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Abstract: The first report on a novel and efficient synthesis of benzyl-methoxy protected aspalathin 

derivative has been described via C-glucosylation of pentamethoxy dihydropropane. The synthesized 

compound was characterized by 1H, 13C NMR, COSY, and HSQC techniques. 
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1. Introduction 

Glycoside is a molecule that contains a sugar moiety attached to another moiety through 

a glycosidic bond via its anomeric (C-1') carbon. The sugar moiety is known as glycone and 

another moiety as the glycone part of the glycoside. Glycosides can be linked via oxygen- (an 

O-glycoside), nitrogen- (a glycosylamine), sulfur- (a thioglycoside), or carbon- (a C-glycoside) 

glycosidic bond. Glycosides show important biological functions. As polymers, they are an 

important store of energy in plants that serve as food sources for animals and humans. 

Oligomeric glycosides on mammalian cell surfaces play an important role in the immune 

system. The glycone moiety usually renders the glycoside more water-soluble. Thus, 

glycosylation makes metabolite toxins and other unwanted secondary metabolites in mammals 

water-soluble for excretion by the kidneys. Many secondary metabolites in plants are 

glycosides. Some of these are toxins that protect the plant against herbivores. Plethoras of other 

activities in mammalian and human biology has been demonstrated [1-8]. Flavonoids normally 

accumulate in plants as O-glycosylated derivatives. However, several species, including major 

cereal crops, predominantly synthesize flavone C-glycosides. These are stable to hydrolysis 

and are biologically active both in plants and mammals. Activities ascribed to these plant 

secondary metabolites include them functioning as antioxidants [9-10], insect feeding 

attractants [11], antimicrobial agents [12], promoters of mycorrhizal symbioses [13], and UV-

protective pigments [14]. 
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2. Materials and Methods 

 Aspalathin (1a) (Figure 1) (3'-β-D-glucopyranosyl-2', 3, 4, 4’, 6’-

pentahydroxydihydrochalcone) is a dihydrochalcone C-glucopyranoside. It was first 

characterized by Koeppen [15] and co-workers in 1965. Notably is the β-stereochemistry at the 

anomeric carbon. It occurs exclusively in leaves of Aspalathus linearis (rooibos) where it is 

the major component. It has recently received considerable interest due to its plasma sugar 

lowering properties [16-17]. Nothofagen (1b) (3'-β-D-glucopyranosyl-2', 4, 4’, 6’-

tetrahydroxydihydrochalcone) differs from aspalathin in the absence of the 3-hydroxy on the 

A-ring. It occurs in a much lower concentration in rooibos. 
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Figure 1. Structures of aspalathin (1a) and nothifagen (1b). 
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Scheme 1. Synthesis of diarylpropane (5) and C-diarylpropane-glycoside (7). 

The isolation of naturally occurring C-aryl glycosides with important pharmacological 

properties [18-23] has prompted synthetic methods that are also relevant to the synthesis of 
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aspalathin and analogs. The C-glycosidic bond confers stability to O-glycosides to both 

enzymatic and chemical hydrolysis and, thus, probably contributes to enhanced bioavailability. 

However, it is much more difficult to form a carbon-carbon bond than an ether bond, and C-

glycoside synthesis has remained a challenge. The regio-and stereoselective requirements of 

the C-aryl linkage are the additional complications. 

In continuation of our previous work on the synthesis of some bioactive heterocyclic 

compounds [24-27], in the present work, we report synthesis and characterization of benzyl-

methoxyl protected aspalathin analog via C-glucosylation of pentamethoxy dihydropropane 

(Scheme 1). 

Table 1. High-pressure hydrogenation of fully OMe protected chalcone. 

Substrate 

 

Hydrogen 

Pressure  (Bar/PSi) 

10% Pd/C 

(Equivalent) 

Solvents 

(EtOAc/MeOH (Ratio) 

Time (h) Yield (%) 

 

4 30/435 (0.1) (50:50) 24 (100) 

4 R.T. Using H2, Balloon (0.2) EtOAc/H2O/Dil, HCl Overnight 99% 

Table 2. Synthesis of (7) via C-glycosylation of diarylpropane (5). 

Entry  Sugar 

donor 

Catalyst (equivalents) Solvent Temperature 

(oC) 

Time 

(h) 

Yield 

(%) 

1 6 BF3OEt2 (2) DCM 0 14 14 

2 Sugar-1# TMSOTf (2) DCM -10 8 23 

3 Sugar-2# BF3OEt2 (2) DCM -20 6 42 

4 Sugar-3# SnCl4 (2) DCM 0 7 30 

5 6 TFAA* (3) BF3OEt2 (2) DCM -12 6 59 

6 6 TFAA* (3) BF3OEt2 (2) CH3CN -12 3 92 

* Preactivation with TFAA was essential for the coupling reaction to take place. 
#Sugar-1: 2, 3, 4, 6-tetra-O-benzylglucosyl acetate, Sugar-2: 2, 3, 4, 6-tetra-O-benzylglucosyl acetamide, Sugar-

3: 2, 3, 4, 6-tetra-O-benzyl-glycopyranosyl fluoride. 

C-aryl glycosylation has been reviewed by Palmacci [28] and Seeberger [29]. The 

substituents may influence glycosidic bond formation's regioselectivity on the aromatic ring 

and the reaction conditions such as the temperature and pressure employed. C-aryl glycosidic 

bond formation's stereoselectivity was influenced by the structure of carbohydrate moiety, e.g., 

neighboring group effects, anomeric effects, and synthetic conditions such as the choice of 

catalysts and solvents. 

3. Results and Discussion 

The methoxy-protected chalcone (4) was obtained in quantitative yields. High-pressure 

catalytic hydrogenative reduction of (4) gave the corresponding 1, 3-diarylpropane (5) 

quantitatively (Scheme 1) (Table 1). Salient in the NMR of (5) is the following: The absence 

of the two chalcone proton resonances in the 1H NMR spectrum [Hα (d, 7.25 ppm, J = 15.5 Hz) 

and Hβ (d, 6.88 ppm, J = 15.5 Hz) for corresponding chalcone, and the absence of the carbonyl 

resonance (δ = 196) in the 13C NMR; The three propane CH2 groups are represented in the 1H 

NMR at 2.58 ppm (two overlapping benzylic CH2 groups that integrate four hydrogen atoms) 

and 1.77 ppm (a multiplet that integrates two hydrogen atoms). They correspond to two cross-

peaks at 35.5 and 31.1 ppm in the HSQC; The 1,3-diarylpropane-C-glycoside (7) was 

subsequently obtained in almost quantitative isolated yield (92%, Entry 6, Table 2) from (6) 

via the trifluoroacetic anhydride (TFAA) method described under approach 1 (preactivation of 

the anomeric OH with TFAA) (Scheme 1); The glycosyl fluoride and BF3OEt2 gave (7) in a 

yield of only 42% (Entry 3, Table 2). The C-diarylpropane-glycoside (7) was characterized by 

the following observations: 
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a) It has complex 1H and 13C NMR spectra at room temperature due to the expected 

rotational isomerism about the glycosidic carbon-carbon bond. Heating of the 

sample to 140oC in DMSO-d6 was required for NMR elucidation. 

b) The anomeric proton resonates at 4.73 ppm in the 1H and its corresponding C at 

74.2 ppm in the 13C NMR spectra. These correspond with a carbon-carbon and not 

carbon-oxygen bond.  

The J = 9.8 Hz coupling constant agrees with the required β-stereochemistry on the 

anomeric carbon.  

An edited two-dimensional HSQC experiment; (CH and CH3 cross-peaks having a 

different color from CH2 cross-peaks) allows facile differentiation between the benzylic 

protons (CH2) of the benzyl protection groups and the anomeric sugar proton (CH), all of which 

resonate in the range of δ 4.00-5.20 ppm.  

We thus proved our hypothesis that the carbonyl group in chalcone or the 

phloroacetophenone moiety prevents C-glycosylation. Initial efforts to regenerate the carbonyl 

group via oxidation of (7) with Dess-Martin reagent, IBX (o-iodoxybenzoic acid), CAN (ceric 

ammonium nitrate), pyridine-dichromate, Na2Cr2O7, and DDQ (dichlorodicyanoquinone) 

under anhydrous conditions failed. Upon further literature search and model reactions (Table 

3) with the diarylpropane (5), we realized that the presence of water as a source of oxygen is 

essential for this oxidation. Upon treatment of (5) with DDQ in the presence of H2O (1.5 

equivalent), the corresponding dihydrochalcone (4) was obtained quantitatively at room 

temperature (Scheme 2). Compared to other oxidative conditions, it is mild with water as the 

oxygen source. 
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(5) (4)

Oxidation

 
Scheme 2. Benzylic oxidation of the diarylpropane (5). 

 

 

Scheme 3. Optimized synthesis of methyl-benzyl-protected aspalathin (8) via benzylic oxidation of (7). 

Table 3. Oxidation condition for the synthesis of (5) at room temperature. 

Entry Oxidant Solvents  (2:1) Time (h) Yield (%) 

1 IBX Acetone* 14 0 

2 Des-Martin DCM* 8 0 

3 CAN DCM* 6 0 

4 Pyridine-dichromate DCM* 7 0 

5 Na2Cr2O7 DCM* 6 0 

6 DDQ DCM/Dioxane* 3 0 

7 IBX DCM# 14 14 

8 Des-Martin DCM# 8 23 

9 CAN DCM# 6 33 

10 pyridine-dichromate DCM# 7 30 

11 Na2Cr2O7 DCM# 6 59 

12 DDQ DCM/Dioxane# 3 92 

* Anhydrous solvents were used in reactions 
         #     1.5 equivalent of H2O was present in the reaction solvents 
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Table 4. Optimized oxidation conditions for the synthesis of C-dihydrochalcone glycoside (7). 

Entry Oxidant  (Eq) Solvents     (2:1) Temp. (oC) Time (h) Yield % 

1 DDQ (4) DCM/Dioxane# r.t. 2 44 

2 DDQ (4) DCM/Dioxane# 0 12 81 
       #       1.5 equivalent of H2O was present in the reaction solvents 

The same treatment of (7) with DDQ at room temperature under the conditions 

optimized for (5) yielded the expected dihydrochalcone-C-glycoside (8) in a 44% yield. Upon 

lowering the reaction temperature to 0 oC, the reaction proceeded slower but produced a higher 

yield (81%) (Scheme 3, Table 4). We attributed this to the partial removal of the aliphatic 

benzyl protection groups on the sugar moiety with DDQ at room temperature. The NMR of (8) 

also required elevated temperature (140 oC) to remove rotational isomerism and simplify 

interpretation. Notable are the following: The carbonyl resonance at δ 198.4 in the 13C NMR 

spectrum; Two multiplets at δ 3.05 and 2.93 in the 1H NMR. These CH2 resonances correlate 

with the carbon resonances at δ 38.8 and 19.7 ppm, respectively, in an edited HSQC 

experiment. The two multiplets also cross-couple to each other in the COSY spectrum. They 

represent the dihydrochalcone's CH2-CH2 moiety; the anomeric proton of the sugar moiety 

resonates as a doublet at δ 4.73 ppm that correlates with the anomeric carbon at δ 73.6 ppm in 

the edited HSQC. The J = 9.8 Hz coupling constant indicates β-stereochemistry for the C-

glycosidic bond; The four benzylic CH2 resonances in the δ 4.55 to 4.90 ppm range of the 1H 

NMR spectrum indicate that the four benzyl groups on the sugar moiety remained intact (stable 

to the oxidation conditions); The same treatment of (7) with DDQ at room temperature under 

the conditions optimized for (5) yielded the expected dihydrochalcone-C-glycoside (8) in a 

44% yield. Upon lowering the reaction temperature to 0 oC, the reaction proceeded slower but 

produced a higher yield (81%) (Scheme 3, Table 4). We attributed this to the partial removal 

of the aliphatic benzyl protection groups on the sugar moiety with DDQ at room temperature. 

4. Conclusions 

 Thus the present protocol represents the first synthesis of methyl-benzyl-protected 

aspalathin analog (8). However, attempts to deprotect the analog (8) using BBr3 could not lead 

to the successful synthesis of aspalathin. Efforts for demethylation by using the excess of BBr3 

lead to a breakdown of sugar moieties and decomposition.  
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