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Abstract: The first report on a novel and efficient synthesis of benzyl-methoxy protected aspalathin
derivative has been described via C-glucosylation of pentamethoxy dihydropropane. The synthesized
compound was characterized by *H, **C NMR, COSY, and HSQC techniques.
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1. Introduction

Glycoside is a molecule that contains a sugar moiety attached to another moiety through
a glycosidic bond via its anomeric (C-1') carbon. The sugar moiety is known as glycone and
another moiety as the glycone part of the glycoside. Glycosides can be linked via oxygen- (an
O-glycoside), nitrogen- (a glycosylamine), sulfur- (a thioglycoside), or carbon- (a C-glycoside)
glycosidic bond. Glycosides show important biological functions. As polymers, they are an
important store of energy in plants that serve as food sources for animals and humans.
Oligomeric glycosides on mammalian cell surfaces play an important role in the immune
system. The glycone moiety usually renders the glycoside more water-soluble. Thus,
glycosylation makes metabolite toxins and other unwanted secondary metabolites in mammals
water-soluble for excretion by the kidneys. Many secondary metabolites in plants are
glycosides. Some of these are toxins that protect the plant against herbivores. Plethoras of other
activities in mammalian and human biology has been demonstrated [1-8]. Flavonoids normally
accumulate in plants as O-glycosylated derivatives. However, several species, including major
cereal crops, predominantly synthesize flavone C-glycosides. These are stable to hydrolysis
and are biologically active both in plants and mammals. Activities ascribed to these plant
secondary metabolites include them functioning as antioxidants [9-10], insect feeding
attractants [11], antimicrobial agents [12], promoters of mycorrhizal symbioses [13], and UV-
protective pigments [14].

https://nanobioletters.com/ 2382


https://nanobioletters.com/
https://nanobioletters.com/
https://doi.org/10.33263/LIANBS103.23822388
https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.33263/LIANBS103.23822388

2. Materials and Methods

Aspalathin ~ (1a) (Figure 1) (3'-p-D-glucopyranosyl-2', 3, 4, 4’, 6’-
pentahydroxydihydrochalcone) is a dihydrochalcone C-glucopyranoside. It was first
characterized by Koeppen [15] and co-workers in 1965. Notably is the s-stereochemistry at the
anomeric carbon. It occurs exclusively in leaves of Aspalathus linearis (rooibos) where it is
the major component. It has recently received considerable interest due to its plasma sugar
lowering properties [16-17]. Nothofagen (1b) (3'-4-D-glucopyranosyl-2', 4, 4’, 6’-
tetrahydroxydihydrochalcone) differs from aspalathin in the absence of the 3-hydroxy on the
A-ring. It occurs in a much lower concentration in rooibos.

OH  1la: R=OH; Aspalathin
1b: R=H; Nothofagen

Figure 1. Structures of aspalathin (1a) and nothifagen (1b).
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Scheme 1. Synthesis of diarylpropane (5) and C-diarylpropane-glycoside (7).
The isolation of naturally occurring C-aryl glycosides with important pharmacological
properties [18-23] has prompted synthetic methods that are also relevant to the synthesis of
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aspalathin and analogs. The C-glycosidic bond confers stability to O-glycosides to both
enzymatic and chemical hydrolysis and, thus, probably contributes to enhanced bioavailability.
However, it is much more difficult to form a carbon-carbon bond than an ether bond, and C-
glycoside synthesis has remained a challenge. The regio-and stereoselective requirements of
the C-aryl linkage are the additional complications.

In continuation of our previous work on the synthesis of some bioactive heterocyclic
compounds [24-27], in the present work, we report synthesis and characterization of benzyl-
methoxyl protected aspalathin analog via C-glucosylation of pentamethoxy dihydropropane
(Scheme 1).

Table 1. High-pressure hydrogenation of fully OMe protected chalcone.

Substrate Hydrogen 10% Pd/C Solvents Time (h) Yield (%)
Pressure (Bar/PSi) (Equivalent) | (EtOAc/MeOH (Ratio)
4 30/435 0.1) (50:50) 24 (100)
4 R.T. Using Hz, Balloon 0.2) EtOACc/H20/Dil, HCI Overnight 99%

Table 2. Synthesis of (7) via C-glycosylation of diarylpropane (5).

Entry Sugar Catalyst (equivalents) Solvent Temperature | Time Yield
donor (°C) (h) (%)
1 6 BFsOEt; (2) DCM 0 14 14
2 Sugar-1* TMSOTT (2) DCM -10 8 23
3 Sugar-2* BF:OEt; (2) DCM -20 6 42
4 Sugar-3* SnCls (2) DCM 0 7 30
5 6 TFAA* (3) BF:OEt: (2) DCM -12 6 59
6 6 TFAA* (3) BF3OEt; (2) CHsCN -12 3 92

* Preactivation with TFAA was essential for the coupling reaction to take place.
#Sugar-1: 2, 3, 4, 6-tetra-O-benzylglucosyl acetate, Sugar-2: 2, 3, 4, 6-tetra-O-benzylglucosyl acetamide, Sugar-
3: 2, 3, 4, 6-tetra-O-benzyl-glycopyranosy! fluoride.

C-aryl glycosylation has been reviewed by Palmacci [28] and Seeberger [29]. The
substituents may influence glycosidic bond formation's regioselectivity on the aromatic ring
and the reaction conditions such as the temperature and pressure employed. C-aryl glycosidic
bond formation's stereoselectivity was influenced by the structure of carbohydrate moiety, e.g.,
neighboring group effects, anomeric effects, and synthetic conditions such as the choice of
catalysts and solvents.

3. Results and Discussion

The methoxy-protected chalcone (4) was obtained in quantitative yields. High-pressure
catalytic hydrogenative reduction of (4) gave the corresponding 1, 3-diarylpropane (5)
quantitatively (Scheme 1) (Table 1). Salient in the NMR of (5) is the following: The absence
of the two chalcone proton resonances in the *H NMR spectrum [Hq (d, 7.25 ppm, J = 15.5 Hz)
and Hp (d, 6.88 ppm, J = 15.5 Hz) for corresponding chalcone, and the absence of the carbonyl
resonance (5 = 196) in the *3C NMR; The three propane CH2 groups are represented in the *H
NMR at 2.58 ppm (two overlapping benzylic CH2 groups that integrate four hydrogen atoms)
and 1.77 ppm (a multiplet that integrates two hydrogen atoms). They correspond to two cross-
peaks at 35.5 and 31.1 ppm in the HSQC; The 1,3-diarylpropane-C-glycoside (7) was
subsequently obtained in almost quantitative isolated yield (92%, Entry 6, Table 2) from (6)
via the trifluoroacetic anhydride (TFAA) method described under approach 1 (preactivation of
the anomeric OH with TFAA) (Scheme 1); The glycosyl fluoride and BFsOEt: gave (7) in a
yield of only 42% (Entry 3, Table 2). The C-diarylpropane-glycoside (7) was characterized by
the following observations:
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a) It has complex H and *3C NMR spectra at room temperature due to the expected
rotational isomerism about the glycosidic carbon-carbon bond. Heating of the
sample to 140°C in DMSO-ds was required for NMR elucidation.

b) The anomeric proton resonates at 4.73 ppm in the *H and its corresponding C at
74.2 ppm in the 1*C NMR spectra. These correspond with a carbon-carbon and not
carbon-oxygen bond.

The J = 9.8 Hz coupling constant agrees with the required g-stereochemistry on the
anomeric carbon.

An edited two-dimensional HSQC experiment; (CH and CHs cross-peaks having a
different color from CH: cross-peaks) allows facile differentiation between the benzylic
protons (CHz2) of the benzyl protection groups and the anomeric sugar proton (CH), all of which
resonate in the range of 6 4.00-5.20 ppm.

We thus proved our hypothesis that the carbonyl group in chalcone or the
phloroacetophenone moiety prevents C-glycosylation. Initial efforts to regenerate the carbonyl
group via oxidation of (7) with Dess-Martin reagent, IBX (o-iodoxybenzoic acid), CAN (ceric
ammonium nitrate), pyridine-dichromate, Na:Cr.O7, and DDQ (dichlorodicyanoquinone)
under anhydrous conditions failed. Upon further literature search and model reactions (Table
3) with the diarylpropane (5), we realized that the presence of water as a source of oxygen is
essential for this oxidation. Upon treatment of (5) with DDQ in the presence of H20 (1.5
equivalent), the corresponding dihydrochalcone (4) was obtained quantitatively at room
temperature (Scheme 2). Compared to other oxidative conditions, it is mild with water as the

oxygen source.
MeO OMe OMe MeO OMe OMe
Oxndatlon O O

OMe o
O] O]

Scheme 2. Benzylic oxidation of the diarylpropane (5).
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Scheme 3. Optimized synthesis of methyl-benzyl-protected aspalathin (8) via benzylic oxidation of (7).

Table 3. Oxidation condition for the synthesis of (5) at room temperature.

Entry Oxidant Solvents (2:1) Time (h) Yield (%)
1 IBX Acetone* 14 0
2 Des-Martin DCM* 8 0
3 CAN DCM* 6 0
4 Pyridine-dichromate DCM* 7 0
5 Na2Cr207 DCM* 6 0
6 DDQ DCM/Dioxane* 3 0
7 IBX DCM* 14 14
8 Des-Martin DCwVm* 8 23
9 CAN DCwVm* 6 33
10 pyridine-dichromate DCwMm* 7 30
11 Naz2Cr207 DCM* 6 59
12 DDQ DCM/Dioxane” 3 92

*  Anhydrous solvents were used in reactions
# 1.5 equivalent of H,O was present in the reaction solvents
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Table 4. Optimized oxidation conditions for the synthesis of C-dihydrochalcone glycoside (7).

Entry | Oxidant (Eq) Solvents  (2:1) Temp. (°C) | Time (h) | Yield %
1 DDQ (4) DCM/Dioxane” r.t. 2 44
2 DDQ (4) DCM/Dioxane? 0 12 81

# 1.5 equivalent of H,O was present in the reaction solvents

The same treatment of (7) with DDQ at room temperature under the conditions
optimized for (5) yielded the expected dihydrochalcone-C-glycoside (8) in a 44% yield. Upon
lowering the reaction temperature to 0 °C, the reaction proceeded slower but produced a higher
yield (81%) (Scheme 3, Table 4). We attributed this to the partial removal of the aliphatic
benzyl protection groups on the sugar moiety with DDQ at room temperature. The NMR of (8)
also required elevated temperature (140 °C) to remove rotational isomerism and simplify
interpretation. Notable are the following: The carbonyl resonance at § 198.4 in the 3C NMR
spectrum; Two multiplets at § 3.05 and 2.93 in the 'H NMR. These CH2 resonances correlate
with the carbon resonances at & 38.8 and 19.7 ppm, respectively, in an edited HSQC
experiment. The two multiplets also cross-couple to each other in the COSY spectrum. They
represent the dihydrochalcone's CH2-CH2 moiety; the anomeric proton of the sugar moiety
resonates as a doublet at 6 4.73 ppm that correlates with the anomeric carbon at 6 73.6 ppm in
the edited HSQC. The J = 9.8 Hz coupling constant indicates B-stereochemistry for the C-
glycosidic bond; The four benzylic CH2 resonances in the & 4.55 to 4.90 ppm range of the 'H
NMR spectrum indicate that the four benzyl groups on the sugar moiety remained intact (stable
to the oxidation conditions); The same treatment of (7) with DDQ at room temperature under
the conditions optimized for (5) yielded the expected dihydrochalcone-C-glycoside (8) in a
44% vyield. Upon lowering the reaction temperature to 0 °C, the reaction proceeded slower but
produced a higher yield (81%) (Scheme 3, Table 4). We attributed this to the partial removal
of the aliphatic benzyl protection groups on the sugar moiety with DDQ at room temperature.

4. Conclusions

Thus the present protocol represents the first synthesis of methyl-benzyl-protected
aspalathin analog (8). However, attempts to deprotect the analog (8) using BBrs could not lead
to the successful synthesis of aspalathin. Efforts for demethylation by using the excess of BBr3
lead to a breakdown of sugar moieties and decomposition.
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