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Abstract

Neurodevelopmental disorders (NDDs) are a heterogeneous and highly
prevalent group of psychiatric conditions marked by impairments in the nervous
system. Their onset occurs during gestation, and the alterations are observed
throughout the postnatal life. Although many genetic and environmental risk factors
have been described in this context, the interactions between them challenge the
understanding of the pathways associated with NDDs. Transcription factors (TFs) —a
group of over 1,600 proteins that can interact with DNA, regulating gene expression
through modulation of RNA synthesis, represent a point of convergence for different
risk factors. In addition, TFs organize critical processes like angiogenesis, blood-brain
barrier formation, myelination, neuronal migration, immune activation, and many
others in a time and location-dependent way. In this review, we summarize important
TF alterations in NDD and associated disorders, along with specific impairments
observed in animal models, and, finally, establish hypotheses to explain how these
proteins may be critical mediators in the context of genome-environment interactions.
Key Words: Transcription Factors; Neurodevelopmental Disorders; Psychiatric

Disorders; Environment-Genome Interaction; Transcription; Animal Model.
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1. Introduction

Throughout development, both genetic and environmental risk factors
contribute to the onset of neural disorders. The genetic risk factor is widely
acknowledged, and many genes triggering these conditions are well-described.
However, the contribution of environmental risk factors to the onset of
neurodevelopmental disorders (NDDSs) still poses a great challenge for science since
a wide range of alterations in biological pathways can lead to similar outcomes.
Recently, many studies have indicated that transcription factors (TFs) could be a point
of convergence to understand these interactions.

NDDs are a diverse group of early-onset conditions characterized by
impairments in language, cognition, motricity, and many other aspects. This group
includes specific learning disorders, motor disorders, and communication disorders,
attention deficit hyperactivity disorder (ADHD), intellectual disabilities (ID) and autism
spectrum disorder (ASD) (American Psychiatric Association, 2013) (Figure 1). In this
context, we reviewed the NDDs with a solid and well-established association with
imbalance in the levels/ function of TFs. Specific learning disorders, motor disorders,
communication disorders, and ADHD have few descriptions in the literature regarding
changes in TFs throughout neurodevelopment; therefore, they were not considered in
the study.

ASD is one of the most increasingly prevalent NDD, with a rate of 1:54 among
children up to 8 years of age in the USA (Maenner et al., 2020) being characterized
by a dyad of behavioral characteristics: 1. deficits in communication and social
interaction, and 2. presence of repetitive and stereotyped behaviors, in addition to
restricted interest in activities. Recent genetic studies indicate an overlap of symptoms
and pathogenic mechanisms among NDDs (like ASD and ID) and other psychiatric
disorders, such as schizophrenia (Morris-Rosendahl and Crocq, 2020).

Schizophrenia is characterized by positive symptoms (hallucinations or
delusions) and negative symptoms (such as poverty of speech and impairments in
cognition). It is estimated to affect about 1.5 per 10,000 people (McGrath et al., 2008),
with symptoms typically starting in early adulthood, around 20 years of age
(Association, 2013). Therefore, considering the emerging evidence of overlap with
ASD symptoms, schizophrenia was included in the study (Figure 1).

In the present review, we described: 1. General features of TFs in NDDs,

providing an overview of their expression patterns; 2. NDDs associated with specific
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genetic alterations in TFs, including Rett syndrome, Williams syndrome, and Pitt-
Hopkins syndrome; 3. The correlation of environmental factors with alterations in TFs;
4. The changes in TFs in multifactorial disorders - focusing on ASD and Schizophrenia
- demonstrating that genetic and environmental risk factors can propagate similar
alterations; 5. TFs that are not strictly associated with specific disorders but seem to
impact important aspects of NDDs in general, like language development; and 6.

Integrative perspectives regarding TFs and NDDs.

1.1 An Overview about Transcription Factors

TFs are proteins with DNA-binding properties that orchestrate the
transcriptional machinery, regulating rate, time, location, and several other conditions
involved in gene expression. The specific transcriptome from each cell type is
governed by a particular set of TFs, which defines cellular identities and programming
(Cevallos et al., 2020).

Besides the DNA-binding sites, TFs can contain ligand-binding sites, protein-
protein interaction sites, and enzymatic activity domains (Lambert et al., 2018). These
features are grouped as effector domains since they actively mediate the functions of
the TFs, enabling them to perform several actions such as responding to stimuli,
dimerization, regulation of RNA-polymerases functions, and modulation of DNA
access by indirect interference on histone modifications (Xin and Rohs, 2018). In
humans, over 1,600 TFs have already been described (Lambert et al., 2018), grouped
into classes by similarities in the DNA-binding domains. Approximately 90% of the TFs
in humans are included in one of the three major classes: Basic Domain, Zinc
Coordinating Domain, and Helix-turn-helix Domain (Wingender et al., 2015).

The several contributions of TFs in fundamental biological pathways (like cell
cycle, neurodevelopment, and immune activation, for example) highlight the
importance of time, location, and context throughout biological development. In
Drosophila studies, this issue is demonstrated by Hox (Homeobox) TFs (which
regulates the structure of body plan), since alterations in the transcription of Hox along
body segments generate abrupt abnormalities like ectopic growth of legs (Kaufman et
al.,, 1980) or duplicated thorax (Weatherbee et al., 1998). In humans, extreme
alterations like the described in Drosophila are probably incompatible with life;
nonetheless, subtle alterations may lead to important impacts - mutations in TP53

(tumor protein p53), for example, can induce major deregulation of the cell cycle,
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resulting in tumor growth (Blagih et al., 2020). Similarly, several single nucleotide
polymorphisms (SNP) in TFs were already related to psychiatric disorders (Pearl et
al., 2019).

All of the TFs addressed in this review are summarized in Table 1, with
information regarding their main DNA-binding domains and the regions or specific cell
types where these TFs present higher expression in embryonic tissue (focusing on the
nervous system and immune system). In Figure 2, the peak of expression of each TF
was demonstrated in the two regions that presented complete information regarding
the time course of expression: forebrain and cerebellum. All information was obtained
from LifeMap Discovery™ (Edgar et al., 2013) and “Evo-devo mammalian app”
(Cardoso-Moreira et al., 2019).

2. Genetic-associated neurodevelopmental disorders

This section discusses the association among NDDs and specific genetic
alterations in TFs (mutations, deletions, and other disturbances), focusing on the
mechanisms linking TFs and pathophysiology pathways.

2.1 Rett syndrome

Rett syndrome (RTT), the second leading cause of female intellectual disability,
is a progressive NDD, affecting one in 10,000 females (Rosenberg and Pascual,
2014). In most cases, RTT is caused by mutations in the MECP2 gene (methyl-CpG
binding protein 2) (Shahbazian and Zoghbi, 2001), and, in a smaller proportion, in the
FOXGL1 gene (forkhead box G1 protein), both described as TFs (Ma et al., 2016).

The protein MeCP2 mostly represses gene expression by modifying chromatin
access (Ip et al., 2018). Mutations in this gene notoriously impact neurodevelopment
(Gonzales and LaSalle, 2010), skeletal muscle growth (Conti et al., 2015), liver
metabolism (Kyle et al., 2016), heart function (Wang et al., 2018), and other organs.
Males with mutations in MECP2 are often stillborn or do not live past infancy,
explaining the higher prevalence in females (Weaving et al., 2005).

Animal models of Mecp2 deletion or haploinsufficiency improved the
understanding of possible outcomes resulting from the loss of this protein activity.
Mecp2-deficient mice exhibited altered content of GABA and glutamate (in different
brain regions in postnatal life) (EI-Khoury et al., 2014) and also their receptors (in the

CAZ3 region of the hippocampus) (Calfa et al., 2015), in addition to the loss of the
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characteristic barrel field organization in the somatosensory cortex (Lee et al., 2017).
The presence of sensory impairments was also observed in zebrafish lacking mecp2,
probably related to SEMAS5B (semaphorin 5B) and ROBO2 (roundabout guidance
receptor 2) downregulated expression since these proteins are essential to neuron
migration and cortex formation (Leong et al., 2015).

These data emphasize the contribution of MeCP2 in the maintenance of the
excitatory/inhibitory balance and the typical organization of the central nervous system
(CNS). In this context, deletion of Mecp2 in mice disrupted the perineuronal net
associated with parvalbumin-positive neurons (PV+), inducing enhancement of
thalamocortical excitatory inputs to PV+ and, consequently, increasing the inhibitory
activity of these cells, which may be related to the “cortex silencing” feature described
in RTT patients (Sigal et al., 2019). Silencing or deletion of Mecp2 impaired long-term
memory and learning in the hippocampus due to alterations in chromatin organization
of CALl neurons (Gulmez Karaca et al., 2018) and reduced neuronal connectivity
between dentate gyrus and entorhinal cortex (Sun et al., 2019). Moreover,
mitochondrial-oxygen consumption is enhanced in hippocampal neurons from Mecp2-
deficient mice, increasing reactive oxygen species (ROS) and probably impairing the
functions of these cells (Can et al., 2019).

Glial cells were also observed to be involved in these models. Astrocytes
containing Mecp2 mutations showed decreased expression of the TF Nr2f2 (nuclear
receptor subfamily 2 group F member), besides other relevant genes associated with
glutamate metabolism and ion transporters, such as lipocalin-2 and chromogranin B
(Delépine et al., 2015). Interestingly, astrocytes derived from RTT patients cannot
support neuronal development in co-culture (Williams et al., 2014) since disruptions in
MeCP2 decrease the expression of EAAT1/2 glutamate transporters and increase the
expression of glutamine synthetase, triggering glutamatergic excitotoxicity (Jin et al.,
2017). Microglia derived from Mecp2-null mice displayed decreased synaptic pruning
ability (Schafer et al., 2016), and metabolic alterations regarding glutamate uptake and
ROS generation (Jin et al., 2015).

In oligodendrocytes, the total absence of MeCP2, or even its knockdown,
induces alterations in cellular morphology, physiology, and survival (Lipi et al., 2018),
and increases several myelin genes, like myelin basic protein (Mbp), proteolipid

protein (Plp), myelin oligodendrocyte glycoprotein (Mog), and myelin-associated
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oligodendrocyte basic protein (Mobp) (Sharma et al., 2015), suggesting an important
role of MeCP2 in myelination processes.

The serotonergic system is also affected by Mecp2 knockout: a 75-fold
increased expression of the serotonin receptor 5b (5-ht5b) was observed in the
brainstem of Mecp2-/y mice, and this alteration disrupted the expected
downregulation of this receptor in the following steps of neurodevelopment
(Vogelgesang et al., 2017). Interestingly, Mecp2-deficient mice also presented
alterations in breathing phenotype patterns, which is affected by the 5-ht5b expression
(Vogelgesang et al., 2018), emphasizing the relation between serotonin system
impairments and MeCP2.

The mutation in the FOXG1 gene induces severe intellectual, motor, and
language = disabilites (Ma et al., 2016). Mice with Foxgl haploinsufficiency
demonstrated enhanced expression of inhibitory synaptic markers (glutamate
decarboxylase 67 (GAD67) and GABA AR-a1) and reduced excitatory synaptic
markers (VGLUT1, GluAl, GIuN1, and PSD-95) in cell culture and mice embryo. In
adults, all markers were reduced, indicating a time-dependent action of FOXG1
throughout synaptic neurodevelopment (Patriarchi et al., 2016). Beyond that, an
electrophysiological analysis showed cortical hyperexcitability with increased
expression of VGLUT and reduced expression of KCC2, indicating a contribution of
FOXG1 in the excitatory/inhibitory balance (Wong et al., 2019).

2.2. Pitt-Hopkins syndrome

Pitt—Hopkins syndrome (PTHS) is a condition marked by ID, psychomotor
delay, and, in many cases, ASD features (Goodspeed et al., 2018). Despite being first
described in 1978 (Pitt and Hopkins, 1978), the cause of PTHS was only elucidated in
2007 (Amiel et al., 2007; Brockschmidt et al., 2007; Zweier et al., 2007): specific
mutations in TCF4 (transcription factor 4). This member of the basic helix-loop-helix
TF family (bHLH) regulates gene expression by forming homodimers and
heterodimers that can play different roles depending on their dimerization partners
(Jones, 2004). Several TFs can dimerize with TCF4 in the brain, such as
ATHO1/MATH1 (atonal homolog 1), ASH1/ASCL1 (achaete-scute homolog 1), and
NEURODL1 (neuronal differentiation 1) (Navarrete et al., 2013). The brain expression
of TCF4 seems to be evolutionarily conserved in humans, rhesus monkeys, and mice.

Tcf4 haploinsufficiency in mice, for example, replicated anomalies found in PTHS
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patients, especially in the regulation of neuronal migration (Jung et al.,, 2018).
Furthermore, the specific knockout of Tcf4 in the CNS of mice induced whole
hippocampal architecture impairments and, in the cortex, delayed neural progenitor
differentiation and resulted in neuronal morphology alterations in later stages of
development (Schoof et al., 2020).

Recently, these hippocampal disturbances were associated with altered neural
migration caused by a disruption in radial glia fibers, possibly mediated by WNT
pathway protein wnt7b (Wang et al., 2020). Finally, four different mouse models of
PTHS highlighted the link between the deficits in the hippocampus-related behaviors
and the exaggerated long-term potentiation (LTP) due to increased activation of

NMDA receptors in this region (Thaxton et al., 2018).

2.3 Other Genetic Disorders

The SOX (SRY-related HMG-box) proteins have a fundamental role in the
developmental regulation (Pillai-Kastoori et al., 2015). Although already described as
altered in several disorders, some critical alterations in SOX genes result in distinct
conditions categorized as separated syndromes. For example, mutations in SOX5 are
related to Lamb-Shaffer syndrome, characterized by ID and speech delay (Lamb et
al., 2012); mutations in SOX10 are associated with Waardenburg—Hirschprung
disease, which is marked by neurosensory deafness (Pingault et al., 1998), and,
finally, SOX9 mutations are related to campomelic dysplasia, also associated with
hearing loss (Kwok et al., 1995).

Williams syndrome (WS) is a disorder characterized by mild ID and specific
cognitive profiles caused by deletions in 7911.23, a region that includes the GTF2i and
GTF2ird (general transcription factor) genes (Morris, 2017). In mice, knockout of
Gtf2ird induced alterations in other important TFs associated with neurodevelopment,
like Heyl (Hes related family BHLH transcription factor with YRPW motif 1), Myf6
(myogenic factor 6), Myog (myogenin), DIx2 (distal-less homeobox 2), Lhx2 (LIM
homeobox 2), Pou3f3 (POU class 3 homeobox 3), Sox2, and Foxp3 (forkhead box
protein P3) (Corley et al., 2016). Either partial or total loss of GTF2ird in mice impaired
serotonin signaling in the prefrontal cortex. Neurons from layer V of this region
demonstrated significantly larger inhibitory outward currents in response to serotonin,
which may be associated with the reduced basal anxiety and increased sociability

observed in WS individuals (Proulx et al., 2010). Finally, selective deletion of Gtf2i in
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excitatory forebrain neurons resulted in clinical features of WS and significant
impairments in myelination — intervention with a remyelinating drug rescued both
oligodendrocytes and behavioral impairments (Barak et al., 2019).

Coffin-Siris syndrome (CSS) is a NDD characterized by ID, facial
dysmorphology, microcephaly, and feeding difficulties (lwamoto et al., 2003).
Deletions involving SOX11 TF were associated with microcephaly, developmental
delay, and shared dysmorphic features with CSS. Beyond that, knockdown of Sox11
in Xenopus morphants resulted in diminished head size, confirming this intriguing
relation between SOX11 and microcephaly (Kosho et al., 2014). Interestingly, it was
demonstrated that the zika virus infection of SH-SY5Y neuroblastoma cell line induced
important up-regulation of miR (145 and 148a) that target Sox11, adding evidence to
the role of SOX11 in microcephaly (Castro et al., 2019).

Dravet syndrome (DS) is a severe type of refractory epilepsy with early life
symptoms. The syndrome is characterized by age-related progression of seizures,
cognitive decline, and movement disorders (Akiyama et al., 2010). About 80% of the
DS cases are caused by a de novo mutation in the sodium voltage-gated channel
alpha subunit 1 (SCN1A) gene, resulting in Navl1.1 haploinsufficiency (Chopra and
Isom, 2014). Human transcriptome analysis demonstrated specific dysregulations of
genes associated with chromatin structure, mitotic progression, neural plasticity, and
excitability in GABAergic neurons derived from patients, with up-regulation of the TFs
FOXM1 and E2F (Transcription Factor E2F1), important regulators of histone
modifications and cell cycle (Schuster et al., 2019).

The compilation of all TFs described in the “Genetic-associated
neurodevelopmental disorders” section was submitted to Reactome® analysis (Wu
and Haw, 2017), resulting in a demonstration of enriched biological pathways
associated with this group. Table 2 highlights the most relevant, confirming well-known

pathways and suggesting possible new fields of study in this context.

3. Environmental factors and TFs in Psychiatric Disorders

Since the discovery of the lac operon system in E. coli — the first demonstration
of how the transcription machinery works in different environmental contexts (Jacob
and Monod, 1961) — several other examples were described in different organisms

like fungi (Vicentefranqueira et al., 2018), plants (Song et al., 2016), and animals (Pat

This article is protected by copyright. All rights reserved.



Willmer, 2004) in situations like temperature variation, stress response, immune
system modulation and others.

The challenge behind the search for risk factors in psychiatric disorders is
understanding how different interactions may converge to a similar outcome.
Environmental factors can cause a significant impact on the onset of NDDs along with
genetic risk factors (discussed in section 2). Alterations in TFs may be a common point
in this multifactorial universe of NDD triggering. In this section, environmental risk

factors are discussed, focusing on possible roles in NDDs and psychiatric disorders.

3.1 Maternal Immune Activation

Maternal immune activation (MIA) is associated with the onset of disorders such
as ASD and schizophrenia (Fontes-Dutra et al., 2020). MIA induction by poly(l:C)
exposure enhanced PAX6 (paired box 6) expression in mice embryos resulting in cell
cycle impairments, and increased number of cortical neurons expressing COUP-TF
interacting protein 2 (CTIP2) in deeper layers (V and VI) (Ben-Reuven and Reiner,
2019). In a complementary finding, in vitro exposure of neuronal progenitors to high
doses of IL-6 (mimicking MIA) increased STATS3 (signal transducer and activator of
transcription 3) phosphorylation and reduced the differentiation of neurons that
express CTIP2 and TBR1 (T-box brain transcription factor 1) (Zuiki et al., 2017). We
hypothesize that these differences occur due to the TFs activated in each model:
enhanced PAX6 expression, a pivotal regulator of neuronal processes, is associated
with increased CTIP2+ cells since this TF is a major regulator of deeper cortical layers.
On the other hand, IL-6 leads to the activation of STAT3, which, in neural progenitors,
was already associated with increased astrocytogenesis and suppressed
neurogenesis (Hong and Song, 2015, Chen et al., 2014), explaining the decreased
number of neuronal cells expressing CTIP2 and TBR1.

MIA-induced by poly(l:C) in mice increased REST/RE-1 (RE-1 silencing
transcription factor) expression, resulting in decreased expression of KCI
cotransporter, delaying the switch of GABA function from excitatory to inhibitory in
mice embryos (Corradini et al., 2018). In addition, a decreased forebrain expression
of ARX (aristaless related homeobox), was associated with PV+-neurons impairments
(Nakamura et al., 2019) in the same model. In an LPS-induced MIA, the fetus
presented reduced expression of the TFs DIx 1, 2, and 5 (distal-less homeobox), which

are involved in the generation and migration of GABAergic interneurons (Oskvig et al.,
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2012). Finally, MIA-induced microglial activation was influenced by the decreased
expression of the TF Pu.1 (transcription factor PU.1) - in this case, epigenetic changes
impaired the expression of this TF (Mattei et al., 2017; Yeh and Ikezu, 2019).

Some viral infections are also described as environmental risk factors during
pregnancy. For example, the STAT-binding V protein, an important virulence factor in
the rubella infection, can impair the functions of STAT, a TF involved in interferon
signaling and synaptic plasticity processes (Ramachandran et al., 2008). Also, the
rubella virus itself can interfere in the expression of Rax (retina and anterior neural fold
homeobox) and Six3 (sine oculis homeobox homolog) TFs (Bilz et al., 2019),
importantly related to eye and brain development. In neural progenitor cell culture, the
cytomegalovirus early protein 1 (IE1) decreased Sox2 expression by inhibiting
phosphorylation of STAT3 (Wu et al.,, 2018) and downregulated Hesl (Hes family
BHLH transcription factor 1) (Liu et al., 2017; Wu et al., 2018), leading to cell cycle

and migration disturbances.

3.2 Effects of Teratogens

The environmental risk factors during pregnancy (Lein, 2015) also include
chemical treatments such as the antiepileptic valproic acid (VPA), a well-demonstrated
risk factor to ASD (Christensen et al., 2013). Adult hippocampal neural progenitors
exposed to VPA in vitro increased the expression of NEUROD1, a TF involved in
neuro/glial differentiation (Hsieh et al., 2004). In a complementary way, mice embryos
exposed to VPA upregulated Pou3fl and Sox4, downregulated Egr2 (growth response
protein 2) (Okada et al., 2005), and altered the expressions of neurogenin 2 (NGN2),
NEUROD1, and PAX6 (Kim et al., 2014) in a time-dependent way. Interestingly, PAX6
alterations (like increased acetylated histone binding to the gene promoter region),
which were more prominent, are related to the VPA histone deacetylase (HDAC)
inhibition feature (Kim et al., 2014). Moreover, postnatal analysis of mice exposed to
VPA during pregnancy showed decreased expression of Hes1 and Pax6 mRNA in the
cerebral cortex, suggesting a possible long-term effect of these TFs in brain
development (Kawada et al., 2018). The set of evidence emphasizes the major impact
of VPA in the TF machinery associated with cell cycle, apoptosis of neural tube cells,
histone modulation, and brain organization.

Ethanol (Et-OH) consumption during pregnancy causes fetal alcohol syndrome

(Gupta et al., 2016), a disorder that shares several features with ASD. Similar to VPA,
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Et-OH impairs Pax6 expression in murine embryos (Aronne et al., 2008) and disrupts
correct cell lineage differentiation, mainly by modulation of POU5F1 and SOX2
(Sénchez-Alvarez et al., 2013). In a study using zebrafish embryos exposed to Et-OH,
besides sox2, sixty TFs associated with gastrulation processes demonstrated altered
expression (mostly downregulated) (Sarmah et al., 2020). Interestingly, both human
progenitor neural cells and mouse embryos demonstrated abnormal activation of
HSF1 (heat-shock transcription factor 1), leading to neuronal migration impairments
and periventricular heterotopia (Ishii et al., 2017).

Folate intake during pregnancy is necessary to prevent neural tube-associated
alterations like spina bifida and myelomeningocele (Pachén et al., 2013); however, the
regulation of dosage is essential since high doses are potentially deleterious (Mudry;j
et al., 2016). An in vitro study demonstrated that folate receptors, which have TF
function, regulate the expression of other TFs involved in neurodevelopment like Sox2
and Kli4 (kruppel like factor 4) (Mohanty et al., 2016). Interestingly, in a neural tube
defect animal model based on the deletion of Pax3, supplementation with folate
restored the proliferative status of the neuroepithelium, demonstrating a possible
common pathway regarding PAX3 and folate signaling (Sudiwala et al., 2019).
Analysis of DNA methylation patterns in blood and tissue from the human umbilical
cord demonstrated that folate deficiency during pregnancy is associated with
methylation alterations in HOX, LIM, PAX, and TBOX TF families (Sakurai et al.,
2019). On the other hand, excessive supplementation in mice induced dysregulated
expression of Fos (FBJ osteosarcoma oncogene), Maff (MAF B ZIP Transcription
Factor F), and EGR2, in addition to inducing behavioral and weight alterations (Chu et
al., 2019).

3.3 Lesion Events

Perinatal complications like fetal or early postnatal hypoxia are also associated
with neurodevelopmental impairments and expression changes in TFs, especially in
the hypoxia-induced factors (HIF) (Dengler et al., 2014). The expression of HIF-2aq, in
vitro, upregulated the solute carrier transporter 7a5 (SLC7A5) in differentiated
neuronal cells, followed by impaired transport of branched-chain amino acids in the
brain (Onishi et al., 2019) - a feature already described in ASD (Maynard and Manzini,
2017). While early postnatal hypoxia in mice decreased expression of Olig2

(oligodendrocyte transcription factor 2) (van Tilborg et al., 2018), transient hypoxia in
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postnatal day 7 induced a complex time-course pattern of high and low expression of
Olig2, Ascll, and Nkx2-2 (NK2 Homeobox 2) TFs, followed by oligodendrocyte
maturation impairment (Affeldt et al., 2017). Finally, GWAS comparison of
schizophrenia and hypoxic-ischemic response associated genes in humans
demonstrated significant overlap of changes in TFs like TCF4 and ZEB2 (zinc finger
E-box binding homeobox 2) (Schmidt-Kastner et al., 2020). The compilation of all TF
described in the “Environmental factors and TF in Psychiatric Disorders” section was
submitted to Reactome® (Wu and Haw, 2017) analysis resulting in a demonstration
of enriched biological pathways associated with this group. In Table 3, the most
relevant are highlighted, demonstrating important overlays with ASD and

schizophrenia.

4. NDD-associated multifactorial disorders

This section discusses ASD and schizophrenia, two disorders with an intricate
contribution of both genetic and environmental risk factors. The diversity of effects in
the TFs may be associated with the broad spectrum within the disorders and the
interaction between genes and environment throughout the neurodevelopmental

timeline.

4.1 Autism Spectrum Disorder (ASD) and TFs

ASD is a multifactorial NDD determined by a set of characteristics, including
stereotyped or restricted behaviors and impairments on social interaction and
communication (American Psychiatric Association, 2013). Genetic studies analyzing
populations or families with ASD cases already demonstrated many alterations in TFs
associated with neurodevelopment. One study comparing autistic subjects with
unaffected siblings, focused on 64 genes implicated in neurodevelopment, highlighted
mutation events in nine genes, three being TFs: TBR1, ADNP (activity-dependent
neuroprotector homeobox), and PAX5 (O’Roak et al., 2014).

Alterations in TBR1 are classically related to ASD (O’Roak et al., 2012), and,
more recently, mutations in this gene were also associated with neocortical
malformations in humans (like pachygyria) (Nambot et al., 2020; Vegas et al., 2018).
Furthermore, in animal models, loss-of-function or deletion of TBR1 resulted in
connectivity issues in layer VI neurons from the neocortex (Fazel Darbandi et al.,

2018). These cells also presented disrupted expression of the laminar identity markers
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(Bedogni et al., 2010), indicating the contribution of TBR1 during neuronal migration
and cortical organization.

Critical mutations on ADNP are described in the Helsmoortel-Van der Aa
syndrome, a rare condition with substantial overlap with ASD (Arnett et al., 2018).
ADNP can play essential roles in autophagy (Sragovich et al., 2017), cell cycle
regulation (Mollinedo et al., 2019), neuronal migration, and maturation (Helsmoortel et
al., 2014). In animal models and clinical studies, supplementation with peptides
derived from ADNP demonstrated interesting neuroprotective results (regulation of
glutamatergic synapses and microtubule conservation, for example) in ASD (Gozes et
al., 2009; Javitt et al., 2012; Sragovich et al., 2019).

Finally, PAX5 has recently emerged as a gene associated with ASD, with
incipient descriptions of its function during neurodevelopment. The deletion of PAX5
in- GABAergic neurons led to malformations in the ventricles, triggering a
hydrocephalus-like condition, which may imply that this factor is pivotal in processes
like neuron maturation and cytoarchitecture organization (Ohtsuka et al., 2013).

In the Lamb-Shaffer syndrome, a disorder associated with autistic traits, several
microdeletions and truncating variants in SOX5, were observed (Zawerton et al.,
2020). The attenuation in the expression of the SOX5 gene in different brain regions
seems to be related to splicing alterations and the generation of regulatory molecules
like INCRNA (Parikshak et al., 2016). Sox5-null mice displayed an immature pattern of
layer VI neuron expression, as well as impairments on corticothalamic connectivity,
demonstrating important roles of this factor on corticogenesis (Kwan et al., 2008).

The impairments of several neurotransmitter systems in ASD are widely
described and these changes may involve several TFs. Biallelic disruptions in RARB
(retinoic acid receptor beta) and FEV (fifth ewing variant protein) were identified as
altered in ASD (Doan et al., 2019). RARB targets were altered both in animal models
and humans, demonstrating the translation in RARB alterations mediating the retinoic
acid pathway (Moreno-Ramos et al., 2015), while FEV is mainly expressed in raphe
nuclei (lyo et al., 2005), especially in serotonergic neurons (Maurer et al., 2004), being
necessary for both the differentiation and the synthesis of serotonin. Finally, a meta-
analysis of GWAS studies demonstrated significant alterations in the PITX3 (paired
like homeodomain 3) gene (The Autism Spectrum Disorders Working Group of The
Psychiatric Genomics Consortium, 2017), a TF that is related to the differentiation of

dopaminergic neurons (and dopamine synthesis) in the midbrain, and was already
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described in the context of Parkinson disease (Li et al., 2009) and ocular
developmental defects (Zazo Seco et al., 2018).

Recently, new TFs were described in the context of ASD, including SHOX
(short stature homeobox) (Tropeano et al., 2016), a TF associated with short stature
disorders (Fukami et al., 2016), and ZNF292 (zinc finger protein 292), both TFs with
important expression in the developing brain (Mirzaa et al., 2020) (Durand et al.,
2011). The possible roles of these TFs in NDD are still to be unveiled.

Moreover, alterations in the interaction components of TFs were described as
relevant in the context of ASD. A specific SNP was associated with less DNA binding
of MAZ (MYC associated zinc finger protein), resulting in lower expression of oxytocin
receptor (OXTR) gene and possibly contributing to impairments in the oxytocin
signaling (de Oliveira Pereira Ribeiro et al., 2018), suggesting a new mechanism
behind oxytocin questions in ASD. In addition, an up-regulation of ATF6 (activating
transcription factor 6) was observed in the postmortem hippocampus of ASD patients
(Dong et al., 2018). This TF interacts with misfolded proteins, inducing chaperone
transcription (Adachi et al., 2008).

4.1.1 TF roles in the neuroimmune component of ASD

In addition to the neurodevelopmental impairments, changes in the immune
system (including neuroinflammation) play an important role in ASD, being often
described as a hallmark of this disorder (Deckmann et al., 2018; Gottfried et al., 2015;
Masi et al., 2017; Siniscalco et al., 2018). Interestingly, several TFs also mediate these
neuroimmunological issues. Recently, NRF2 (nuclear factor, erythroid 2-like 2) - a
basic leucine zipper TF that protects the immune cells against inflammation and pro-
oxidating agents - was downregulated in monocytes of ASD subjects, whereas
inflammatory (NFkB, IL-6, IL-1) and nitrative stress (iINOS, nitrotyrosine) parameters
were increased (Nadeem et al., 2020).

The T-bet (T-box transcription factor 21), GATA3 (GATA-binding protein 3),
STAT3, RORyt (RAR-related orphan receptor gamma), and FOXP3 TFs play an
important role in Thl (T-bet), Th2 (GATA3), Th17 (STAT3/RORyt) and Treg (FOXP3)
commitment lineages from naive CD4+ T cells (Deckmann et al., 2018). Peripheral
blood mononuclear cells (PBMC) from ASD patients demonstrated lower levels of
FOXP3 and higher levels of RORyt/STAT 3, T-bet, and GATAS, together indicating a
deficit in Treg differentiation and an imbalance of TFs related to Th1/Th2/Th17
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response (Ahmad et al., 2017c). Besides that, HELIOS (expressed by FOXP3+T cells
and associated with T cell differentiation) was downregulated, both in mRNA and
protein expression levels, suggesting that this TF is pivotal in the ASD immune
imbalance (Ahmad et al.,, 2018e). Likewise, granulocyte-macrophage colony-
stimulating factor (GM-CSF) expressed by CD45 cells was increased in children with
ASD, whilst numbers of CD45+HELIOS+ and CD45+Stat6+cells were lower,
corroborating the involvement of TFs in the regulation of the immune system and
demonstrating the need for further investigations (Ahmad et al., 2020).

Another interesting animal model to ASD study is the BTBR T+ Itpr3tf/J (BTBR),
a genetic model that presents low levels of social behavior and high levels of repetitive
behavior (Ryan et al., 2019). CD8+T cells from BTBR animals produced higher levels
of IL-17A, RORyT, IL-22, T-bet, and STAT3 and lower levels of inducible costimulator
(ICOS) and FOXP3. CD4+ T cells, in turn, produced elevated levels IL-17A, IL-21, IL-
22, IFN-y, T-bet, RORyt, and STAT3, and diminished levels of FOXP3 and HELIOS
(Ahmad et al., 2018b, Ahmad et al., 2018c, Ansari et al., 2017). Alterations in mMRNA
and protein expression levels of IL-17A, RORyYT, IL-22, T-bet, STAT3, pSTAT-3, IL-
10, and FOXP3 were observed in the brain tissue (Ahmad et al., 2019).

BTBR mice also exhibited decreased CD4+IL-21+, CDA4+IL-22+,
CD4+GATA3+, and CDA4+T-bet+, and increased CD4+CTLA-4+ (cytotoxic T
lymphocyte-associated gene-4) expression in spleen cells, in addition to increased
MRNA and protein expression levels of IL-21, IL-22, GATAS, and T-bet in brain tissue
(Ahmad et al., 2017a). Departing from previous evidence, BTBR mice showed lower
levels of FOXP3+ and higher levels of T-bet+, GATA-3+, and RORyt+ production in
CD4+ T cells (Bakheet et al., 2017), shedding light on how the BTBR animal model
reproduces the complexity in immune impairments observed in ASD subijects.

When the neuroimmune response mediated by toll-like receptors (TLR), NF-kB
signaling, nitric oxide synthase (iNOS), and cyclooxygenase (COX-2) expression was
evaluated, results showed elevated CD4+TLR2+, CD4+TLR3+, CD4+TLR4+
CD4+NF-kB+, and CD4+iNOS+ levels in spleen cells and increased TLR2, TLR3,
TLR4, NF-kB, iINOS, and COX-2 mRNA expression levels in brain tissue (Ahmad et
al., 2018a). Further, BTBR mice showed increased levels of IL-6+, TNF-a+, [FN-y+,
and STAT3+ in CD4+ spleen cells, and increased both mRNA expression and protein
expression of IL-6, TNF-a, IFN-y, JAK1, and STAT3 in brain tissue (Ahmad et al.,

2018d). Altogether, these recent studies demonstrate an important connection
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between TFs and the neuroimmune alterations present in ASD, with interesting
evidence of diminished Treg and increased Th1/Th1l7 responses, suggesting new

targets for study.

4.1.2 Complementary evidence of TF in ASD animal models

Animal models are pivotal to understand the biological pathways altered as a
result of genetic issues. CHD8 haploinsufficiency in mice triggered ASD-like
behaviors, such as repetitive behavior and impaired sociability. CHD8 acts by
remodeling the chromatin through ATP-dependent activity, regulating the expression
of many genes, such as B-catenin (Katayama et al., 2016), which has a pivotal role in
the canonical WNT signaling pathway - directly implicated in ASD pathophysiology
(Kwan et al., 2016). In addition, CHD8 mutations were associated with
neurodevelopmental delay and abnormal activation of REST - a known neuronal gene
regulator capable of physically interacting with CHD8 (Katayama et al., 2016). This is
particularly interesting since it suggests a significant association between two genes
in ASD, a chromatin remodeler (CHD8) and a TF (REST). Thus, the ASD
pathophysiology could (at least partially) be explained by the remodeling of chromatin,
facilitating the transcription of specific genes that may be related to the onset of this
disorder.

Brain alterations related to changes in TFs include cortical and hippocampal
structure, synaptic composition, and neuronal maturity and function — critical events in
several psychiatric conditions. This is the case of EN2 (engrailed homeobox 2), a TF
with conflicting associations with ASD in humans (Benayed et al., 2009; Gharani et
al., 2004; Yang et al., 2008). In mice, knockout of En2 resulted in several ASD-like
behavioral alterations, including loss of sociability and impairments in fear conditioning
and water maze learning (Brielmaier et al., 2012). In the same model, a reduction in
the mRNA expression of GABAergic markers in the cortex and hippocampus (Sgado
et al., 2013) was observed, suggesting that these impairments might be time and
layer-dependent (Allegra et al., 2014), which should be considered in the studies with
humans. In addition, recent evidence demonstrates alterations in sensory features in
En2-null mice, including impaired processing of taste (Gupta et al., 2018) and reduced
connectivity in the somatosensory cortex, combined with increased activity of the
basolateral amygdala after sensory tasks (Chelini et al., 2019). These data indicate a

possible increased aversion component in the context of non-aversive sensory stimuli,
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which is typical in ASD (Balasco et al., 2020). Finally, other aspects like decreased
serotonin content (more critical at a young age) in the cerebellar cortex (Viaggi et al.,
2015) and monoamine system impairment were already described (Genestine et al.,
2015).

In" rodent models, conditional alteration of Tshz3 (teashirt zinc finger
homeodomain 3) is explored as a translational approach to the 19g12ql3.1
heterozygous deletion syndrome, a condition that shares similarities with ASD
(Chowdhury et al., 2014). In this scenario, the haploinsufficiency of Tshz3 in mice
decreased the interest in social novelty and increased stereotypy, downregulated
genes associated with dendritic extension, neuronal glutamate release, and increased
LTP in corticostriatal connections (Caubit et al., 2016). Moreover, approximately 50%
of the affected genes have a human ortholog described in ASD, highlighting
glutamatergic synapses as a key subject in this model (Chabbert et al., 2019).

The presence of an SNP in a regulatory element, called 156i, identified in ASD
patients (Hamilton et al., 2005) decreased DLX5/6 transcriptional activity in GABAergic
interneurons from embryonic to postnatal life (Poitras et al., 2010), impairing cell
migration, maturation, and survival (Lindtner et al., 2019). Another TF demonstrated
significant action in these neurons: FOXG1 upregulation increased the number of
GABAergic neurons in organoids derived from ASD patient cells (Mariani et al., 2015).
In mice embryos, heterozygous loss of FOXG1 impaired dendritic morphology and
neuronal migration in cortical neurons (Li et al., 2019b).

VPA-exposed rat offspring showed increased PAX6 expression, with higher
postnatal glutamatergic neuronal differentiation, possibly related to the VPA-induced
HDAC inhibition (Kim et al., 2014). Moreover, propionic acid-exposed animals
decreased the expression of TCF4 in the hippocampus, resulting in granule cell
impairments (Choi et al.,, 2018). TCF4 alterations, although more prominent in
schizophrenia, have relevance in ASD: gain of function of TCF4 impairs the prefrontal
cortex, with disruption of columnar organization of layers Il/lll, as observed in ASD
patients (Page et al., 2018b). Moreover, a chromatin immunoprecipitation study
demonstrated that TCF4 also binds to different sites associated with ASD (Forrest et
al., 2018).

The compilation of all TF described in the “Autism Spectrum Disorder and TFs”
section was submitted to Reactome® (Wu and Haw, 2017) analysis resulting in a

demonstration of enriched biological pathways associated with this group. Table 4
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highlights the most relevant, like the immune system, gene transcription, protein

metabolism, cell signaling, and development.

4.2. Schizophrenia and TFs

Schizophrenia is a disorder characterized by the presence of delusions,
hallucinations, disorganized speech, grossly disorganized or catatonic behavior, and
negative symptoms (American Psychiatric Association, 2013).

The SOX11 gene was identified as a candidate gene for greater susceptibility
to schizophrenia in a GWAS study in the Chinese Han population (Sun et al., 2020).
SOX11 is expressed early in development, playing roles in cell fate, survival, and
differentiation during neurodevelopment and organogenesis (Angelozzi and Lefebvre,
2019; Chew and Gallo, 2009). Moreover, a meta-analysis of GWAS found an overlap
in- regions implicated in schizophrenia and ASD in FOXP3 and ATPase plasma
membrane Ca2+ transporting 2 (ATP2B2) genes (The Autism Spectrum Disorders
Working Group of The Psychiatric Genomics Consortium, 2017). This is particularly
interesting since FOXP3 is an essential regulator of the immune system (Taylor et al.,
2020), and ATP2B2 regulates intracellular calcium homeostasis, necessary for
appropriate synaptic connections (Yang et al., 2013).

In addition, the GWAS study pointed to genetic correlations of
neurodevelopmental genes such as exostosin glycosyltransferase 1 (EXT1),
astrotactin 2 (ASTN2), mono-ADP ribosylhydrolase 2 (MACRODZ2), and HDAC4 with
schizophrenia and ASD. EXT1 gene is related to heparan sulfate synthesis, presenting
a higher expression profile during the early postnatal period in the brain (mainly in the
cortex and hippocampus formation) and around birth in the cerebellum (Inatani and
Yamaguchi, 2003). Altered copy number variations (CNV) of the ASTN2 gene -
involved. in recycling vesicles in cerebellar neurons, (Behesti et al., 2018) - are
associated with NDDs, such as ASD. MACROD?2 regulates the processes involved in
mono-ADP-ribosylation (Zaja et al., 2020). It is expressed in neuronal cells at
embryonic day 16.5 and reaches the peak of expression at postnatal day 8, especially
in the cortical layers II-V, and then gradually decreases through P30 (Ito et al., 2018).
Lastly, HDACA4 plays a significant role in gene expression regulation related to synaptic
plasticity, neuronal survival, and neurodevelopment (Ronan et al., 2013; Wu et al.,
2016).
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Several postmortem studies elucidated important region-specific features in the
context of psychosis and schizophrenia. SP1 and SP4 (Sp transcription factor) are
zinc-finger TFs with increased levels in the hippocampus and the cerebellum of
chronic schizophrenia patients (Pinacho et al., 2014). The blockage of NMDAR caused
similar alterations in these factors, suggesting involvement in glutamatergic pathways.
Moreover, SP4 has been described as a GABAAR regulator, highlighting the possible
influence on E/I balance (Pinacho et al., 2015).

A recent study showed differential expression patterns and rare variants in
genes related to neural cell genesis and glial differentiation in individuals with
schizophrenia (Chen et al., 2018). One of these genes was the Pou3f2 gene, a TF
involved in cognitive function and adult hippocampal neurogenesis (Hashizume et al.,
2018). Interneurons also seem to be affected by disturbances in TFs: an analysis of
the prefrontal cortex from schizophrenia patients demonstrated an elevation in the
expression of MAFB and the coactivator PGC-1a (Volk et al., 2016), which are deeply
related to PV and SST development and function, suggesting possible immaturity of
these cells or compensatory mechanisms.

NPAS4 (neuronal PAS domain protein 4) is a brain-specific TF that can
modulate schizophrenia symptoms (Alachkar et al., 2018; Shepard et al., 2019). This
protein is present in both excitatory and inhibitory neurons, regulating the excitability
by increasing the activity of the interneurons in neural circuits (Spiegel et al., 2014).
The deficiency of NPAS4 affects the expression of many GABAergic targets in the
prefrontal cortex (PFC), such as PV and GADG67 (Shepard et al., 2017). When
combining NPAS4 deficiency and adolescent stress, mice showed altered
performance in cognitive flexibility on the extra-dimensional set shift task and altered
expression in GABAergic markers (Page et al., 2018a).

Npas4 wild-type mice showed a decreased percentage of PV cells in PFC after
adolescent stress when compared to heterozygous mice (Page et al., 2018a).
Moreover, the relation between NPAS4 expression and behavioral alterations was
confirmed using transgenic Cre-Lox mice, elucidating the contributions of NPAS4 in
the regulation of excitatory and inhibitory balance, as well as in behavior in
schizophrenia animal models (Shepard et al., 2019).

LHX6 presents a cysteine-rich zinc-binding domain, the LIM domain, whereas
SOX6 presents a conserved high mobility group (HMG) DNA-binding in the minor
groove of DNA. Altogether, both LHX6 and SOX6 regulate crucial neurodevelopmental
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processes, such as specification, migration, and maturation of PV and SST neurons
(Volk et al., 2012). In postmortem samples of PFC from individuals diagnosed with
schizaphrenia, reduced mRNA levels of Lhx6 and Gad67 were found, but there were
no significant differences of Sox6 and calretinin (Volk et al., 2012). Furthermore, in a
cohort of schizophrenia individuals, reduced levels of Lhx6 and Gad67 mRNA levels
were observed in the cortex. In parallel, the same study evaluated monkeys
throughout postnatal life, pointing out declining levels of LHX6 from perinatal to
prepubertal life (Volk and Lewis, 2014). These crucial data highlight the important roles
of LHX6 in GABAergic alterations in the pathophysiology of schizophrenia.

Another signaling pathway implicated in many NDDs is the JAK/STAT1, with
roles regarding the activation of a proinflammatory profile in circulating immune cells
(Ahmad et al., 2017b; Sharma et al., 2017). Recently, a study measuring the activation
of this pathway in individuals with psychosis, early in the illness and hospitalized with
acute exacerbation of psychosis, showed that JAK-STAT1 related gene expression is
suppressed in both groups. The expression normalized in individuals with chronic or
longer illness duration, indicating a temporal and contextual regulatory profile of
JAK/STAT1 signaling pathway and highlighting roles of the immune system in the
pathophysiology of schizophrenia (Melbourne et al., 2019).

Like animal models, in silico approaches can provide relevant information and
mechanistic evidence about the roles of TF in neurodevelopment. A recent study,
which analyzed neuronal migration and corticogenesis data, identified eight functional
modules involving Disrupted-in-schizophrenia 1 (DISC1) gene and its interacting
proteins that regulate neuronal migration processes, such as STAT3, TCF3, and TAL1
(John et al., 2019).

4.2.1 The prominent role of TCF4 in schizophrenia

In the context of schizophrenia, one TF has particular relevance: TCF4. TCF4
is known to be intimately related to PTHS (Amiel et al., 2007), and interestingly, in
schizophrenia, many altered biological pathways have a significant association with
this TF. Since the late 2000s, when the first study associating alterations in TCF4 and
schizophrenia was released (Stefansson et al.,, 2009), several other studies
consolidated and demonstrated the relevance of TCF4 in psychotic episodes and
bipolar disorder (Gao et al., 2020; Hall et al., 2014; Ripke et al., 2014; Steinberg et al.,
2011).
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In animal models, it was demonstrated that overexpression of TCF4 in mice
resulted in sensorimotor and fear conditioning impairments, highlighting the relevance
of TCF4 in cognitive processes (Brzozka et al., 2010, Brzézka et al., 2016; Brz6zka
and Rossner, 2013). Analysis of Tcf4 polymorphisms in humans with schizophrenia
confirmed the influence of this TF in processes like verbal declarative memory
(Lennertz et al., 2011), attention-related tasks (Zhu et al., 2013), problem-solving tasks
(Albanna et al., 2014), and lower cognitive performance (Hui et al., 2015). In addition,
TCF4 mRNA levels were related to positive- and negative-symptoms (Wirgenes et al.,
2012), and cognitive impairments (Alizadeh et al., 2017), consolidating the role of this
TF in high-functioning integrative processes.

Knockdown of Tcf4 in neural-lineage cells increased transcription of genes
related to cell cycle control, specifically proliferation (Hill et al., 2017). Besides that,
phosphorylation promoted by protein kinase A (PKA) also seems to be related to the
TCF4 activity both in vitro and in vivo in response to Ca?* influx (Sepp et al., 2017).
Likewise, the WNT/B-Catenin pathway also influences the transcription and activity of
Tcf4 since the activation of WNT/B-Catenin mediated by pharmacological intervention
increased TCF4 mRNA levels (Hennig et al., 2017). Some evidence involving changes
in WNT/B-Catenin pathway and schizophrenia includes shortening of cell cycle (Fan
et al., 2012), weakening of the blood-brain-barrier associated with alterations in PKA
(Nishiura et al., 2017), and disruptions in glutamatergic signaling (Uematsu et al.,
2015; Zhao et al., 2019). Complementary evidence of disruption in the WNT pathway
includes hyperactivation in the presence of DISC-1 (Brandon et al., 2009), imbalance
between canonical and non-canonical signaling, and altered mRNA levels of WNT-
related genes (Hoseth et al., 2018). Therefore, TCF4 may be the convergent point of
relevant alterations in the context of neurodevelopment, synaptic plasticity, and cell
signaling.

The necessity to understand how TCF4 works in the context of other genomic
alterations in schizophrenia was clarified by wide chromatin immunoprecipitation
(ChiP) assays and in silico approaches. The identification of TCF4 in a ChIP assay in
SH-SY5Y cells demonstrated that this TF is majorly related to genes involved in axonal
and neuronal development, especially those expressed in the pyramidal neurons of
the somatosensory cortex. Additionally, the results also confirmed prior studies that
suggested targets of TCF4 by using interference RNA techniques or postmortem

transcriptomic analysis of patients with schizophrenia (Xia et al., 2018). A
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transcriptional analysis of the dorsal PFC and olfactory neuroepithelium of
schizophrenia subjects demonstrated that TCF4 is a major regulator in transcriptional
networks in both regions. When comparing cell lineages with TCF4 knockdown, the
impact on these networks was increased in neuronal progenitor lineages compared to
mature glutamatergic neurons, suggesting that TCF4 may be pivotal in early
developmental processes (Torshizi et al., 2019).

TCF4 studies faced a vital limitation in animal models: homozygous knockout
was extremely deleterious, resulting in the death soon after birth (Forrest et al., 2013).
Tcf4 haploinsufficiency in mice resulted in substantial behavior impairments, such as
in social interaction, vocalization, fear conditioning, learning, and memory, which are
improved by inhibiting or silencing HDAC function, suggesting a possible pathway
involved in TCF4 action (Kennedy et al., 2016). A comparison between human and
mouse embryos demonstrated that TCF4 is expressed in the same regions across
time in both species (initially in transient regions of proliferation and then in neurons
during migration) and has similar regulation by associated TF TCF3. TCF4
haploinsufficiency was also related to impairments on neuronal migration, cortical
composition, and synaptic structure (Li et al., 2019a). Similarities between humans,
rhesus monkeys, and mice regarding TCF4 alterations demonstrated structural brain
abnormalities similar to PTHS (Jung et al., 2018).

Interestingly, a study with Drosophila demonstrated that silencing of TCF4
orthologue Da resulted in synaptic and locomotor impairments (Tamberg et al., 2020).
These results highlight the important conservation of TCF4 function in several species,
especially regarding neurodevelopment. Although the animal models may be more
related to PTHS, their insights about pathways involved in schizophrenia are
fundamental to guide further investigations in this theme.

Genetic alterations are not unusual, and the interactions between may underlie
several impairments. Disruption in two TFs relevant to schizophrenia (TNR1 and
TCF4) resulted in a similar outcome in mouse primary neuronal cultures: decreased
synaptic content and neuronal proliferation, probably associated with disruptions in
syntaxin-mediated neurotransmitter release pathway (Rosato et al., 2019). Likewise,
using in silico approaches, six genes (CNTN4, GPM6A, MMP16, PSMA4, GATAD2A,
and TCF4 - the last two are TF) are highlighted as a significant cluster associated with
schizophrenia - when knockdown of this group was replicated in SH-SY5Y cells, major

issues regarding proliferation were observed. This set of evidence brings attention to
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the fact that polygenetic risks need to be considered to better understand the condition
(Ma et al., 2018).

The compilation of all TF described in the “Schizophrenia and TFs” section was
submitted to Reactome® (Wu and Haw, 2017) analysis resulting in a demonstration
of enriched biological pathways associated with this group. Table 5 highlights the most

relevant, like the immune system, gene transcription, cell signaling, and development.

5. Intellectual Disabilities (ID) and TFs

In this section, TFs related to ID, language impairments, and other
characteristics not necessarily strictly associated with specific disorders are discussed
since the pathways involved may be relevant in several conditions.

FOX proteins are a highly conserved group of TFs with many different functions
including cell cycle regulation, energetic metabolism, and stress resistance (Golson
and Kaestner, 2016). A subset of this group, FOXP, have important relations with
cognitive processes, especially language and speech development (Hamdan et al.,
2010; Lai et al., 2001).

Researchers observed an association of a family-related language impairment
(which included speech and written alterations) with a missense mutation on the
FOXP2 gene that disrupted the DNA-binding domain (Lai et al., 2001). Since then, the
‘KE family” improved the understanding of the pathways behind language, and
alterations in FOXP2 were analyzed in several other disorders, including ASD and
schizophrenia (Oswald et al., 2017). The mechanisms related to FOXP2 activity are
still unclear; however, important animal studies brought insights regarding this theme.

An analysis in zebra finch demonstrated that both humans and songbirds have
similar patterns of FOXP2 brain expression throughout development, especially in
regions associated with sensorimotor integration, which are important in both species
for the modulation of vocal expression (Teramitsu et al., 2004). Studies with Foxp2-
mutations in mice showed important alterations in the basal ganglia regarding
dopamine levels, synaptic plasticity, and neuronal morphology (Enard, 2011).
Disruptions on cortico-basal ganglia circuits may be related to MEF2C (myocyte-
specific enhancer binding factor 2C) TF, which represses striatal synaptic and
spinogenesis and is repressed by FOXP2; thus, defects in FOXP2 may lead to a
disinhibition of MEF2C (Chen et al., 2016). Additionally, FOXP2 also seems to

increase GABAergic inhibition on D1 positive neurons in striatum, impairing the
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dopaminergic signaling (van Rhijn et al., 2018) and playing important role in the
maturation of excitatory cortical neurons (Hickey et al., 2019).

In the behavioral field, FOXP2 alterations were associated with social
impairments (Medvedeva et al., 2019), probably related to modifications in the pattern
of ultrasonic vocalizations (Chabout et al., 2016; Gaub et al., 2016). Interestingly,
modifications in FOXP2 restricted to other structures like cartilage also caused
impairments on vocalizations and motor skills, indicating a convergent role of this TF
in brain circuitry and skeletal development (Xu et al., 2018).

FOXP1 descriptions in the context of psychiatric disorders started in 2009, with
a report that a chromosomal deletion in this TF was associated with speech delay,
muscular tone alterations, and malformations (Pariani et al., 2009). Although similar
to FOXP2, when observing language impairments, FOXP1 demonstrated an important
association with ID, autistic-like features, and epilepsy, which highlighted its global
spectrum of action. Interestingly, recent articles observed that similar alterations in
FOXP1 and FOXP2 resulted in different phenotypes: while FOXP2 seemed to be
restricted to verbal impairments, FOXP1 was confirmed to cause more broad and
severe issues in the context of the NDDs (Sollis et al., 2017). The fact that FOXP1
also interferes in language may be explained by its interaction with FOXP2: even when
altered by mutations, FOXP1 retained the ability to interact with FOXP2, which may
end up disrupting FOXP2 action (Sollis et al., 2016).

Homozygous brain loss of FOXP1 in an animal model resulted in a decreased
number of neurons in the striatum and excitatory/inhibitory imbalance in the CAl area
of the hippocampus, as well as autistic-like behaviors including stereotypy and social
impairments (Bacon et al., 2015). In addition, FOXP1 deletion seems to disrupt the
expression of genes related to synaptic plasticity, LTP, and spatial learning in the
hippocampus and genes related to the identity of neurons of the somatosensory cortex
(Araujo et al., 2017). Important alterations found in models with total or partial FOXP1
deletion include reduced pup ultrasonic vocalization, and loss of the sex-associated
differences in these vocalizations (probably by an interesting relation of FOXP1 and
androgen hormones) (Frohlich et al., 2017), in addition to motor issues related to
gastrointestinal function (Fréhlich et al., 2019). Moreover, the ASD-related nonsense
mutation in FOXP1 induced autophagy and impaired neuronal migration and dendritic
morphology (Li et al., 2019b). Taken together, the present data highlight the variety of

functions of FOXP1 in neurodevelopment - which probably are associated with
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hippocampal and striatal function - suggesting that alterations in this TF may lead to a
chain reaction that affects other TFs.

BCL11b (BAF chromatin remodeling complex subunit) is a zinc finger TF with
important roles in the development of the immune system, especially the T
lymphocytes lineage. Heterozygous mutation in this gene was associated with a
severe combined immunodeficiency identified as Immunodeficiency 49, in which the
patient presents features like cranial malformation and absence of corpus callosum
(Punwani et al., 2016). Further studies demonstrated the presence of impaired
speech, motor development, and intellectual disabilities in multiple types of mutations,
with severity being associated with alterations within the DNA-binding site (Lessel et
al., 2018; Prasad et al., 2020; Qiao et al., 2019). Although little is known about BLC11b
specific mechanisms in NDDs, its function is already described in the context of spinal
and neocortex development and hippocampal neurogenesis (Simon et al., 2020).
Since this TF appears to be a link between immune and neurological development,
understanding its functions in psychiatric disorders like ASD and schizophrenia is likely

to be a very promising field of study.

6. Integrative Perspectives

The complexity regarding each cell fate involves a coordinated expression
profile that can be altered in many ways. We observed that genetic structural
alterations in TFs impair their functions significantly, especially when the DNA-binding
domain is affected. Environmental factors also impair the functionality of TFs;
however, the issue here seems to occur at the transcription level, probably altered by
processes like epigenetic modifications and cell reprogramming.

The timing of the alteration also influences the major outcomes. By observing
Figure 2, we can see that the TFs have important peaks of expression in the first or
second trimester of pregnancy. In these moments, processes like neural proliferation
and migration, microglia migration, astrocyte proliferation, oligodendrocyte formation,
and synaptogenesis are guided by a strict time course of TFs expression. If a genetic
alteration limits the TF, we can expect that all processes and other factors associated
with it will be disorganized, inducing significant consequences. For environmental risk
factors, the outcomes would primarily depend on 1) the duration of the risk factor
exposure; 2) the number of pathways associated with the TF that are affected, and 3)

the impacts on upstream and downstream elements. For example, if a relevant TF in
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progenitor cells is affected, we expect considerable impacts in the whole lineage;
conversely, if the alteration happens in more mature cells, we expect more specific
impacts like the inability to develop full functionality.

Finally, the place or cellular type of occurrence indicates the most likely
outcomes. Table 1 demonstrated that several TFs are highly expressed in embryo-
fetal neural structures, especially in progenitor cells that will generate
oligodendrocytes, astrocytes, GABAergic neurons, motor neurons, and others. For
example, if a TF is highly expressed in the ganglionic eminence, we expect that
alterations would induce significant impairments in GABAergic interneurons, the major
population of cells originating from this region. Moreover, the basal expression of a TF
is also fundamental to maintain cell programming, so alterations in other moments (for
example, later periods of fetal life) may induce more subtle alterations that still have
important effects.

In Figure 3, we observe the several interactions between all the TFs provided
by String Database (Szklarczyk et al., 2019), highlighting that interference in one TF
can disrupt many others — directly and indirectly. TFs like TCF4, PAX6, STAT, GATA,
FOXP3, which are cited in several contexts (affected by environmental factors and
also described in genetic and multifactorial disorders), are key points in the interaction
map. Moreover, on the left side of the image, we can observe the distribution of the
factors among the disorders, demonstrating important common points of TF
involvement. Finally, from a biological pathway point of view, we can observe that,
although the disorders are affected by different TFs, similar pathways are described
(Tables 2-5), including transcription regulation, interleukin signaling, WNT/B-catenin
signaling, cellular proliferation, activation of HOX genes and others, suggesting points
of convergence in NDDs.

Thus, taken together, the body of evidence points to the fact that the broad
spectrum of phenotypes observed in multifactorial disorders like ASD and
schizophrenia may be associated with the alterations in TFs induced both by genetic
and environmental triggers. Together with more specific studies of time-course and
place of expression, the association among TFs will improve the understanding of
major common points in the biological pathways, improving the knowledge about
pathophysiology and possible therapeutic approaches in NDDs.
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7. Concluding remarks

The complexity behind neurodevelopmental disorders and risk factors
demands in vivo, in vitro, and in silico approaches to understand how biological
pathways are disturbed in a context of genetic and environmental influences. The TFs
comprise a diverse group of proteins with the ability to modulate RNA transcription,
demonstrating an impressive time- and location-dependent organization, besides
plasticity and susceptibility to possible context alterations. The present review
compiled relevant data on literature regarding the expression and roles played by TFs
during development in different NDDs and neuropsychiatric disorders, considering a
multifactorial approach. Upon the observation of environmental risk factors and
genome interactions, essential to the understanding of the final phenotypes of each
disorder, we conclude that 1) TFs emerge as a point of convergence in NDDs,
modulating neuroimmune alterations, disrupting processes like neuronal maturation,
and causing anatomical changes; and 2) The analysis of TFs in psychiatric disorders
is essential to shed light on molecular features of development still unknown and to
expand the horizons for pharmacological interventions that can significantly improve

the life quality of the affected individuals and their relatives.
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Figure 1: Diagram of neurodevelopmental disorders (NDD). Representation of the
disorders included in the group of NDDs according to DSM-5, highlighting the chosen

for this review.
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Figure 2: Time course of transcription factors expression. The double columns
indicate patterns of expression in the human forebrain (left) and in the cerebellum
(right). Blue gradient intensity is associated with expression peaks throughout time.
Detailed information is available on Table 1. Adaptation from CARDOSO-MOREIRA,
M. et al., 2019.

This article is protected by copyright. All rights reserved.



@

@

ID with genetic ASD
) contribution ’ ADNP MAZ ROR
& @ . & e ASH1 HEY1 NEUROD1 ATF6 NFKB SHOX
o LN e o DLX2 LHX2 NR2F2 DLX5 NRF2 STAT6
® @ -y P o © E2F1 MATH1 POU3F3/ FOXG1 DLX6 PAX5 TBR1
PRullB VAN ® \/ <" .. @ FOXM1 MECP2 SOX10/ SOX5 EN2 PAX6 TBX21
L W T © GTF2i MYF6 SOX2 | FEV PITX3 TSHZ3
S TN | @ @& GTF2IRDMYOG  SOX9 | GATA3 RARB ZNF292
e T oo o \—|_IKzF2 REST
PRERC : T oa \ FOXP3
o | e=—RY R © \ToFY/
& o gf:‘:( o ol cre A \ %
e L,‘ ‘C \/\’ - 3 e O so‘/\'\ X 47“3
& =9 i e
— . S | . - GATAD2A POU3F  STAT1
et VR T LHX6 2 TAL1
e & @ i S MAFB SOX6 TCF3
S IX-—e . NPAS4 SP1
® o . Wat ® SP4

Schizophrenia

Figure 3: Interaction between transcription factors (TFs) distribution among the
disorders. String Database map (Szklarczyk et al., 2019) demonstrates the
interaction between all TFs listed in this review, while the Venn Diagram represents
common and different points of TF involvement in the disorders discussed in this
review. Black lines represent co-expression, cyan lines represent interactions
observed in curated databases, and pink lines represent interactions observed

experimentally.
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Table 1: Compiled of all transcription factors addressed in this review.
Information regarding DNA-binding sites was obtained from a database provided by
LAMBERT, S. A. et al., 2018. TFs are represented in alphabetical order according to
their classes. Regions or cells with high expression of the factors in embryos were
described (In this context, nervous system, immune system, and eye were considered
since they are associated with the scope of the review). Some TFs do not present a
peculiar pattern of expression in these regions (for example, if the expression remains
at similar rates throughout development), so they are described as “Low expression
specificity”. bHLH: basic helix-loop-helix; bZIP: basic leucine zipper domain; HMG:
high mobility group box; WPC: weeks post conception; ZF: zinc finger. *GTF2i and
GTF2ird had less information regarding time course of expression for humans, the
represented data were obtained from mouse studies. Superscript numbers in the TFs
indicate the section where they are cited and discussed. TFs complete denominations
are described in Supplementary Table 1. ** The TF is considered a differential marker

of the associated group of cells.

TF Main DBD Regions or Cells with high expression during embryo life

Brain: Lateral, Medial and Caudal Ganglionic Eminence Progenitor Cells;
d3**, d4** and d5** Neural Progenitor Cells; Anterior Entopeduncular

ASH1/ASCL1 23 bHLH Progenitor Cells
Eye: Bipolar Precursor Cells; GABAergic Amacrine Cells; Rod Precursor
Cells.
ATOH1/MATH1? bHLH Brain: Oligodendrocyte Precursor Cells**

Nervous System: Adult Oligodendrocyte Precursor Cells.
Eye: Anterior Lens Epithelial Cells; Equatorial Lens Epithelial Cells; Late

3
HE=: bHLH Retinal Progenitor Cells**; Muller Glia Precursor Cells**; Early Retinal
Progenitor Cells**.
HEY12 bHLH Nervous System: Hypothalamus; Hippocampus; Thalamus; Cerebellum;
Amygdala; Striatum; Medulla Oblongata; Cerebral Cortex; Pons
HIF-2a3 bHLH Low expression specificity
MYF62 bHLH Eye: All Amacrine Cells
MYOG? bHLH Low expression specificity
Nervous System: Primitive Spinal Cord; Mesencephalic Ventricular Zone;
Telencephalon; Diencephalon; Metencephalic Alar Plate; Spinal Ventral
Columns; Cerebellar Ventricular Zone; Spinal Dorsal Columns;
NEUROD123 bHLH Metencephalic Basal Plate; Epithalamus; Pituitary Gland; Cerebellum;

Midbrain tegmentum; Lateral Ventricle
Eye: All Amacrine Cells; Bipolar Precursor Cells; Cone Precursor
Cells; Mature Rod Bipolar Cells; Rod Precursor Cells; Mature Rod Cells;
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Nervous System: Meso-diencephalic Dopaminergic Precursor Cells **;
Motor Neural Progenitor Cells

3
NEURCG? bHLH Eye: Cholinergic Amacrine Cells; Bipolar Precursor Cells; Displaced
Amacrine Cells; GABAergic Amacrine Cells; Dopaminergic Amacrine Cells
Nervous System: Amygdala, Anterior Cyngulate Cortex, Caudate, Frontal
NPAS45 bHLH Cotex, Hippocampus, Hypothalamus, Nuclues Accumbens, Putamen,
Substantia Nigra, Cerebellar Cortex
Nervous System: Oligodendrocyte Precursor Cells; MN Progenitor Cells**;
OLIG23 bHLH Lateral, Medial** and Central Ganglionic Eminence Progenitor Cells;
Anterior Entopeduncular Progenitor Cells; Neocortical Radial Glia Cells;
Protoplasmic Astrocyte Cells
TAL15 bHLH Nervous System: V2 Neural Progenitor Cells**
Nervous System: Oligodendrocyte Precursor Cells
TCF35 bHLH Immune System: Small Pre B-Cells; Pro B-Cells; B-cell Progenitor Cells;
Large Pre B-Cells; Immature B-Cells
Nervous System: Hypothalamus; Thalamus; Striatum; Medulla Oblongata;
Cerebral Cortex; Midbrain tegmentum
TCF4246 bHLH Eye: Amacrine Cells
Immune System: pre Conventional Dendritic Cells; Plasmacytoid Dendritic
cells; Mature B-Cells
Nervous System: Roof Plate Cells; Cranial Neural Crest Cells.
5 1
MAFB bZIP Eye: Anterior Lens Epithelial Cells
Nervous System: Cerebral Cortex, Hippocampus, Basal Ganglia,
MAFF3 bzZIP Cerebellum
Immune Cells: Granulocytes, NK cells
NRF24 bzIP Low expression specificity
Immune System: T Helper Cells; T-Cytotoxic Cells;
6
RSELLE C2H2 ZF Double Negative 2 Thymocytes
EGR23 C2H2 ZF Nervous System: Myelinating Schwann Cells**
Helios/ IKZF24 C2H2 ZF Immune System: T cells, B cells, Granulocytes
KLF43 C2H2 ZF Immune System: Macrophages
MAZ4 C2H2 ZF Low expression specificity
RE-1 or REST3# C2H2 ZF Low expression specificity
Sp1s CoH2 ZF Eye: Fetal Corneal Basal Epithelial Cells; Keratocytes; Endothelial Cells;
Keratoblasts
Spas CoH2 7F Nervous System: Hypothalamus; Hippocampus; Thalamus; Cerebellum;
Amygdala; Striatum; Medulla Oblongata; Cerebral Cortex; Pons
TSHZ34 C2H2 ZF Immune System: Natural Killer Cells, Neutrophil
ZNF2924 C2H2 ZF Immune System: pre—Conventional Dendritic Cells
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C2H2 ZF,

ZEB23 Homeodom Nervous System: Myelinating Oligodendrocyte Cells
ain
E2F12 E2F No differential expression during embryo stages
Nervous System: Hypothalamus; Cerebellum; Amygdala; Cerebral Cortex;
FEV4 Ets Midbrain tegmentum; Midbrain; Lateral funiculus; Midbrain; Basal Forebrain;
Pons+Medulla;Septum;
PU 13 Ets Immune System: Small Pre B-Cells; Pro B-Cells Granulocytes; Osteoclast
' Precursor Cells**; B-cell Progenitor Cells
] . . . .
FOXG124 Forkhead Nervous System: Telencephalic CPgljlgenltor Cells**; Mature Endothelial
FOXM12 Forkhead No differential expression during embryo stages
FOXP15 Forkhead Nervous System: Lateral motor column neuron-like cells
FOXP2¢ Forkhead No differential expression during embryo stages
Nervous System: Hypothalamus
FOXP3245 Forkhead Eye: Retina
Immune System: CD4+ lymphocyte
. H H *% :
GATA34 GATA Immune System: Hematop0|et|p Stem Cells**; Common Lymphoid
Progenitor Cells**
GATAD2A5 GATA No differential expression during embryo stages
GTF212 GTF2l-like No differential expression during embryo stages
GTFR2ird? GTF2l-like No differential expression during embryo stages
Nervous System: Oligodendrocyte Precursor Cells**; Schwann Precursor
SOX10? HMG/Sox Cells**Diencephalic Neural Crest Cells**; Mesencephalic Neural Crest
Cells**; Rhombencephalic Neural Crest Cells**
SOX112%5 HMG/Sox No differential expression during embryo stages
Nervous System: Bergmann Glia; Adult Neural Stem Cells
SOX223 HMG/Sox Eye: Late Retinal Progenitor Cells Preplacodal Lens Ectoderm Cells Early
Retinal Progenitor Cells Lens Placode Cells
Nervous System: Telencephalon; Metencephalic Alar Plate; Spinal Dorsal
Columns; Metencephalic Basal Plate
3 L
S HMG/Sox Immune System: Plasmacytoid Dendritic cells; Megakaryocyte-Erythroid
Precursor Cells; Conventional Dendritic Cells Il
SOX524 HMG/Sox Nervous System: Oligodendrocyte Precursor Cells
SOX65 HMG/Sox Nervous System: Adult Dgpa_mmerglc Neurons; Adult Oligodendrocyte
Precursor Cells; Oligodendrocyte Precursor Cells
Nervous System: Late MN Progenitor Cells; d3, d4 and d5 Neural
Progenitor Cells; Bergmann Glia; Adult Neural Stem Cells; Endothelial
SOX9? HMG/Sox Cells; Oligodendrocyte Precursor Cells;

Eye: Late Retinal Progenitor Cells; Mature Muller Glia Cells; Mature Retinal
Pigmented Epithelium Cells;
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Homeodom

ADNP*# ain No differential expression during embryo stages
ARX3 Hom;ﬂdom Nervous System: Floor Plate Cells Late Floor Plate Cells
Nervous System: Lateral Ganglionic Eminence Progenitor Cells; Anterior
Homeodom Entopeduncular Progenitor Cells; Caudal Ganglionic Eminence Progenitor
DLX13 ain Cells; Medial Ganglionic Eminence Progenitor Cells; Endothelial
Cells; Mesencephalic Neural Crest Cells; Cranial Neural Crest Cells;
Nervous System: Lateral, Medial and Caudal Ganglionic Eminence
Homeodom Progenitor Cells; Anterior Entopeduncular Progenitor Cells; Mature
DL X223 ain Endothelial Cells; Endothelial Cells
Eye: Mature Horizontal Cells; Dopaminergic Amacrine Cells; Dopaminergic
Amacrine Cells; Mature Ganglion Cells;
DL X534 Homeodom Nervous System: Mesencephalic Neural Crest Cells; Diencephalic Neural
ain Crest Cells; Cranial Neural Crest Cells
DL X6* Hom;adom Nervous System: Cranial Neural Crest Cells
Nervous System: Fetal Dopaminergic Neurons; Myelinating
EN24 Homeodom Oligodendrocyte Cells; Dopaminergic Progenitor Cells; Early Floor Plate
ain Cells; Meso-diencephalic Dopaminergic Precursor Cells; Hinge Point
Cells; Isthmus Cells; Neural Fold Cells;
Nervous System: Primitive Spinal Cord; Telencephalon; Mesencephalic
Basal Plate; Diencephalon; Metencephalic Alar Plate; Metencephalic Basal
2 Homeodom
LHX2 ain Plate
Eye: Late Retinal Progenitor Cells; Mature Muller Glia Cells; Early Retinal
Progenitor Cells; Retinal Pigmented Epithelium Progenitor Cells;
L HX65 Homeodom Nervous System: Medial Ganglionic Eminence Progenitor Cells**Cranial
ain Neural Crest Cells**
Homeodom Nervous System: Myelinating Oligodendrocyte Cells; Late MN Progenitor
NKX2.23 ain Cells **; V3 Neural Progenitor Cells; Astrocyte Precursor Cells; Basal Plate
Cells
Homeodom Nervous System: Dopaminergic Neurons
PITX3* ain Eye: Anterior Lens Epithelial Cells; Lens Vesicle Cells; Lens Placode Cells
Homeodom Nervous System: Hypothalamus; Pituitary Gland; Thalamus; Pons
RAX3 : Eye: Late Retinal Progenitor Cells; Mature Rod Cells; Muller Glia Precursor
ain : .
Cells; Early Retinal Progenitor Cells;
SHOX* Hom;gdom No differential expression during embryo stages
Homeodom Nervous System: Anterior Neural Ridge Cells; Zona Limitans
SIX33 ain Intrathalamica Cells; Neural Fold Cells; Cranial Neural Plate
Cells; Intraembryonic Neural Ectoderm Cells;
Homeodom Nervous System: Lateral and Caudal Ganglionic Eminence Progenitor
PAXG34 ain: Paired Cells; d3, d4 and d5 Neural Progenitor Cells; Mature Endothelial
,box Cells; Endothelial Cells; Neocortical Radial Glia Cells; Early MN Progenitor

Cells; VAL and VA2 Fibrous Astrocyte Cells;
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Homeodom

3 . . : .
POU3F1 ain: POU No differential expression during embryo stages
POU3FE25 Homeodom Nervous System: Pro-myelinating Schwann Cells**; Immature Schwann
ain; POU Cells
Nervous System: Hypothalamus; Thalamus; Striatum; Medulla Oblongata;
Homeodom Cerebral Cortex; Midbrain tegmentum; Mesencephalic Ventricular Zone;
POU3F3? ain: POU Telencephalon; Diencephalic Ventricular Zone; Diencephalon;
k Metencephalic Alar Plate; Cerebellar Ventricular Zone Metencephalic Basal
Plate
POU5F13 queodom No differential expression during embryo stages
ain; POU
HSF13 HSF No differential expression during embryo stages
MEE2CS MADS box Nervous System: Telencephalon; Metencephalic Alar Plate; Metencephalic
Basal Plate
Methyl-CpG
MECP22 bl?\';‘ﬁg No differential expression during embryo stages
AT-hook
NR2F22 Nuclear No differential expression during embryo stages
receptor
RARB* Nuclear No differential expression during embryo stages
receptor
RORyt* Nuclear Immune System: Double Positive Thymocytes
receptor
Nervous System: Metencephalic Alar Plate; Metencephalic Basal Plate
PAX5* Paired box Immune System: Small Pre B-Cells; Pro B-Cells; Large Pre B-
Cells; Immature B-Cells
NE-Kb34 Rel Nervous System: Medulla Oblongata; Metencephalic Basal Plate
Nervous System: Cerebral Cortex
5
ST STAT Immune System: T Helper Cells; T-Cytotoxic Cells
STAT334 STAT No differential expression during embryo stages
T-bet* T-box Eye: GABAergic Amacrine Cells
TBR1%4 T-box Nervous System: Hypothalamus; Thalamus Cerebral Cortex;

Telencephalon; Diencephalon; Metencephalic Alar Plate
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Table 2: Enriched pathways associated with the set of transcription factors
described as altered in Section 2 — Genetic-associated neurodevelopmental
disorders. All TFs described in this section were summarized and submitted to
analysis in the Reactome® Software. The outcome demonstrated the most
represented biological pathways associated with the specific group, suggesting
important pathways that may be interfered by impairments in the TF (which do not
exclude other pathways). The table is an adaptation of the complete map
(Supplementary Figure 1). 'Rett Syndrome; 2Pitt Hopkins Syndrome; 3SOX-
associated disorders (Lamb-Shaffer Syndrome; Waardenburg—Hirschprung disease,
campomelic dysplasia and Coffin-Siris Syndrome); “Williams Syndrome; °Dravet

Syndrome.

Gene Transcription

Alteration in MECP2 binding processes to methylated DNA?;
Regulation of MECP2 transcription and its activity on TF and pathways associated with
GABAergic signaling?;
FOXO-mediated transcription of cell cycle genes?
Regulation of transcription mediated by RUNX1 AND 3 genes?®
Regulation of the transcription pathway associated with the YAP1 TF#
Regulation of transcription associated with the development of Treg lymphocytes*.

Cell Cycle®

Cyclin D signaling®;
Regulation of DNA duplication processes®;
Regulation of G1 and G2 states and cellular differentiation processes®.

WNT/B-catenin Pathway?

Developmental Biology Pathways?®

Activation of HOX genes during differentiation®
Schwann cell myelination®

NOTCH 3/4 signaling pathway*

Myogenesis*
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Table 3: Enriched pathways associated with the set of transcription factors
described as altered in Section 3 — Environmental factors and TFs in Psychiatric
Disorders. All TF described in this section were summarized and submitted to
analysis in the Reactome® Software. The outcome demonstrated the most
represented biological pathways associated with the specific group, suggesting
important pathways that may be interfered by impairments in the TF (which do not
exclude other pathways). The table is an adaptation of the complete map
(Supplementary Figure 2). The superscript numbers indicate overlaps of enriched
pathways observed in this section with: 'Genetic disorders; 2 Autism Spectrum

Disorder, and 3Schizophrenia.

Gene Transcription

Regulation of RNA polymerases | and I1%:23;
Regulation of sSiRNA and miRNA biogenesis;
Regulation of transcription associated with RUNX 1 and 3 genes®?3,

Cell Signaling

Autophagy;
Establishment of senescence-associated secretory phenotype;

Estrogen signaling;

Leptin signaling?3;

NF-kb signaling?;
NTRK signaling;

Response to hypoxia;
B-catenin deactivation®?;

Notch signaling

Development

Activation of HOX genes'?;

Adipocyte differentiation;
Cell proliferation??;
Granulopoiesis?®;
Maintenance of differentiation especially in the rhombencephalon?;
Myogenesis?;
Regulation of myelination in Schwann cells?;

Stem cell differentiation??,

Immune System

This article is protected by copyright. All rights reserved.



Control of inflammasome production?;
Interferon Signaling??;
Interleukin signaling (IL12, 1L42, IL6%3, IL9%3, IL1223, 1L1323, IL1523, IL172, 1L212, 1L232%3, IL2723,
IL3523)
MAPK activation?;
Regulation of pathways associated with Toll-like 2, 3, 4, 5, 7, 8, 9 and 10 receptors.
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Table 4: Enriched pathways associated with the set of transcription factors
described as altered in Section 4.1 - Autism Spectrum Disorder (ASD) and TFs.
The TFs described in this section were summarized and submitted to analysis in the
Reactome® Software. The outcome demonstrated the most represented biological
pathways associated with the specific group, suggesting important pathways that may
be interfered by impairments in the TF (which do not exclude other pathways). The

figure is an adaptation of the complete map (Supplementary Figure 3).

Gene Transcription

Epigenetic regulation of genetic transcription;
Regulation of pathways associated with nuclear receptors;
Regulation of RNA polymerases | and II;
Regulation of transcription associated with MECP2;
Regulation of transcription associated with RUNX 1, 2 and 3 TF and their impact on the WNT pathway.

Cell Signaling

Leptin signaling;
NF-kb signaling;
PDGF signaling;
Tyrosine kinase receptor signaling;
WNT / beta catenin signaling.

Development

Activation of HOX genes;
Cell proliferation;
Maintenance of differentiation especially in the rhombencephalon;
Stem cell differentiation.

Immune System

Activation of chemokine production;
Control of inflammasome production;
Detection of pathogenic DNA and signal transduction;
GM-CSF signaling;
Interferon signaling;
Interleukin signaling (IL1, IL3, IL4, IL5, IL6, IL9, IL12, IL13, IL15, IL17, IL21, IL23, IL27, IL35);
MAPK activation.

Protein Metabolism

Activation of chaperones.
Incretin signaling;
Synthesis of peptide hormones.
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Table 5: Enriched pathways associated with the set of transcription factors
described as altered in Section 4.2 — Schizophrenia and TFs. The TFs described
in this section were summarized and submitted to analysis in the Reactome® Software.
The outcome demonstrated the most represented biological pathways associated with
the specific group, suggesting important pathways that may be interfered by
impairments in the TF (which do not exclude other pathways). The Table is an

adaptation of the complete map (Supplementary Figure 4).

Gene Transcription

Epigenetic regulation of gene transcription;
Regulation of RNA polymerases | and I,
Regulation of transcription associated with MECP2;
Regulation of transcription associated with RUNX 1, 2 and 3 genes.

Cell Signaling

Leptin signaling;
PDGF Signaling;
SCF/KIT Signaling;

Tyrosine kinase receptor signaling;
WNT/ B-catenin signaling;
WNT-independent B-catenin pathways;
B-catenin degradation complex.

Development

Cell proliferation;
Granulopoiesis;
Myogenesis;
NODAL signaling;
Stem cell differentiation.

Immune System

Growth hormone signaling;

Interferon alpha, beta and gamma signaling;
Interleukin signaling (IL2, IL4, IL6, IL9, IL12, IL13, IL15, IL20, I1L23, 1L27, IL35).
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Graphical Abstract

" Genetic and environmental risk factors
for neurodevelopmental disorders
(NDD) induce convergent impairments
on transcription factors (TF).

? Structural alterations in DNA-binding
domains, epigenetic alterations, and
environmental interference may induce, in
the end, loss of TF functionality.

The impairments on TF functions due to different
causes may induce important analagous
alterations in different systems (depending on
time-course and tissue) in the context of NDD.
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