

The statistical study by Davenport et al. (2014) found
over 6100 flares in KIC 9726699 and, after suitable
rescaling in amplitude and duration, was able to fit de-
tailed models to the rise and decay phases. The rise
phase was fit by a fourth-order polynomial. The decay
phase was fit using two separate exponential profiles,
and with an improved model which smoothed out the
transition between phases. For this flare the rise time
is short and so we continue to use an exponential rise
phase, rather than a polynomial, but we include the
two exponential decay phases found by Davenport et al.
(2014), as described in Equation (2). We also have a
smooth background component that helps improve our
total background trend.

The analysis for our strongest model is shown in the
top panels of Figure 9. The background uses a spline
component based on five interpolation points and a flare
with two decay phases (we find very strong evidence
against a single decay phase K = —73). For this time
series we choose to place one interpolation point just
before the flare (at ¢ = 15 minutes). This allows the
model to better describe the short pre-flare signal than
equally separated interpolation points would allow (and
without increasing the number of points such that one
would be there when equally separated). This model
differs from Pugh et al. (2016) (see their Figure B7) in
which the QPP begins at the time of maximum flux.
We can consider an equivalent model using our method,
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Figure 9. Models for KIC 9726699 with a flare with two decay phases and an exponentially damped QPP. The top panels
represent our strongest model while the bottom panels correspond to a model for which the QPP start coincides with the peak

flux similar to that considered by Pugh et al. (2016).

shown in the bottom panels of Figure 9, though we find
very strong evidence against it (K = —32).

Aside from this different start time our results are
consistent with those of Pugh et al. (2016); we find an
exponential decay profile to be better than a Gaus-
sian (Kgg = —2.7), and no evidence of asymmetry
(Kpo = —1.2). The evidence for the oscillation is very
strong (Kqo = 38) but there is no evidence for a non-
stationary period of oscillation (Kyg = 0.1). (For an
exponential damping profile with a varying period ¢; in
Equation (11) is taken to be the end of the time series).
There is strong evidence against a finite oscillation with
a spline envelope (K = —6.0), consistent with the os-
cillation retaining a measurable amplitude until the end
of the time series and so not having a well-defined end
time. We cut our time series just before a discontinuity
in the data which may be an instrumental effect, but
even still the signal quality (7/P =~ 4.7) is significantly
higher than that observed in our examples of finite wave
trains.

3.3.1. Interpretation as standing hydrodynamic mode

In this paper our aim is to characterise QPPs by
testing different functional forms for the oscillatory be-
haviour. However, it is also desirable to consider specific
mechanisms where possible, as has been demonstrated
in the Bayesian analysis of kink oscillations in coronal
loops. A large number of mechanisms have been pro-

posed but currently there are few testable predictions
which can be used to distinguish them observationally.
For this event our method supports the interpretation in
terms of an exponentially damped sinusoid. This oscil-
latory behaviour is commonly associated with standing
modes in waveguides such as coronal loops. Since the
oscillation has a long period and modulates the plasma
emission a possible interpretation is a standing slow
MHD mode. Another possibility is a standing hydrody-
namic mode proposed by Reale (2016) and applied to os-
cillations in stellar X-ray flaring emission by Reale et al.
(2018). This interpretation is particularly interesting in
terms of forward modelling due to the potential to relate
different observational features of the data, specifically
the flare properties and the oscillation properties. The
flare decay time (in minutes) can be expressed as (e.g.
Serio et al. 1991; Reale 2007; Reale et al. 2018)

Lo

4~ 30022
var

(12)

where Lg is the flux tube radius (in units of solar radius)
and Tg is the peak flare temperature (in MK). We note
that this approximation is expected to be valid within
a factor of 2 which is sufficient for the demonstration
here but more accurate relationships, for example from
numerical parametric studies, would be useful.
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For the oscillation we consider a fundamental standing
mode with

 2Lg

Cs

P

: (13)

where ¢ is the sound speed (in units of solar radius
per minute). To apply this interpretation to the data
we use a flare profile with two decay phases, given in
Equation (2), and consider a constant background so
that the decrease in flux is quantified by the flare profile
alone. The first decay phase describes the initial de-
crease in flux and the second decay phase 7 is given
by Equation (12). The two free parameters 7o and
P in previous models have been replaced by relation-
ships between three free parameters (Lg, Tg, and c;)
in this new model. The problem is now underdeter-
mined though MCMC sampling may still be used to
consider typical values. Results are shown in Figure 10
and demonstrate that these relationships and observ-
ables alone are not sufficient to strongly constrain the
model parameters, e.g. the posterior for Tg extends to
the upper limit imposed by the assumed prior interval
[1,300] MK. This upper limit leads to a constraint on
tube length Lo < 8Rg, and the corresponding limit on
sound speed ¢; < 0.7Rg/min. Further constraints on
the model parameters could be provided through addi-
tional physical relationships or observational data, for
example in Reale et al. (2018) synthetic X-ray spectra
are calculated for the density and temperature distribu-
tions of the modelled flux tube.

3.4. KIC 618489/

In the statistical study by Pugh et al. (2016) oscilla-
tions with a Gaussian decay profile, low signal quality
(decay time ~ period), and parameter B > 0, represent-
ing the time at which the profile is maximum, would be
most consistent with a non-monotonic envelope such as
that found in Section 3.1. The clearest example of this
in their analysis is for KIC 6184894, for which the fitted
period and decay time were P = 57 + 1 minutes and
7 = 59 £ 8 minutes. We use these values to construct
our Bayesian priors where required.

The results of our analysis are shown in Figure 11 us-
ing models with a spline envelope with two free param-
eters (top panels), and a Gaussian decay profile as in
Pugh et al. (2016) (bottom panels). As in the previous
example we find very strong evidence for the flare hav-
ing two exponential decay phases (K = 163), described
by Equation (2). We find that the strong background
variation can be accurately modelled using a spline com-
ponent with four interpolation points. Our Bayes factors
support a QPP being present (Kqo = 63) with an asym-
metric oscillation favoured for both the spline envelope

(Kpo = 19) and Gaussian decay profile (Kpo = 15).
There is no evidence for a varying period of oscillation
(Kns = 0.4).

For this case, there is no improvement for the spline
envelope compared to the Gaussian decay profile models
(Ksg = —4.0) indicating the improved description of
the data is balanced by the inclusion of additional free
parameters. However, it is evident that the Gaussian
decay profile is also describing a finite wave train due
to its extremely low signal quality (7/P = 1.0) meaning
the oscillation is well localised within the time series
(in contrast to the example in Section 3.3 where the
oscillation persisted until the end of the time series).

To further consider our result that this flare exhibits
two decay phases, we can examine another flare that
occurred slightly earlier (beginning at BKJD 1409.45)
shown in Figure 12. We do not include a QPP compo-
nent in the models for this additional flare, and again
find strong evidence of a second decay phase (K = 24).

4. CONCLUSIONS

In this paper we have demonstrated the use of forward
modelling and Bayesian inference to analyse QPPs. We
have shown that it is practical and useful to model QPPs
as oscillations with a finite lifetime to facilitate accurate
measurement of their amplitude and period modulation
(e.g. Section 3.1). This can be in addition to the more
common analysis based on harmonic oscillations with a
decay profile but unspecified end time (e.g. Section 3.3).
We have also considered a non-oscillatory interpretation
of a QPP in the form of repetitive flaring (Section 3.2).

We have applied different models to examine key prop-
erties which may be used to classify QPPs and hence
assist in revealing the mechanisms responsible for gener-
ating them. In particular, we have used Bayesian model
comparison to distinguish five properties of QPPs. A
summary of our results is shown in Table 2. For KIC
12156549 our most probable model is pulsations de-
scribed by multiple flares, though we have not consid-
ered any nonlinear oscillation models which might also
describe the data better than the sinusoidal models we
tested. We generally find evidence in favour of asym-
metric oscillations (Type P/G) rather than symmetric
ones (Type O). The asymmetry of the oscillation may be
related to the emission mechanism and so be a source of
further information if specific mechanisms can be tested.
This property can be revealed by our method since
we directly model the background trend simultaneously
with the oscillation, including flares modelled with both
single and two phase decay models (Davenport et al.
2014). In Figure 12 we also demonstrate that this can
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Figure 11. Models for KIC 6184894; Type P QPPs with a spline envelope (top panels) and a Gaussian decay profile (bottom

panels).

also be useful to characterise flare emission profiles out-

side of QPP studies.

Classification of QPPs should be based on their obser-

vational properties but also linked to theoretical mod-
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decay phases (bottom panels), described by Equations (1) and (2), respectively.

Date (BKJD)
KIC Start End

Flux (e™ / sec)

Minimum Maximum Sinusoidal Duration Type

2852961 405.18  405.43 1283030 1288860
404.95  406.20 1279290 1288860

12156549 454.7 455.3 6048.44 6871.48
9726699 568.145 568.252 266668 272530
6184894 1410.7  1411.3 70288.4 71407.2

Modulation
Amplitude Period
Yes Finite G Non-monotonic Constant
Yes Finite P Non-monotonic  Decreasing

No  (Finite) (P)
Yes Indefinite O
Yes Finite P

(Non-monotonic) (Constant)
Exponential Constant

Non-monotonic Constant

Table 2. Summary of our observations and results. Dates correspond to the Kepler Barycentric Julian Day (BKJD). We
characterise the QPPs according to five properties. For KIC 2852961 we consider two time series lengths for the same event. For
KIC 12156549 the strongest model is non-sinusoidal but for comparison we include the characteristics of our strongest sinusoidal

model in parentheses.

els as much as possible. Numerous mechanisms to gen-
erate QPPs have been proposed, many of which pre-
dict similar observational behaviour. We therefore can-
not generally relate observational properties to a spe-
cific mechanism, but can reduce the possibilities by
classification based on distinct observational features.
Kupriyanova et al. (2010) discuss classification of mi-
crowave QPPs based on period modulation with cate-
gories being stable, decreasing, increasing, or multiple
(“X-shaped”). Kupriyanova et al. (2020) identify two
classes of QPP being decaying quasi-harmonic oscilla-
tions and triangular signals. They also discuss QPPs
occurring during impulsive and decay phases of flares.
However, in the case of multiple flares this difference

may be ambiguous. Nakariakov et al. (2019) also find
two possible classes of QPP to be decaying harmonic os-
cillations and trains of symmetric triangular pulsations.
Based on our results we can suggest refining this to dif-
ferentiate between pulsations which are sinusoidal wave
trains and those which are non-sinusoidal. For our ex-
amples, KIC 9726699 can be classified as a decaying har-
monic, KIC 12156549 as non-sinusoidal pulsations, and
the other examples as sinusoidal wave trains. This differ-
ence may also be associated with potential mechanisms.
For example, numerical simulations have demonstrated
the formation of quasi-periodic wave trains by structures
such as current sheets, coronal loops, magnetic funnels,
and coronal holes (e.g. Jelinek et al. 2012; Nistico et al.
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2014; Pascoe et al. 2013b, 2014, respectively). Dis-
persion inhibits steepening for wave trains trapped in
waveguides whereas leaky components can form wave
trains with nonlinear steepening (Pascoe et al. 2017c¢).
The disadvantage of the method we have presented is
that forward modelling is typically much more computa-
tionally expensive than techniques such as Fourier and
wavelet analysis. MCMC sampling used in our Bayesian
analysis is also more computationally expensive than
least squares fitting although it is also more robust when
model parameters are poorly constrained by data, in ad-
dition to allowing quantitative model comparison using
the Bayesian evidence. Also, some degree of user inter-
pretation is required to choose the appropriate models
to consider, for example the number of flares. However,
other methods can also require user input such as choos-
ing appropriate start and end times for the time series.

The advantages of the method presented include: ro-
bust model comparison; accurate measurement of ampli-
tude and period modulation; the ability to consider any
asymmetry in an oscillation; modelling of flares simul-
taneously with QPPs; and no constraint on time series
length. Another advantage is that models can easily be
updated to incorporate additional details revealed by
future studies on QPP mechanisms.
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zon 2020 research and innovation programme (grant
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pler mission is provided by the NASA Science Mission
directorate.
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