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This article explores a number of issues associated with the problem of calculating and
detecting electromagnetic quantum induced energy and stress in a stationary dielectric
material with a smooth inhomogeneous polarizability. By concentrating on a particular
system composed of an ENZ-type (epsilon-near-zero) meta-material, chosen to have a
particular anisotropic and smooth inhomogeneous permittivity, confined in an infinitely
long perfectly conducting open rectangular waveguide, we are able to deduce analyti-
cally from the source-free Maxwell’s equations and their boundary conditions a complete
set of bounded harmonic electromagnetic evanescent eigen-modes and their associated
eigen-frequencies. Since these solutions prohibit the existence of asymptotic scattering
states in the guide, the application of the conventional Lifshitz approach to the Casimir
stress problem becomes uncertain. An alternative approach is adopted based upon the
spectral properties of the system and a regularization scheme constructed with direct
applicability to more general systems composed of dielectrics with smooth inhomoge-
neous permittivities and open systems that may only admit evanescent modes. This
more general scheme enables one, for the first time, to prescribe precise criteria for the
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extraction of finite quantum expectation values from regularized mode sums together
with error bounds on these values, and is used to derive analytic or numeric results for
regularized electromagnetic ground state expectation values in the guide.

Keywords: Casimir; regularization; inhomogeneous dielectric; ENZ metamaterial.
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1. Introduction

It is, perhaps, surprising that 70 years since Casimir’s prediction [I] of quantum
induced electromagnetic forces between a pair of rigid, plane, perfectly conducting,
uncharged plates in a material vacuum, there remain many challenging problems
in constructing a viable general theory of quantum fluctuation phenomena in con-
tinuous dielectric media. With the rise in developments in nanotechnology and the
fabrication of artificial dielectrics (meta-materials), such problems deserve scrutiny
since their resolution has direct relevance to both technology and our understanding
of fundamental aspects of quantum electrodynamics.

One of the earliest attempts to extend Casimir’s work to accommodate quan-
tum induced stresses in dielectric media [2] employed the powerful “fluctuation-
dissipation” approach to calculate the stress between two separated planar
half-spaces in the vacuum. It provided an analytic expression for such stresses
for dispersive media with piecewise inhomogeneous, lossy permittivity in thermal
equilibrium at arbitrary temperatures. The derivation of this expression has since
been intensively explored from a number of different starting points and has led to
some confusion regarding its universality since differing points of departure often
exploited different basic assumptions in their derivations. This has recently led to
some authors arguing that the original Lifshitz theory does not have such claimed
universality [3]. One might take the attitude that more recent derivations of the
Lifshitz formulae render the early derivations obsolete. However, alternative mod-
ern derivations [4] are also circumscribed by assumptions that are often implicit
and not always mutually compatible.

In common with many methods in quantum field theory a regularization scheme
is needed to ameliorate infinities that often arise during the computation of cer-
tain physical quantities involving an infinite number of field modes. In general such
procedures within a particular scheme lead to the isolation of singularities that
are removed to render expressions of interest finite. It remains an open question
whether any non-uniqueness of this process invalidates the scheme involved since
the final arbiter of all such schemes remains validation of the result by experiment
[28]. Furthermore, there is little consensus in the literature on how best to interpret
any regularization process that extracts a finite Casimir energy or stress from a
physical standpoint. Opinions vary, ranging from regarding Casimir regularization
as a matter of definition to interpretations based on physical properties of the sys-
tems in interaction. For example, in the computation of finite forces between disjoint
open (interacting) continua part of the mathematical procedure is sometimes
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justified as the removal of infinite back reactions of media sub-systems on them-
selves. Lifshitz used this argument in his original paper [2] and claimed that infi-
nite stresses are “in fact compensated by similar forces at the other side of the
body”. Without some indication about the mechanical constitutive properties of
the media involved, this is a strong statement should any of them sustain inhomo-
geneous stresses in non-symmetric equilibrium configurations. In addition, certain
regularization recipes are sometimes advanced as giving regularization independent
results without full justification. While admitting that a number of different schemes
appear to yield identical results it is not clear why others that yield different results
should a priori be discarded. Since the experimental detection of Casimir forces on
non-uniform material (or more generally stresses in dielectric media) is challeng-
ing, particularly in the presence of gravitational fields and thermal fluctuations,
a precise formulation that underpins each regularization scheme predicting such
phenomena is clearly necessary.

To simplify computations, much theoretical work has concentrated on planar [5],
spherically or cylindrically symmetric piecewise smooth [6] and piecewise homoge-
neous dielectric media composed of mechanically rigid sub-structures that respond
linearly to only quantum electromagnetic fluctuations [7]. Many recent derivations
approach Lifshitz stresses in media by first calculating a regularized energy (or free
energy in a thermodynamic context). For systems composed of piecewise homoge-
neous, isotropic dielectrics, the quantum induced total mechanical pressure across a
dielectric interface is then sought by differentiating an integrated expectation value
of a regularized interaction energy with respect to a geometrical parameter. How-
ever computing a quantum induced stress at any point of a piecewise anisotropic or
inhomogeneous dielectric medium with smooth spatially varying permittivities, in
general, requires calculating an expectation value of a regularized stress tensor that
includes the sum of both electromagnetic and mechanical stresses. In many circum-
stances, an essential precursor to this analysis is an estimation of the response of
the electromagnetic spectral properties of a system to a variation in the geometry
and constitutive properties of the components that comprise the system.

Although no natural or fabricated material continuum is strictly inextensible
many Casimir calculations on media at rest proceed by assuming that any non-
fluidic volume filling dielectrics involved are mechanically rigid (incompressible)
and remain static. This inhibits any induced electrostriction effects. However these
assumptions imply (even in the absence of quantum induced stresses and inhomo-
geneous stresses due to the weight of the medium) that the materials involved may
be subject to classical mechanical constraints that will result in (possibly localized)
classical mechanical stresses (see Sec. 2]). Although such mechanical stresses may
not influence the electromagnetic spectral problem they are important [8] when it
comes to interpreting the results of calculation in order to confront prediction with
experiment. For example, in the Lifshitz configuration, both the induced Casimir
type stresses that arise in the infinite volume rigid plane separated dielectric half
spaces and the constraint induced stresses needed for static equilibrium may be

1950002-3



S. Goto, R. W. Tucker & T. J. Walton

different from those in finite volume subsystems with similar dielectric properties
used in any laboratory setup.

It has recently been suggested [J] that the Lifshitz prescription can be used to
construct the interface stresses for a pair of slabs with piecewise smooth inhomoge-
neous permittivities by regarding each slab as composed of a large but finite stack of
piecewise homogeneous permittivities and then taking the limit as the number in the
stack tend to infinity. That this does not in general yield a finite result should come
as no surprise since the regularization scheme associated with the reflection coeffi-
cients for a finite stack of piecewise homogeneous media is not guaranteed to yield
compatible results when using the reflection coefficients associated with the lim-
iting smooth inhomogeneous medium. Numerical evidence supports this assertion.
This leaves open the question how best to calculate quantum expectation values of
regularized electromagnetic stress tensor components for media with smooth but
inhomogeneous permittivities even at zero temperature and without dissipation.

We have argued in [7] that for the original Lifshitz open system, one can proceed
without explicit mode regularization and first enclosing such systems in a confining
cavity of finite volume and then letting the cavity expand to infinite volume.* The
physically allowed quantum states for open media involve mode functions that are
regular at all points in space and spatially bounded at infinity. If, furthermore, some
propagating modes enable one to construct spatially asymptotic scattering states,
one can in principle compute reflection and transmission coefficients, even in the
presence of smooth inhomogeneous dielectric media in the system. In the absence of
dissipation, one can then attempt to construct an analytic function in the complex
angular frequency plane with properties that enable one to discard certain contours
in the right-half plane. The singularity structure of the reflection coefficient(s) con-
tains information about the allowed evanescent Maxwell eigen-modes and one may
generate (via the Cauchy integral formula) a sum rule relating double integrals over
complex functions of real frequency to double integrals of such functions over the
imaginary frequency axis. It is this latter double integral that can ultimately be
related to expressions proposed by Lifshitz, based on a regularized Maxwell stress
tensor in dielectric media. In this approach, when asymptotic propagating modes
exist, it is the construction of appropriate analytic functions from the associated
reflection coefficients that ensures a viable regularization scheme and yields results
equivalent to those found by Lifshitz in his original analysis. In general, however, for
media where such scattering states are not present, the traditional Lifshitz approach
to the calculation of Casimir stresses in polarizable media is, at best, suspect.

Since all physical systems are in reality open it may appear at first sight that
aside from technical complications, the general approach taken by Lifshitz et al.
offers, in principle, the only avenue to estimate Casimir type stresses in open sys-
tems, including those with spatially varying permittivities. However with the advent

aFor open systems, one can strictly construct a complete set of orthogonal electromagnetic modes
without recourse to a distributional normalization.
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of meta-material technology it is possible to contemplate open dielectric systems
that do not permit propagating electromagnetic modes. The absence of scattering
states then prohibits any approach based on the use of analytic functions con-
structed out of asymptotic reflection or transmission coeflicients. For such systems
an approach based on the construction of regularized expectation values of Maxwell
stress tensors offers a possible alternative. In the following such an alternative is
discussed in some detail for a particular open waveguide geometry filled with a
particular spatially smooth inhomogeneous (non-dispersive) dielectric medium.

This article is organized as follows. Concerning the imposition of mechanical
constraints needed to maintain material interfaces in a rigid configuration, Sec.
summarizes the conditions involved in maintaining classical static equilibrium in the
presence of stationary electromagnetic quantum fluctuations. In Sec. [3] a particular
model of a lossless, dispersion free but spatially smooth inhomogeneous dielectric in
a perfectly conducting waveguide is introduced that although open, does not admit
propagating electromagnetic modes of any frequency. The electromagnetic spectral
problem for this system is solved exactly. Section [l discusses electromagnetic field
quantization in a classical dielectric background and the problem of calculating
quantum energies and stresses. With the aid of the Euler-Maclaurin summation
formula, a consistent regularization scheme is formulated in Sec. Bl to facilitate such
calculations and offers, for the first time, a means to reliably extract possible errors
in numerical estimates from the remainder terms in the Euler—-Maclaurin expansion.
In Sec. [ this summation scheme is verified by evaluating analytically the regular-
ized electromagnetic quantum induced internal energy and stress inside a particular
closed perfectly electrically conducting cuboid containing a homogeneous dielectric.
This is compared in Sec. [l to an analytic calculation of the regularized quantum
induced energy in a particular open waveguide containing a spatially smooth inho-
mogeneous dielectric that does not permit propagating electromagnetic modes in
the guide. These analytic results are found to be in good agreement with a new
numerical scheme based on a subtraction procedure, the interpretation of which is
discussed in Sec. Bl In Sec. [@ we summarize our results and conclude that they
offer a viable method to estimate quantum induced stresses in systems with smooth
inhomogeneous permittivities and a viable numerical regularization scheme with
error estimates derived from a generalized Euler—-Maclaurin summation.

2. Continuum Statics

The detection of electromagnetic Casimir forces on material continua in the lab-
oratory is notoriously difficult due to the competing effects of classical stresses of
non-electromagnetic origin. Material containing an inhomogeneous dielectric may
also be composed of an inhomogeneous substance with a variable mass density.
Its weight in the laboratory may then give rise to additional classical stresses that
depend on the orientation and geometry of the material as well as its compressibility
and temperature.
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In this section, we summarize the classical Newtonian isothermal balance laws
for a static configuration of rigid (incompressible) massive material bodies that
can interact with Newtonian gravity and exhibit linear electrical polarizability in
external electromagnetic fields. Continuum mechanics in Euclidean 3-space exploits
the Killing symmetry of the Euclidean 3-metric at a fundamental level. Thus, in a
global Cartesian coordinate system, points z in this space can be labeled {z*} with
—00 < 2% < 00, i =1,2,3 and in these coordinates, the Euclidean 3-metric tensor
field is written

g= 5ijdxi ® dx?

in terms of the Kronecker symbol d;; with 7,5 = 1,2,3. Furthermore, in these
coordinates, the vector fields {9/9z'} = {0;} satisfy Ls,g = 0 and constitute a
basis of Killing vector fields for R3. A three-dimensional material body I can be
described by a map

®’:[0,1]° —» R?
(u1,uz,uz) — " (uy,uz,us3)

where the parameter domain [0, 1]? is conveniently the unit 3-cube. In R3, a classical
material Cauchy stress tensor field on the material body I can be written

G'=gj; (z)dz® @ da?.
If X = X(z)0; is an arbitrary vector field on R3, we write
G'(X) = Gj;(2) X" (x)da’
and
ok = #(G" (X)) = G(2) X' (z) #da’ = G;(2) X" (x)e”y,dz" A da!

where # is the Hodge map [I0] written here in terms of the Levi-Civita alternating
symbol sjkl. With the aid of the map ®’, restricting its image in R? to a surface, any
2-form o can be “pulled back” to any 2-chain parameterizing any two-dimensional
surface in R3 and thus facilitates the construction of integrals of stress (or torque
density) over arbitrarily shaped surfaces when X generates translations (or rota-
tions relative to any origin).

If a material body does not deform under stress, it is said to be incompressible. In
general, properties of incompressibility may reside anywhere throughout the body
or in a particular region in the neighborhood of its perimeter. Consider then a region
of an isolated body with finite volume V' and stress tensor G’ bounded by a single
closed surface A’. Let A" be in complete contact with an incompressible medium of
volume V. Let V' be bounded by surfaces A" and A'"* where A" is in complete
contact with an exterior medium having stress tensor G'** (see Fig. [Il). The stress
tensors G' and G''' transmit electromagnetic influences to all regions of R3, but
the stress in region 11 must be determined from any inextensibility constraints that
maintain its rigidity. In addition to the forces transmitted by G' and G''*, there are
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Fig. 1. Three-dimensional domains I, IT and IIT and bounding surfaces A’ and A!!! referred
to in Sec.

in general additional “body forces” acting in regions I, I'1 and 111 due to externally
directed fields. These include gravitational forces and externally prescribed forces
on the body required to maintain it in static equilibrium with its environment.

The Cartesian component of the total contact force G/[A”] in direction 0; is
J 4503, for J € {I,I1I}. If the body is to remain in static equilibrium under
the action of these forces and additional body forces with Cartesian components
BF[V*] for L € {I,II} together with integrated mechanical forces with Cartesian
components R!'[V''] that maintain the shapes of V' and V!, one has the global
static equilibrium conditions

GilAT+ G AM+ BV |+ BV +R;"V']=0 fori=1,2,3. (2.1)

To maintain the static equilibrium of a collection of stationary interacting but
isolated bodies of fixed shape, further externally applied stresses are necessary.
In general, these additional stresses can be applied in different ways to maintain
equilibrium. Such stresses can be implemented by external mechanical forces that
are distributed over materials that physically connect the bodies or by external
static force fields interacting with them.

Even if one or more of the bodies do not have a finite volume, then the arguments
above that require the presence of deformation resisting stresses remain. However,
they then apply to any arbitrary finite sub-domain containing an inextensible body
with a finite volume and part of its boundary. It is worth noting that in estab-
lishing the external stresses required to maintain static equilibrium of a collection
of material bodies (whether deformable or not), one stores potential energy that
can be released when some or all of the applied constraints are released. If V' is a
domain containing part or all of the volume of a stationary body in the presence
of external fields transmitted to it by a stress tensor G’ and body force density B,

1950002-7



S. Goto, R. W. Tucker & T. J. Walton

the integrated force in direction 0; on V' is
FilV'l =G{[oV'] + B/ [V'] (2.2)

where OV’ denotes the boundary of V'. For a volume V' containing material with
mass density p having finite support in V' immersed in the Earth’s gravitational
field

B[V = —go/ pg (03,0;) daz' Adx® Adx® fori=1,2,3
VI

in terms of the Earth’s acceleration of gravity go and 03 pointing vertically up from
the surface of the Earth. Furthermore, if G' is smooth on V*

giov') = [ o
oy!

In this framework, the 3-domain V' is ®/([0,1]?) and 9V is its boundary. It fol-
lows from (2] that for an isolated body, (Z2Z) will not be the same as fAIII a5,
even if one neglects gravitational body forces. Since p > 0, the gravitational body
force is strictly only zero if gg is zero. However, even if the body has a dielectric
permittivity that depends upon position, the integrated contact force G/[0V'] in
an inhomogeneous electromagnetic field is not guaranteed to be always non-zero.
These arguments based on classical balance laws lead immediately to:

Theorem 2.1. In the limit when the volume V'' for an isolated body tends to
zero and the forces BI'[V!'] + R [V'] tend to an integrated surface traction force
component T;'[A'], the static balance conditions become:

GIAT+ G/ A"+ BV + T'[A'] =0 fori=1,2,3 (2.3)
where
‘I AI = 1' BII VII RII VII
TN = Jim (BRI D))
and G} [A’] is the integrated contact force on the area A’ bounding the volume V" for
J e {I,11,III}. In this situation, there will exist a non-zero jump G {a'] — G o]
compatible with 23) across any interface o’ C A”.

In most practical cases of relevance, it is precisely at such interfaces where the
characteristic properties (such as mass density or permittivity) change discontinu-
ously and where additional information is required in order to match fields across
these interfaces. In the context of constructing Casimir forces on a collection of
rigid dielectric bodies, one requires a specification of all electromagnetic interface
conditions and boundary conditions for global harmonic solutions to Maxwell’s
equations, together with a Maxwell stress tensor S” for each body in the system.
After quantization of the electromagnetic field in the background of a classical
dielectric medium, the above balance conditions and definition ([22]) should be used
with G/[0V”] replaced by its stationary regularized ground state expectation value
for i = 1,2, 3 and each domain of volume V7 in the system.
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3. Eigenmodes in a Smooth Inhomogeneous Dielectric

In this section, following the methodology in [5], we construct a complete set of
electromagnetic eigen-modes in an infinitely long waveguide of uniform rectangular
cross-section filled with a rigid dielectric medium. If the medium has a spatially
homogeneous and isotropic permittivity, a waveguide composed of sides with arbi-
trary conductivity can sustain propagating electromagnetic fields with a continuum
of frequencies above a series of mode cutoff frequencies (the frequency cutoff is
abrupt — i.e. each harmonic mode has a unique cutoff frequency — if and only if
the sides are perfectly conducting) determined by the geometric dimensions of the
cross-section and conductivity of the medium and sides of the guide. The same is
true for smooth inhomogeneous isotropic media with relative permittivity €. > 1
at all points inside the dielectric. However, as will be shown explicitly below, if
the medium possesses a positive but smoothly varying inhomogeneous permittivity
along the axis of guide, that approaches zero asymptotically along the axis, then in
general, this is no longer the case and there may be no propagating modes allowed
at any frequency. For such media, all electromagnetic modes have a spatially evanes-
cent behavior along the axis of the guide and a spectrum with discrete frequencies.
Such media belong to the class of meta-materials that are sometimes referred to as
ENZ dielectrics [11].

To facilitate the following analysis, we consider the idealized case of a dielectric
medium without dispersion or absorption and a guide with perfectly conducting,
uniform, rectangular cross section. Harmonic fields of angular frequency w inside
the medium must satisfy the source-free Maxwell equations

VxE, =iwB,,, V-B,=0
(3.1)
VxH,=—-iwD,, V-D,=0
subject to perfectly conducting boundary conditions on all sides of the guide. The
guide axis is chosen to be parallel to the z-axis of a Cartesian frame and the sides
of the guide are taken to be at x = 0,2 = L,y = 0 and y = L, (see Fig. ).

Suppose initially that the medium has positive permittivity egr1(z), positive

permeability por2(z) and electromagnetic constitutive relations
D, =¢k1(2)E, and B, = pok2(2)H,. (3.2)

Since the medium is electrically neutral, one may choose a gauge with harmonic
vector potential A, such that

V- (k1(2)A,) =0 (3.3)
and
E,=i1wA, and B,=Vx A,. (3.4)
Then @B are satisfied provided
1 1 w?
V x VxA,|—-—A,=0 3.5
207 () 39
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z

Fig. 2.  Geometry of the dielectric waveguide with a smooth inhomogeneous relative permittivity
profile x1(z) = ko sech?(z/a).

where ¢Z = 1/(eopt0). Since the interior of the guide is assumed to be simply con-
nected, there are no harmonic TEM modes and the Hodge-De Rham decomposition
determines a family of harmonic TFE and TM modes in terms of pre-potentials
Y 7, X" by the relations
1
AP = — VU x Y™ and A™ =
@ eok1(2) @ © eok1(2)

leading to the following result:

V x (V x XM (3.6)

Theorem 3.1. The harmonic pre-potentials

Y5 = (0,0,k1(2) v/ k2(2) fAE, (2) cos(kyx) cos(kyy))

Yo = (0,0,V/k1(2) fARL, (2) sin(kex) sin(kyy))
constitute a basis of solutions with X, = 3\ X, . that determine fields that

satisfy BI) and perfectly conducting boundary conditions at x = 0,2 = L,y = 0
and y = Ly, provided

(3.7)

Ny

Ny ™
ko = v
L

and k’y = L—

z Yy

(ng,ny =0,1,2,...) (3.8)

bThe starting value in the ng, ny range is determined by the existence of non-zero electric and
magnetic fields for those values of na,ny, in both the TE and TM sector independently.
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and when the f3; (2) are solutions to

ey |mme@i)? s ., LY 3 (A
a2 T 2 R = by gy (24%)2 ( dz ) % =0 (39

for s € {TE,TM}, with
Y =ka(z) and Y™ = k1(2).

Proof. Direct substitution of the harmonic pre-potentials into (3.6)) then (B.5H]).
O

The basis label N appropriate to solutions of ([3.9) will be made explicit below
(for a particular dielectric medium) and is used to discriminate between distinct
physical modes with angular frequency wj .

All solutions to the differential equation (3] that are regular and bounded in
the domain 0 < z < L;,0 <y < L,,—00 < z < oo yield physically acceptable
solutions defining electromagnetic fields in the open, perfectly conducting guide
containing a medium with constitutive properties described by the real, bounded
functions k1 (z), k2(2). In general, physically acceptable modes with real frequencies
can be found that are oscillatory as a function of z, as well as being exponentially
damped as |z| — co. However, if we choose

k1(z) = ko sech? (2) and ko(z) =1 (3.10)

with constants kg > 0,a > 0, then only bounded evanescent modes are found for all
frequencies as z — o00. In this case, after introducing the dimensionless variables

z=2, Qi =WV g 2 e (3.11)
a Co
and writing V3. (Z) = f. (), 83) becomes

P (L)
dz? cosh?(Z

- 05> Vi =0, se{TE,TM} (3.12)

where
07" =% and 6™ =% +1.

It will be shown below that the absence of propagating modes in the guide is a
consequence of the positivity of §° for both values of s. If one ignores the s indices,
(BI2) arises in analyzing the physical states for a particle that satisfies the one-
dimensional Schrodinger equation with a Poschl-Teller potential well [12] of the
form —Up sech?(z/a). However, aside from the indices s, the fundamental difference
from (BI2)) is that 6 is then the spectral parameter that fixes the particle energy
and Q2 plays the role of the potential strength Uy. Discrete and continuum physical
states are found with & > 0 and 8 < 0 respectively. In the three-dimensional
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electromagnetic case considered here, the parameter 6 is positive (or zero) due to
the imposition of the boundary conditions on the sides of the guide and this is
responsible for limiting the allowed states in the waveguide (for both values of s) to
those describing superpositions of only discrete electromagnetic field eigen-modes.
For arbitrary Q3. ,0° the general solution of ([B.IZ) is expressible in terms of a
combination of Gaussian hypergeometric functions (see [Appendix A)). However, it
is non-trivial to isolate from this general representation the physical eigen-solutions
(regular and normalizable for all z in the guide) compatible with the constraints
6% > 0. A more effective approach for finding the mode eigen-frequencies (and in the
process a means to construct the associated eigen-modes) is based on the Frobenius
method for solving ordinary differential equations. Since ([B.12]) is symmetric under
Z — —Z, one may classify solutions as even or odd under this transformation. This
leads directly to the following:

Theorem 3.2. For even £ =0,2,4,... one finds physically acceptable solutions to
BI2) of the form
1 £/2

Vi (Z)= ————) )5 cosh™(2)
a coshﬁ(Z) Tz:;) o2

where N, = {nz,ny, L} and the real coefficients C%Tny are all determined in terms
of ng’ny provided

(Q5.)2 = (L+ Vo) (L + Vo5 +1).
Similarly, for odd £ =1,3,5,... one finds solutions to B12) of the form

sinh(z) “&?
Vi (Z) = ———F= Cyam cosh™ ) 7) (3.13)
o coshﬁ(Z) Tz::o bart

where the real coefficients Cg;ﬁfl are all determined in terms of Cﬁny provided
()2 = L+ Vo) (L + Vo5 +1). (3.14)
Proof. See Appendix A. O

This is an essential prerequisite in developing our regularization programme
below and the fact that, for all NV, these eigenvalues increase monotonically with
increasing ¢ will play an important role. One may readily verify the following con-
sequence of this theorem:

Corollary 3.1. The {Y; (Z)} satisfy the orthogonality conditions

° A
s VAR (7)) = A® Som
/—oo COSh2(Z) y"zv"yvz( )yn:l:vny7£ ( ) N Ny, y74
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for constants {Afmz,ny,e} that are determined by a choice of mode normalization.
The completeness relation may then be written:

Zyrsz,r,ny, y?i,,ny, (ZI)/AZ,I,ny,Z = COShQ(Z) 6(2 - ZI)

Since each #° depends uniquely on n,,n, for each s, for typographic clarity we
can abbreviate {ng,ny,} by {6, ¢} and write V; . (Z) =C; , ,Z5. ,(Z) for
such a choice. Explicit formulae for these functions are derived in and
some are displayed in Fig. Bl

A complete set of normalizable pre-potentials is thereby obtained by substituting
these solutions into ([B1). The electromagnetic field eigen-modes are then calculated
from (30) and (3]). Some of the pre-potential eigen-modes are pure gauge (i.e. they
give rise to vanishing electromagnetic fields). If n, = 0 and n, = 0, (in which case
0™ =0,0™ = 1), all field eigen-modes are zero. Furthermore, if n, = 0 and n, > 0
or ny > 0 and n, = 0, all TM field eigen-modes are zero. It is clear that all time
harmonic eigen-modes have spatially oscillatory behavior in directions transverse
to the axis of the guide, and exponentially decreasing behavior along the axis of

24 4(2)

ZTf/loo,O(Z) = (sech(2))2+m/10
ST ZTE L o(Z) = (sech(2))2mVE/10
—Z 2/50,1(Z = sinh(Z)( 5ech(Z))3+7r‘/_/10
---- ZTM Z) = (sech(2))2+V/72/50+1
Z) = sinh(Z)(sech(Z))3+V7?/50+1

TM
1+72/50,1

)=
)=
1472 /50, ol
(

Fig. 3. Behavior of the functions ZJ%(Z) and Z77/(Z) that illustrates the evanescent structure
of the five lowest frequency pre- potentlal eigen-modes in an open guide with a square cross-section
containing a medium with relative permittivity sech2(Z ) and unit relative permeability.
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the guide in both directions away from the section at z = 0 where the permittivity
attains its maximum value. In particular, none of the harmonic fields propagate in
the guide.

4. Field Quantization in a Classical Dielectric Background

Suppose the spectrum {wj. } of the electromagnetic field modes in the dielectric
medium is uniquely labeled by a triple of discrete indices N and each associated
real eigen-mode is normalized within this domain. Since the complete set of corre-
sponding real field eigen-modes Ef, ~.» B, . can be constructed from the harmonic
mode pre-potentials, one can introduce Hermitian field operators

Es(x7y,z,t) = Z (Ew n (@, y, z)as Texp( iwy, t)
Ns

+ BT, (2., 2)ay, exp(iwy, 1)

_ZEMN (z,y, z,1)

and

B(z,y,2,t) =Y _ (B} . (x,y, 2)as, " exp(—iw} t)
Ns

+ BZ*NS (z,y,2)ay,, exp(—iwf\,st))

= ZB Ns 33 Y5 %5 t)
in terms of the generators @3, , af\[s of an operator algebra satisfying

!
~s ~s' 1| _ ss
[GNS,GN;} —§N3Né5

and multi-mode ground states [¥°) = @, [On,) defined by @}, [¥*) = 0 with
normalization (On, |Oar,) = 1 for all s, V. These relations permit a construction
of a Fock space basis for quantum states of the electromagnetic field. The elec-
tromagnetic quantum field theory in the medium is first defined by adopting the

Hamiltonian
Zﬁs = Z / 7?[,5\,3 dx dy dz
s s, N, 7V
with local (Hermitian) Hamiltonian density #, = (2 + ¢ 1)/2 where
%ﬁZaEM Dl + Bl Hi L), (4.1)
and each time-harmonic mode normalized so that
(H) <Wslz;ﬁi;dxdydz v

where V is the domain containing the dielectric.

>:%m& (4.2)
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Suppose O is a local Hermitian operator that has the mode decomposition 0=
D s . Oj,- For any operator O acting on states in the Fock space, the expectation

value of O in the general state ®:
Es(0] = (9]0]2), (43)

that includes an infinite number of eigen-modes will rarely converge. In the physical
context here this is sometimes ascribed to the neglect of contributions that should
be included in order to bring a particular physical system into existence.

Undoubtedly, the most elegant interpretation of the sums (£3]) based on eigen-
systems is in terms of a complex function (5 of o € C associated with the spectrum
{A\+} of O and having the representation > A7 for some Re(o) > og. The reg-
ularized value of ([A3)) is then defined as (5(—1) [I3HI5]. It is often a non-trivial
task to determine this value directly from any particular spectrum {\,} and to
identify the nature of the singularities of (5(c) in the complex o-plane. Indeed, the
analytic properties of a zeta function associated with the spectrum given by (3.14)
are not available. This is a prime motivation for our approach: the accommodation
of systems with spectra for which an analytic continuation of (5(c) in o is not
known.

Alternative procedures that involve both real and complex analytic continua-
tions or point-splitting schemes offering subtraction processes motivated by physical
criteria [I6HI9] do exist. Casimir’s original subtraction scheme [I] was based on
the Euler—-Maclaurin formula and employed a smooth attenuation map F, in the
summation for O in ([{3) simulating the high-frequency transparency of physically
realistic conducting plates. It was then straightforward to show that, for the elec-
tromagnetic source-free ground state Hamiltonian ﬁvac obtained from (&I with
EZ,NS = 50@3,/\/3 and ESJ,NS = ,ugﬁfuws, the expression

Z <Z<\Ils|ﬁ3ac,Ns FU (ﬁjac,/\fs)

s N

) - / (U B Fr (B )% dNS(Q))

with dA*(2) the density of states in the absence of the original Casimir system
plates was a convergent power series in the real parameter o characterizing the
onset of the high frequency transparency regime. However, the generation of such a
series using any such smooth cut-off function is not generic. Whilst it does occur for
conducting plates in the vacuum, the presence of a smooth inhomogeneous dielectric
medium between the plates does not in general lead to a convergent power series in
a physically motivated attenuation parameter. Furthermore, sharp cut-off functions
are unphysical and the Euler—-Maclaurin approach requires certain differentiability
conditions for its implementation.

Based on the Euler-Maclaurin formula, a procedure will be explicitly con-
structed in Sec. [l to regularize electromagnetic energy and stress associated with
the eigen-system describing the evanescent modes in the previous section. In the
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following, we will also exploit explicit expressions for the normalized states in a per-
fectly conducting cuboid cavity filled with a homogeneous (non-dispersive) medium
of constant relative permittivity.

Theorem 4.1. The cuboid TE pre-potential B7) for fields in a perfectly conducting
cuboid cavity with rectangular dimensions Ly x Ly x a, filled with a homogenous
(non-dispersive) medium of constant relative permittivity k1 = ko > 0 and relative
permeability ko = 1, is given by fX£_(z) = C{f_ sin(k.z) where

™,

k, = (n.=1,2,3,...),
a
and ng,ny = 0,1,2,... with ny # ny = 0. The associated angular frequency eigen-
value wif is given by:
(wiF)?a’ko
(F)? = — - a® (k2 + ky + k) (4.4)
where N'= {ngz,ny,n.} and
4h TE
(Cx)? = s (4.5)

&7 koLyLya(k2 + k2)wiF
where

1, formng, ny>1
=941
57 forn$:0 or ny:0

TM

Similarly, the cuboid TM pre-potential follows with fi2! (z) = Ci#, cos(k,z)
where

TN,
k, = .=0,1,2,...
= )
and ng,ny = 1,2,.... The associated angular frequency eigenvalue wi}” s given by:
wT™ 2&216
oy = ST gz g i) (46)
0
and
4hc3eon™
o™ 2 _ 0 4.7
(X" KoLz Lya(k2 + k2) (W) (47)
where
1, forn,>1
T]TIW — 1
o formn, =0.
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Proof. For the TE pre-potential, the modes with n, = 0 and the modes with
ng = ny = 0 do not contribute to the fields in the system since they are pure gauge
modes. Hence, from Theorem [3.1k

RS ID YD IL T 3B IS TR B DL P

Ng=1ny=1n.=1 ny=1n,=1 ny=1n.=1
where
TE  __ TE _ TE _:
N = X nyn. = (0,0,mo Cy/ sin(k.2) cos(kzx) cos(kyy))

with normalization constants {C #}. This pre-potential generates fields that satisfy
the appropriate boundary condltlons on the cavity boundary and determines (4]
for the angular frequency wj?. Furthermore, one may verify (&3]) for the normal-
ization constants {C{F} using (3.2)), 34), :6) and ([@2) for this pre-potential.

Similarly for the cuboid TM pre-potential, the modes with n, = 0 and the
modes with n, = 0 do not contribute to the fields in the system since they are pure
gauge modes, yielding:

T — Z Z Z Ty (4.9)

ny=1ny=1n.=0

where
. (o 0, /o C TWIcos(kzz)sin(kmx)sin(kyy)>

in terms of the normalization constants {C{#'}. This pre-potential generates fields
that satisfy the appropriate boundary conditions on the cavity boundary and deter-
mines (L8] for the angular frequency wi}*. One readily verifies (A1) using (3.2]),
B4), B0) and [@2) for this pre-potential. O

In the following, we also require explicit expressions for the normalized states in
the open guide containing the inhomogeneous dielectric (B10) and for the general
ground state expectation value of the electromagnetic energy and stress operator:

Theorem 4.2. With N = {ng,n,,(}, the ground state expectation values of the
Hamiltonian densities HJ, for the system containing the inhomogeneous dielectric

BGI0) are given by:
2 4 12
<ﬁf/p> _ (CTE) (W% ) KoLz Ly (ks +ky)ITE
N 460nTE N

(CR)2 (W) KoLy Ly (k2 + £2)

Jr™
46060

(Hp') =
where

s > dz 2
= /_oo cosh?(Z) (Ze0:(2))"-
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The normalization constants {C&} are then explicitly given in terms of these con-
vergent integrals:

(CTE)2 _ 2heon™
N koLo Ly (k2 + KDWELE
(4.10)
(CTM) _ 2heqc?

roLo Ly (K2 + k2) (Wi I

Proof. Using Corollary B and calculations in these follow directly

from the normalization condition (2. O

To compute the induced Casimir force (or torque) expectation values in any state
on any surface in V, one requires a Hermitian operator-valued electromagnetic stress
tensor in the medium. A natural choice for a medium at rest can be constructed
from the classical symmetrized Minkowski Maxwell electromagnetic stress tensor
with Cartesian components [22] 23]:

1 1
Sij (x,y, Z) = —5 (EiDj + DiEj + BiHj + HiBj) + 5 (Eka + Bka) 5ij
and for media with constitutive properties given by (BI0):
D =¢yk1(2)E and B = puoH.

Replacing the classical fields E,B,D,H by the operator mode expansions
E*, B*® D* H* yields for the ground state expectation values of the stress operator
tensor components:

(S5i(x,y.2)) = > (|(S3)ij (@, 2, )T =D (S5 )i (w,y2)  (4.11)
Ns Ns
with

(S35 = =5 [(Brwe i (D )i + (D )il B )

— wlr—'

— g (Bl (L o) + (2o )i(BL )|

b3 (B k(D) + (Bl (B ) ] 0y (412)

Note that in these expressions, the electromagnetic fields and hence (S’ _)ij are all
real-valued functions on the domain containing the dielectric.

5. Regularization

If the frequency of the electromagnetic normal modes of a system increases
indefinitely as a function of the number of zeroes associated with the modes
then the ground state energy of each mode will also increase indefinitely. In
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such circumstances, the series in ([{II) will, in general, diverge. A mathemati-
cal regularization process is then required to extract a finite value for expectation
values. As noted in the introduction, all computations of Casimir stresses involve,
either explicitly or implicitly, such a process. It was also noted that applications
in the recent literature of Lifshitz methods to certain problems involving smooth
inhomogeneous permittivities did not lead to finite stress fields in certain uncharged
systems. Furthermore, the absence of scattering states constructed from modes
in a certain meta-material prohibits the traditional application of Lifshitz meth-
ods, employing reflection and non-zero transmission coefficients, in determining any
quantum induced stress in a dielectric medium.

Interpretations of some regularization processes are sometimes motivated by the
notion that only energy differences are physical [4,[24] and that perfectly conducting
confining surfaces are idealizations that should be replaced by physical interfaces
between media that exhibit dispersion with absorption. Approaches along these
lines are to be found in [25][18]. Implicit in such methods are regularization processes
based on subtraction schemes that involve a suitable Green’s function for the system
under consideration. Such functions can be constructed from an analysis of the
spectral properties of a complete set of solutions to a particular Maxwell boundary-
value problem.

Many regularization processes require the introduction of an auxiliary expression
that is a function of an auxiliary variable defined on the real line or the complex
plane. The process proceeds by recognizing the presence of singularities of this
auxiliary function in the auxiliary variable. If this is possible the function can then
be either analytically continued from its original domain of definition to any chosen
value of the auxiliary variable where the continued function is finite or rendered
finite by explicitly removing its singular parts [4].

In the quantum description of the waveguide system above, emphasis is on the
electromagnetic ground state energy (derived from a choice of Hamiltonian density)
and components of a local electromagnetic ground state stress tensor (derived from
a choice of electromagnetic stress tensor field). For general systems composed of
piecewise spatially homogeneous media, it is possible to relate certain integrals of the
latter (total pressures) to derivatives with respect to geometric parameters in the
expression for the former. However for systems composed of smooth inhomogeneous
media this is not in general possible. In such systems, the electromagnetic ground
state energy contributes to the total global internal (free) energy of the system while
the local electromagnetic ground state stress tensor components can be used to
calculate contributions to the local stresses and average forces at points and surfaces
respectively in the medium. Regularization of an energy density expectation value
requires a knowledge of the electromagnetic eigen-mode frequencies as a function of
system parameters while regularization of a stress expectation value requires, either
explicitly or implicitly, a knowledge of both the mode frequencies and a complete
set of mode eigen-functions for the system. This is tantamount to a knowledge of
the appropriate classical electromagnetic Green’s function for the system.
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Since we have a complete set of real solutions to the Maxwell boundary-value
problem for a smooth inhomogeneous, non-dispersive ENZ type material, we estab-
lish in this section a general real analytic regularization scheme based on the vener-
able Euler-Maclaurin summation formula [21] [26]. This will be used in subsequent
sections to explicitly demonstrate the regularization of quantum expectation values
in the context of a simple homogeneous system and that certain derivatives of the
global regularized energy density expectation value coincide with the regularized
pressure on a confining surface. It is then used to calculate analytically the quantum
contribution to the global regularized internal energy of the open waveguide system
containing the smooth inhomogeneous dielectric medium described in Sec. [3as well
as outlining how the average quantum induced force on either side of an arbitrary
cross-section in the guide follows from an explicit knowledge of the electromagnetic
eigen-modes in the medium.

Theorem 5.1 (The Euler—Maclaurin Identity). For any finite integer n > 0,
m € Z1 and any (2m + 1)-differentiable map f:Z C R — R with [n, N] C Z:

N N

SFH) - [ Fadr = S(F) + F(N))

k=n n

1 N
+ m/ Popyr () fC™ D (2)de (5.1)

where {By,} denotes the set of Bernoulli numbers, { P (x)} = { By (z— |z])} denotes

the set of periodic functions associated with the Bernoulli polynomials { Bx(z)} and
the integer N satisfies N > n > 0.

Proof. See [20]. O

For real-valued functions f satisfying the criteria of the theorem above, the
freedom to start the summations on the left above at k = n and x = n for any
n > 0 can often be exploited to facilitate the evaluation of limits that involve the
derivatives of f in the subsequent analysis. Following Hardy [20], we introduce the
abbreviations:

SuB)1) = 3 e &)
r=1 i (5.2)
T M) = gy || P @7 @)da

Then, since
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the Euler—Maclaurin formula can be rewritten
N N 1
> fk) - / f@)de = S f(N) + Sm(N)If] = Tn(N, 00)[f] + Com[f] - (5:3)
k=n n

where

Crmlf] = 5 () = S ()[f] + T, 00 (4)

It should be stressed that (B3], involving no limiting operations, is an identity for
any admissible finite values of n, N, m provided all terms in (53] exist. In general,
the formula will break down if one lets m — oo for fixed N. If, however, f(z) is
such that for some finite integer m > 1:

/ T () d < oo (5.5)

then, since impy 00 T (N, 00)[f] =0 as N — oo,

N N 1
> fk) - / f@)dz = SF(N) = Sm(N)[f] = Com[f]. (5.6)
k=n n

If furthermore for some integer M > 1, (0] remains valid for all m > M then
Umy oo (Sa+1 (V)[f] = Sa(N)[f]) = 0 which implies C), ., [f] is independent of m
for m > M.

In summary, this leads to the following:

Theorem 5.2 (The Euler—-Maclaurin Summation Formula). For any finite
integer n > 0,m, M € Z" and any (2m + 1)-differentiable map f:T C R — R with
[n,00) CZ, if

/ £ ()] dir < o

is satisfied for all m > M, in the N — oo limit:
S 76 [ st Jim {5500+ S = ol

where Sy (N)[f] and Cyp m[f] are given by (52) and (54) respectively.

The finite number C,, ar[f] is the Hardy—Ramanujan value (p. 327, [20]) assigned
to the “divergent series” Y, f(k). Based on these arguments the existence of a
finite C,, a[f] depends critically on f(z) satisfying (5.5) for all integers m > M.

For the application to Casimir problems in three dimensions, we encounter
summations indexed by a triple N. It proves expedient to replace these by a sim-
pler, single-indexed summation with integral summands obtained in the limit when
L., Ly become large compared with a particular scale a. In order for the integrals
in this summation to exist, we shall introduce a one-parameter family of (regulator)
maps { f,} depending smoothly upon a real dimensionless parameter o > 0, each of
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which satisfy the criteria of the Euler—-Maclaurin identity. Furthermore, we explore
conditions on f, that enable one to assign a finite value to the “divergent series”
Y re,, fo(k) for all o, generalizing the Euler-Maclaurin summation formula.
To this end, introduce the mapping o — I'"% [f,] with
" 1
Thlfe] = 30 = Sulfo] + [ e (57)

and split it into the terms
Lhlfa) = Prlfal + B lfalo? (5-8)
j=0

where P [f,] contains any terms in I'? [ f,] that are singular as o tends to zero from
above. In terms of the (non-unique) decomposition (58], in the limit as N — oo
the Euler-Maclaurin identity (5.1 can be recast into the form

> 5ot = Pl - i (5400 + 50151

= Tpn(n,0)[fo] + > _ Bk ;[fol0” (5.9)

§=0
for any n > 0. If furthermore for some integer M > 1,

/ |F2m D ()| de < 0o for all o >0 (5.10)

remains valid for all m > M then limy_ oo (Sp+1(N)[fs] — Sm(N)[f5]) = 0 which
implies the right-hand side of (B9)) is independent of m for m > M. Thus with
the above definitions, we arrive at the following generalization of Euler—Maclaurin
summation:

Theorem 5.3 (A Generalized Euler—-Maclaurin Summation Formula). Let
{fs} denote a one-parameter family of maps depending smoothly upon a real dimen-
sionless parameter o > 0, each of which satisfy the criteria of the Fuler—Maclaurin
summation formula Then

Z Jo ) = Piylgo) = i (3023 + SN

= Tar(n,00)[fo] + > Bir lfolo” (5.11)

3=0

for all n > 0, o > 0 where Py;[fs], 8% ;[fo] are defined through (5.8), and
Sr(N)[fs), Tar(n,o00)[fs] and defined through [5.2). In the limit o — 0T, this takes
the form:

lim (Z folk) = Prylfo] = Jim {%fU(N) + SM(N)[fU]}> =Ty + By

o—0t

(5.12)
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where
Ty = lim Ta(n,0)[f,] and By = lim, Egﬁ&d [folo? = Birolfo]
]:

This theorem is central to our construction of a regularization procedure and
along with the definitions above, immediately yields the following practical result:

Corollary 5.1. For all real-valued functions {f,} satisfying the criteria of the
generalized Euler—Maclaurin summation formula:

B = lim (Uislfo] = Philf))

For the applications in the following, the real-valued function f, will be chosen
so that limpy 00 fo(N) =0 and limpy o0 Spr(N)[f5] = 0, yielding

lim, (Z fo (k) — %[M) =T} + Bir- (5.13)
k=n
Furthermore, it will be shown that, while 5}, may be amenable to exact analytical
evaluation, in general, Ths(n,00)[f,] is not. However, it follows from the Fourier
series representation of the periodic Bernoulli functions [27] that they are bounded:
2k!Cr (k)

[Pk ()] < @k

where (k) denotes the Riemann zeta function. Hence, the T, (n, 00)[f,] satisfy

oo
Tnlnsoo)l12) < eflfo) = 282D [P ppemiae g
(2m)2mtt ),

for all n,m, o > 0. Thus, from (GI0]), the integral in (B.I4) is finite and bounded,
and for any n,m,o one may readily calculate the value of this bound. Although
the magnitude of this bound in the limit & — 0% will, in general, vary in a compli-
cated manner as a function of M, one may verify that for particular values of M,
the bound may be significantly smaller in magnitude than |3%,]. This observation
enables one to select M for an asymptotic approximation of the left-hand side of
(E13), regarded as a function of M. Consequently, in the following we refer to this
bound as an “error term”.

Provided, for fixed values of n,m, the term S,,(n)[f,] exists as o — 0T, the
relation (5.13) shows how the singularities of Y, = f,(k) can be compensated by
singularities in the other terms on its left-hand side, since the terms on the right-
hand side are finite as 0 — 0. This corresponds to a viable regularization scheme
for a particular choice of f,(k) that ensures that all the conditions above are sat-
isfied. We identify the right-hand side of (BI3) with a finite assignment to the
divergent series Y .- f-(k) in the generalized Euler—-Maclaurin scheme.
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If the terms Sy, (n)[fs] in T [f,] do not exist as ¢ — 07, a finite assignment to
Y re,, fo(k) cannot be given in the limit. However, for such sums, one may be able
to write

nofl

N N
S folk) =Y folk)+ > fo(k) (5.15)
k=n k=n

k‘:’ng

for some N > ng >n > 0 such that Sy, (ng)[fo] exists, so that the sum 372 fo (k)
can be regularized. Then from (I3) in the N — oo limit:

lim (Z fO' R?[fo]) :TJ@O +ﬁr1\L/})

oc—0t
k=no

In terms of n and ng, we obtain the result

lim (Zf,,(k)— "”O[f[,]) Tre + Bt (5.16)
k=n

o—0+
where
no— 1
T [fs] = Z fo(k) +T52(f,] (5.17)
admits the series representation
T[] = P [fs] + Z Bripl (5.18)

with 73"’ °[fs] containing only terms that are singular functions of o and
Bii™ = lim Zﬁ" " folo? = Bhie ).

In summary, the assignment of a finite value 772 437%™ to the divergent summation
lim, o+ Y e, fo(k) is modeled on the process used by Hardy in [20] to assign
a finite value to summations of the form > ;- f(k) using the Euler-Maclaurin
identity.

We argue below that the sums limg(,) 0+ Y pe,, fo(o) (k) admit a viable regu-
larization if they can be given the same finite assignment using this generalized
summation for all real positive monotonic functions ¢ with ¢(0) = 0. The assign-
ment, when it exists, is computed by isolating terms in the Euler—-Maclaurin identity
that diverge as q(0) — 07 and can be estimated with computable error bounds. In
the following sections, this procedure is used to recover by analytic means standard
results for a regularized energy and stress in a homogeneous dielectric, as well as
a regularized energy in the smooth inhomogeneous dielectric contained in the open
guide with only evanescent modes. In each case, the compensating singular terms
are made explicit.
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For the three-dimensional Casimir problems under consideration here one is
confronted with infinite range summations of the type ([£3]) indexed by a triple of
discrete indices with summands depending on the parameter o. In the following,
we exploit an approximation where L, and L, become large relative to a length
scale a < L, L, in order to reduce the summation over n;,n, to a parameterized
single integral indexed by an integer so that the summation formula (516]) becomes
directly applicable.

6. Quantum Induced Internal Energy and Stress in a
Homogeneous Polarizable Medium

The expectation value of the ground state energy due to a finite number N ___
of electromagnetic modes of type s in the perfectly conducting cuboid cavity of
dimensions L, X L, x a, filled with a homogenous (non-dispersive) medium of
constant relative permittivity xg > 0, is:

Niax N, Ny N,

ZMN—2 = ZZZQN (6.1)

Ng Ny Nz

where ko (Wi /c0)? = ro(WRF /c0)? = k3 + ki + k2 with ky = ngm/ Ly, ky = nym/Ly,
k, = nzw/a and N = {ng,n,,n.}. For a cub01d cavity with L, L, > a, the prop-
erties of the spectra as given by Theorem [£.I] — particularly the mode expansions
(#8) and [E9) — enable one to reduce the triple sum (1) to a single summation
over n,. This is a particular consequence of the following theorem:

Theorem 6.1. For both the TE and TM modes with spectra defined in Theorem 1]
for the perfectly conducting cuboid cavity filled with a homogeneous medium, when
Ly, Ly > a and Nmm — 00:
lim
L, — oo
L, — oo

e T k’i:”z) =5 / TIm(p?,n.)pdp (6.2)

nz—O

where Jp : RT x RT — R, provided the integrals exist. The label M is used below
to distinguish different ground state expectation values.

Proof. When Ly, L, > a and N . — o00,{ks, k,} tend to a continuum with
density of states measure dk, dk, = (7%/L, Ly)dn, dn,. For the TE modes one
has, after integrating over all directions of the transverse vector with components
(kz,ky) and kg, ky, > 0, for any expression T (k3 + k7, n.):

IS m(ki%jnzw%;_jl | Tt naypdo

n.=1 nz=1 ny=1

> Y Tulkin - L Z/ T2, n2)d

n,=1 nz=1 n,=1
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00 00 L o) 00

ny=1 ny=1 n,=1

(6.3)

since in the large L, L, limit, the discrete transverse contribution PP =k + kg to
the spectrum (2 tends to a continuum starting at p = 0. Thus

1 > 9 9 1 0 %) )

n,=1

9 [ 9 [
il k2 n.)dk, + — k2, n.)dk

yielding
. 1 - 2 2 _ 1 - o 2
N ML AR DY) | gt ndnde. 60
L, — oo nz=

The regularized contributions from the TM modes follow a similar prescription to
those of the TE modes. Specifically, when L, L, > a and N — 0o one has for
any expression Jp (k2 + k2, n.):

Z Z Z JM(k§+k§7nz)—>L;—7fgj Z/o TIm(p%,nz)pdp

n,=0n,=1n,=1 n.,=0
o)
. IR 2 2 1 S > 2
N LA AREE D) | atnopdr 65)
L, — oo EA nz=
and the result follows. O

Since the regularization scheme developed in Sec. Blis purely mathematical, given
a sequence of partial sums containing summands f (k) there is no unique prescription
to define f, (k) compatible with the necessary properties leading to (E.13]). In order
to regularize sums involving expressions for ground state expectation values (Unq ),
we choose

TIm(p®,nz) = Una) Wyon (p°,n2)

for some positive monotonic real-valued function ¢ of a dimensionless parameter
o’ € [0,00] with ¢(0) = 0 and positive real-valued function Wy, :R* x Z+ — R
with lim,,_ o Wq(gl)(pz, n;) = 0 for all p. For physical applications the constant 7
used in the normalization conditions ([£2) is to be identified with the experimen-
tally determined value of Planck’s constant. This requirement is consistent with the
demand that Wy (p%,n.) = 1 for all ¢q. Since the mode normalizations must be
maintained for all observables constructed in terms of electromagnetic fields this
condition is required for the regularization of all auxiliary functions constructed
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from such Ja(p?,n.). Thus from (6.1)), writing o = ¢(o’) and choosing the dimen-
sionless regulator W, (€257) = exp(—0 Q}F) to define

<ﬁTE>(a)= Z Q3% exp(—o Q3F),

Mg Ny, Mz

Ko a

one has for large L,, L, compared with a, using (6.4)):

<ﬁTE>(g) _ hCO i /oo
L.L, 4 Koa ~— Jo

+ n2 exp(—omy/pa? /72 + n2)dp

with u(p?,n,) = p?a®/7% + nz and the dimensionless auxiliary function
F™(n,) = / Vu exp(—omv/u )du
nZ

For M = 2, the error term lim,_,o+ e3[F7?] = 0 and (5.7)) yields the Laurent series
expansion (see Appendix [B1):

DY) = = — =5 — g5 +

From (B.8) and (&I3), this gives

12 2 1
li F™®(n —_— | =—— 6.7
o0+ (nz—:o miot * 7r3a3> 180 (6.7)
yielding a finite regularized expectation value for the TE energy per unit area:
ﬁTE heom?
(Hw _ ___heom” (6.8)
L.L, 1440, /Ko a3

Similarly, using the dimensionless regulator W, (QTM )= exp( o QO ) to define

= he >
(H™)(0) = 5 m?)a > O exp(—o Q),

Mg Ny, Nz

one has for large L, L, using (6.0]):

(H™)(0)  heor? e
L1, SR - Z F™ (n,) (6.9)
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with u(p?,n,) = p?a? /7% +n? and the dimensionless auxiliary function
(o]
F™(n,) = / Vu exp(—omv/u)du
n?

This has the same structure as the dimensionless auxiliary function used to sum
the TE modes, but here the sum starts at n, = 0. For M = 2, the error
term limg o+ e5[F7™] = 0 and (51) yields the Laurent series expansion (see
Appendix [B)):

MYIF) = —7 + 755~ T
o mo 180

From (E8) and (513), this gives

- 12 2 1
. ™ it SN R
firn (Z F,7 (nz) miod 7r3a3> 180

o+
o— n.—=0

yielding a finite regularized expectation value for the TM energy per unit area:

<ﬁT}M>R o ﬁCQTI’Q (6 10)
L,L,  1440\/rga®’ ’

which coincides with (G8]). Therefore the ground state expectation value of the
total energy per unit area is:

o e ™ heom?
(H)x _ { )r i { )r _ __ com . (6.11)
L,L, L,L, L,L, 720,/ko a

which reduces to Casimir’s result [I] when xo = 1.

It is straightforward to show that for any p>0, a regulator of the form
Wo (S2,) = exp(—o (2, )?) will yield the same finite regularized energy expecta-
tion value per unit area independent of p for both the TE and TM modes. However,
the exposed singular behavior in ¢ is p-dependent. Although this falls short of a
rigorous proof, it lends credence to our argument that this Euler—-Maclaurin regu-
larization scheme is independent of the regulator involved.

A calculation of the regularized ground state expectation value of the electro-
magnetic stress tensor in the dielectric requires the complete set of system eigen-
mode functions. This has been obtained in Sec. B] for the cuboid containing a
homogeneous medium and the smooth inhomogeneous medium with relative per-
mittivity BI0).¢

To extract a finite stress expectation at any point labeled by (z,y, ) in a dielec-
tric with electromagnetic mode spectra labeled by the integers {n,,n,, ¢} define,
for all ¢, j, the auxiliary functions

Sjo.a:y7 Z Ulj€x7y7z)

¢This information enables one to construct the appropriate electromagnetic Green’s function for
each system.
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where, from (£12), for some regulator W, :
0‘1,] e €, Y,z Z Z .)S\/ J? y,Z) WG‘(QfLI,ny,Z)'

In principle one could now apply (I3) to FZ,..(¢,z,y,z) for fixed o,z,y,2z and

0.ij
all 4, j. Analyzing I'}/[F; ] or F” 7 °[Fz ;] as a function of o in order to extract
a regularized local stress in the dielectric would undoubtedly be computationally
intensive. However using this approach to calculate the total normal force acting
on either side of any cross-section where z is the constant zq is less involved. The

contribution from type s modes to such a regularized force is generated from

(0,20) = Y Fi(l, 2) (6.12)
14

where

o (L, z0) Z Z/ / (@, 9, 20) Wo(23,, , 0)dz dy.

After the integration over = and y the n.,n, dependence of the summands in
F3(¢, z9) arises from only k2 + kz Hence if L,, L, are large compared with the
inhomogeneity scale parameter a in (BI0) it follows from (64]) and (635]) that

L, L,

Fi(t,20) = =2

/0 o F*(t, 20, p) WE(L, p) dp (6.13)

where f/[v/j (£, p) = W,(028

nmvny7£)

Lo Ly
Pleaizeig) = [ [ (S dnlerdedy. (614

Thus the triple indexed summation over {n,, ny, £} reduces to a single infinite range
summation (over ¢) with single integrals (over p) as summands. Equation (513]) or
(5I7) can then be used to generate Ty, + S}, or T, + B" % respectively for both
s € {TE,TM?}. To implement this regularization scheme analytically and extract a
finite “renormalized” value for the total expectation value of the normal average

and

Casimir pressure in the dielectric? on either side of any plane z = zg, after dividing
by the area L,L,, an explicit formula for each auxiliary function is required.

The regularized ground state expectation value of the normal force (F)n at
the boundary z = zy of the cuboid cavity with constant kK1 = kg can be extracted

d0ne may verify that this normal pressure is the total pressure since, at any fixed plane z = zg,
the tangential forces are zero. Regularized pressures are, of course, equal in magnitude but act in
opposite directions on such planes with opposite normals.
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using (6.I3) and (6.I2) with £ = n. and the dimensionless regulator W, (3. ) =
exp(—oQ3,. ). Define

FTE(O', Z() - hCQ’/T Z FTE n
L,L, NG )

in terms of the dimensionless auxiliary function
_ o n2
™ (n,) = £ —omy/u)du
)= [, = Vi)

With M = 2, the error term lim,_,o+ 3[F2%] = 0 and (5.7)) gives the Laurent series
expansion (see Appendix [B.2))

4 _ i n m3a3
ot 60 504

Ti(F] = +0(oY)

with (B8)) yielding

. TE _
Uhrél+ ( E FF(n.) — —7T4a4> =50

n,=1

Hence the finite TFE regularized contribution to the pressure is:

(F(z0))n _ heom?
L.L,  480\/rga*

For the TM modes

F™(0,20) heom? ZFTMTL
L.L, "~ 8y/koat i

in terms of the dimensionless auxiliary function

F™(n,) / eXp (—omv/u)du

which is the same as that for the TE modes. With M =2, the error term lim,_,q+
eJ[F™™] = 0 and (E.7) gives the Laurent series expansion (see Appendix [B.2])

4 1

Fg[FgM] = i - @

with (58] yielding

: — = 4 1
lim (Z FM(n,) — W) =760

o—0t
n,=1

Hence the finite TM regularized contribution to the pressure is:

<.FTM(ZQ)>R _ hCQ7T2
L,L, T 480,/kg a*
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which is an equal contribution to the pressure as that from the TE modes. Thus,
the ground state expectation value of the total regularized (tensile) pressure on the
plate at z = zg is then

Flodn _ F™Codn | (F™ (o)) ___heon®
L,L, L.L, L.L, 240 /rg a*’

which reduces to Casimir’s result [I] when 9 = 1. Once again, any regulator of the
form W, (Q3) = exp(—a (2, )?) for p > 0 produces the same regularized value.
Thus for this system with a homogeneous medium between the planes, one has the
expected result:

(Fzo))n 0 <<ﬁ>R>
L,L, Oa '

7. Quantum Induced Internal Energy and Stress in a Smooth
Inhomogeneous Polarizable Medium

The calculation of the ground state expectation value of the electromagnetic energy
in the open waveguide containing the smooth inhomogeneous medium with per-
mittivity given in ([BI0) is based on the angular frequency mode spectrum given
by

2

2
s 2 €o s 2 Co
=—(Q =——UL+VO)(L+ VO +1
(wnm,ny,l) GQKO( nz,nyl) GQHO( + )( + + )
where the ng,n, dependence of 6° is given by BII) and ng,n,,¢ = 0,1,2,....
Following the previous strategy we have:

Theorem 7.1. With Ly, L, > a, the inhomogeneity scale in BI0), the ground
state energy expectation value per unit area in the guide can be determined from:

H)lo TE - T™M
<Lr>éy) 877\/%@3 (ZF +;)Fo (@) (7.1)

where, using the dimensionless regulator Wo (7 ) = exp(—=o €y . ), one has
dimensionless auziliary functions

FI®(0) = /;o Fo(u) exp(—ov/u)du (7.2)

(+1)
and
F™M(0) = / Fo(u) exp(—ovu)du (7.3)
(6+1)(0+2)
with

fe(u):\/ﬁ<1— 1+212)

vV1+4u
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As before, for large L, L, compared with a, the summands in (Z1]) have reduced
to single quadratures since the medium inhomogeneity depends only on z. To apply
BEI3) for the TE modes, it is necessary to start the summation on the left-hand
side of (BI)) at n = 1 in order to have well defined limits on the right-hand side as

N tends to infinity. It is shown in that, with M = 3:

1i FTE 6 1 1 o N o
S0 (Zz_% - (0 ot 2402 + ETY H(U)> 0.00393263 + 6.40 x 10

o—0t
and
= 6 23 49
. T™ - _ev Y _ —5
lim, (;_0 FM(O - <+ 55+ 354 1n(a)> 0.07349016 & 3.17 x 10

to 6 significant figures. Hence

> > 12 11 25
lim (Z FIE(0) + > FM(0) — = + —— + hl(a))
£=0

o0+ \ & ot 1202 1 192

= 0.0774228 4+ 3.81 x 107°, (7.5)

to 6 significant figures, yielding a finite positive regularized quantum ground state
energy per unit area:

<ﬁ>R ﬁCo ﬁCQ7T2
=0.07742 ——— = 0.224 e pa—— .
L,L, 0.077 87y /Ko a3 0 7 720+ /Ko a3 (7.6)

in the smooth inhomogeneous dielectric, which is approximately one fifth of the
magnitude of the regularized quantum ground state energy per unit area associ-
ated with the canonical Casimir parallel plate system (with gap a) filled with a
homogeneous dielectric with relative permittivity ko (611), to 4 significant figures.

In [29], a numerical algorithm based on the Abel-Plana formula (see
was developed in order to estimate numerically certain values assigned
to sums that arose in estimating the quantum induced force difference between
plates confining a different smooth inhomogeneous dielectric medium. Since in that
problem one could not solve for the spectra analytically, it was assumed that mode
sums could be regularized using an exponential regulator in a variable s and the
algorithm employed a novel filtering method to numerically fit the regularized sums
to Laurent series in s in order to extract the coefficients independent of s. In this
article, we have denoted the regularizing parameter by o instead of s.

Motivated by the results derived above from an analysis of I'},[f,| for various
functions f, based on the Euler-Maclaurin scheme, a natural generalization of the
filtering algorithm developed in [29] is here proposed by including terms containing
powers and logarithmic functions of ¢ in the numerical fits and taking into account
the criteria and error bounds implicit in its formulation. For example, if it is assumed
that a sum of the form Y p-  f(k) is to be regularized one proceeds to numerically
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approximate I'(¢) = I'"" [ -] given by (&) for some n and choice of positive integer
parameters m, Jy, Jo, K1, Ko according to

J2 Ko

o)=Y > cix(n(e) o (creR, 0>0) (7.7)

j=—J1 k=—K1

with Jo > J; > 0, K2 > K3 > 0. The algorithm developed in [29] can be generalized
to seek a stable optimal fit in that parameter domain for values of m > M. From
such a fit, one may extract the value of cg yielding a numerical estimate of the
associated regularized sum. In parallel, one may use the bounds (5I4) to calculate
lim, o+ €l [f-] as a function of m and hence estimate the relative error that can
be assigned to the optimal values of cg .

However as noted in Sec. [§ in some cases the choice of n may necessitate the
isolation of certain terms in I')%, [ f,] according to (5I0]). This is achieved by choosing
a value of some integer ng > n such that Sy, (no)[f,] has a finite value. In such
cases, one proceeds as above but with I'(o) = fﬁ;”o [fo] as given by (BI7).

In the current context one may test the efficacy of such types of ansétz with
fo = F using (C4) and (CI0) in [Appendix C| by applying the same algorithm to

a fit of the simpler form:

»

C

RIS
(o) = ¢ In(o) + Z (c5.c; €R), (7.8)

j=0

QI

if one chooses a range of ¢ suitably close to o = 0. It can be seen from Figs. @H
that with this ansétz the algorithm yields excellent agreement with the analytic
results for both the TE and TM mode contributions to the regularized quantum

0.003938 T
¢+ ¢ =3

-—a—m=4
0.003936 |- n

A m=>5

0003934 | A A A A || -#m=6

-Fe--0--—0--0- |--- gOLTE
—10 | | | | | | 0.003932 | | | | 3

Fig. 4. Numerical values of the constant ¢}¥ in (Z.8) as a function of the largest inverse power 9,
derived from fitting this form to the values of T'o;' [FTF] given by (B0) over the range 1/20000 <
o < 1/2000 for the various values of m indicated in the legend. The plot on the right indicates
these variations of ¢ on an expanded scale. The numerical values of ¢f® are compared with

the value Eg’l’TE determined as the o-independent term in the analytic series representation of

L' [FF2] in (GIB).
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0.0738 —E‘EE!f e m=3
0.0737 |- b m=4
ch —A-m=25
0.0736 |- s
—-m=
00735 | Ccccccoccns s 0,
- - ﬁ3 T™
| | | |
4 5 6 7
m R

Fig. 5. Numerical values of the constant ¢I™ in (Z8)) as a function of the largest inverse power M,
derived from fitting this form to the values of T2 [FZM] given by (5 over the range 1/20000 <
o < 1/2000 for the various values of m indicated in the legend. The plot on the right indicates
these variations of ch on an expanded scale. The numerical values of ch are compared with

the value ﬁg’TM determined as the o-independent term in the analytic series representation of
PY[FEY] in' ).

10—4 103

~1,TE ) ~0,T™M
m 104

Y=
w -
=
ot
o
=
oo |
Y=
w
g
=
o
=
o |-

m

3

Fig. 6. Variation of £55°"° = lim_, 4+ s [Fi] with m for contributions from the TE modes on the

left and the TM modes on the right, calculated numerically from (&.14). For each s € {TE,TM }
and corresponding ns € {0,1}, a value of m in the vicinity of a local minimum of these curves
offers a potential value of My and a corresponding relative error \E&Z’S//B;\Lj;s\ for the numerical
estimate of /B;\Z’S determined in Figs. ] and

induced energy per unit area inside the ENZ type smooth inhomogeneous dielectric
to 6 significant figures.

Given the evanescent behavior of the dielectric eigen-modes in the open guide as
|z| tends to infinity it is tempting to exploit expression (Z.6) for the global energy
per unit area to estimate the quantum pressure on a pair of perfectly conducting
planes inserted in the location of the planes z = +a/2. For L., L, > a this effec-
tively transforms the open guide into a pair of parallel conducting plates separated
by a gap of width a, containing a dielectric with permittivity approximating that
given by ([BI0). However there is no a priori reason to expect that differentiat-
ing (CO) with respect to the parameter a would give an estimate of the induced
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0.0785 - - -

0.0780

0.0775 - } 3 - . E J _

0.0770 |- —

Fig. 7. This figure shows how the results of the numerical algorithm used to determine
Bm = A?,Ql’TE + ﬁ?,{TM compare favorably with the analytically calculated values indi-
cated here in boldface for various m. Their associated error bounds are determined from
lim, o4 (e1,[FFE] + €2, [FFM]) by numerical integration of the integral in (5I4). The dotted line
Z 4+ cf™ determined by the numerical algorithm above with m = 3.

passes through the value of c{’
electromagnetic pressure at the inserted plates in the presence of the smooth inho-
mogeneous dielectric medium.

From the general formulation given in Sec. [Gl the total normal force acting on
either side of any cross-section at z = 2 in the guide can be determined, for some
n, M, in terms of T}, [F2] or T [F%] once the F, are known analytically from
(©13) and (6I4). The integration in (6I4]) can be performed analytically for both
s =TFE and s = TM yielding

- hc2 dZgre o ¥ d2Zgre
fTE(ev ZO;P) = ¢ < - — ZYTE ¢ _—
4Kq wﬁaqf dz dz? e/
and
- hic? dZgrn N Zogrniy d?
™ (g _ 0 B _ ) h(Z)Z
I 200) = G ey ( iz cosh(2) dz2 () Zam.e)
ZQ
#M’Z(S cosh(Z)? — 1)
cosh”(Z2)

Z=zy/a

with 072 = a?p? and 0™ =a?p? + 1, though the computation of the integral (6.13))
appears resistant to analytic evaluation. Despite this technical hurdle the regular-
ization process based on the Euler-Maclaurin formula is directly applicable and
since all integrals in the formula yield finite values, in the absence of a strictly
analytic evaluation of ([EI3) the numerical approach outlined above is available.
Given a user defined tolerance one can seek suitable values for the number of terms
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(determined by n,ng and M) to include in the regularized assignment compatible
with this tolerance. If such values exist one has a numerical estimate with a well
defined error bound determined by T3, or T} for the regularized average quantum
stress across any cross-section of the smooth inhomogeneous dielectric in the open
guide.

8. Density of States in the Large Volume Continuum Limit

Since the spectrum of electromagnetic states in the particular inhomogeneous ENZ
dielectric considered in this article is known analytically it is of interest to calculate
the asymptotic behavior of their density as a function of specific angular frequency
Q in the large volume limit:

Theorem 8.1. In the limit when Ly, L, become large with L, /a and Ly /a finite,
the continuum limit for the density of states for TE and TM modes in the open
guide behaves like:

dNs L?

_— _— 2 J—
dQ) T 4rma? (@7 = Q).

Proof. Since the dependence of the spectral parameter €2 ., on the geometrical
parameters is known explicitly one may calculate a density of states in the limit
when L, L, become large with L, /a and L,/a finite by counting the number of
eigen-modes N*(Q) of type s with spectral parameters less than or equal to some
2 in this limit [30]. As the geometrical parameters increase the discrete spectrum
tends to a continuum that populates a finite volume

N?2(Q) = dl A dng A dny

Ve

in the Cartesian space with coordinates n;,n,,¢. When L, = L, = L the compact
domains V¢, are bounded by portions of the planes £ = 0,n, = 0,n, = 0 and the
iso-spectral surfaces of revolution given implicitly by:

Qz—(é+a%,/n§+ng) (€+a%1/n%+n§+1) =0

for the TE modes (for these modes V" is a quarter of the volume of a right circular
cone based on the plane ¢ = 0) and

2,..2,92 a27r2n2 2,.2..92 a2ﬂ'2n2
o - <€+\/a 22n$+ 12 y+1> <£+\/a Z?nh“ L2 y+1+1> =0

for the TM modes. These surfaces can be conveniently parameterized as:
1 1 L L
= -4 +1— - —F°(u), ny=—wucosgp, n,=—using
2 2 am am
with F7(u) = u, F™ (u) = vu? + 1 and

0<u<uj, 0<¢<

e
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where uf is the positive root of £(u§) = 0, yielding
LY « [
o=1—) = 14 d
1Z:) <7ra) 5 /0 (w)udu

1 1 1
u® = 5\/492—1— —5 and ugy™ = 5\/492 —2£—2
where £ = /402 + 1. Then
L2
VEE = S(V42 +1-1)°
Ta

2
24Lm2 (3602 —90% +4 — (202 — € +1)1/4Q2 — 2¢ +2).

Therefore, the number of eigenvalues N*(Q) less than some  is given asymptoti-
cally by

with

V S’I]"]W —

2, L?
TF(Q ™) = ——=Q° — Q°+0(Q
NP, NP(Q) = 5 gz T O
where, remarkably, the asymptotic expressions for the TE and TM modes are iden-
tical to order O(2). The result then follows. O

Thus in the large L continuum limit the density of states for TE and TM modes
behaves like:
st N L2
aQ — 4ma?

Q2 — Q).
The expression
hCQ > —oQ dN TE dN ™ hC()L2 3
— Qe ° =y d~ —— | — 1
Eo) =507 ), e { o T an ) N e 3 (8.1)

indicates approximately how the large system energy grows with L as o — 0. It is
of interest to compare this with the ¢ behavior of Py''[F7*] and P§[F™] derived

from (CT) and (CI2), respectively, in To leading order in o these
yield for both values of s:

6
ey

Pyl (FE"), PAIES) =

o

and a large L energy growth

hCOL2 0.1 hC()IJ2 3
£ — P FTE PO F™M]) ~ v
(0) 87'('013\/%( 3 [ o ]+ 3[ o ]) 77\/%0/3 20_4
in precise agreement with (8I). Thus, the compensating singular parts
PrIEE], PrLmo[F2] that arise are determined solely by the dependence of the eigen-
spectrum on the geometry of the physical system. As V3 — oo and L — oo
for fized a < L, the cross-section of the guide grows without bound but the
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inhomogeneous dielectric retains its profile. Thus one may identify in this com-
pensation a one-parameter family of “large volume guides” containing a smooth
inhomogeneous medium. When the parameter a also grows to infinity along with
L the medium approaches a homogeneous dielectric with relative permittivity .
Since o is dimensionless and the perfectly conducting boundary conditions are
maintained in all limiting processes, there is no compelling reason to interpret the
regularization process in terms of a physical variation of these conditions with mode
frequency.

9. Conclusions

In this article, a number of related aspects associated with the problem of determin-
ing the ground state expectation values of the electromagnetic quantum field energy
and stress in a smooth inhomogeneous polarizable medium have been addressed.
After reflecting on the approach taken by Lifshitz et al. and subsequent attempts
by some others to calculate such quantities we have pointed out the need to accom-
modate the relevance of classical mechanical material stresses that must inevitably
arise when a physical material continuum is constrained in space in any way.
A description of classical mechanical stress induced in incompressible media in
static equilibrium with external constraints was presented in terms of the Cauchy
Euclidean stress tensor field for a general body. Any attempt to confront contribu-
tions to this tensor from theoretical predictions of electromagnetic quantum induced
dielectric stresses with experiment should take the material constitutive properties
of the medium into account.

Given these general requirements the article has concentrated attention on a
specific system composed of a particular meta-material confined in an infinitely
long perfectly conducting open waveguide. The dielectric material has been chosen
to have an anisotropic and smooth inhomogeneous permittivity that enables one to
deduce from the source free Maxwell equations a complete set of electromagnetic
eigen-modes and eigen-frequencies analytically. Since these spectral values inhibit
propagating harmonic modes in the guide the Lifshitz theory, based on asymptotic
scattering states, appears problematic so we have been led to an alternative regular-
ization scheme, based on the Euler—-Maclaurin summation formula, for estimating
quantum expectation values of electromagnetic energy and stress in the dielectric
containing only evanescent eigen-modes.

A detailed exploration of the conditions required for the application of this
scheme has been given and shown analytically to yield finite regularized values for
the ground state expectation value of the electromagnetic energy in both a constant
permittivity and particular inhomogeneous ENZ dielectric. Precise criteria have
been given for the general applicability of this scheme used to estimate quantum
expectation values together with bounds on the estimate. It has been shown how
these criteria can be exploited to construct a general numerical scheme based on
earlier work in [29] and benchmarked by comparison with the exact analytic results
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for the Casimir energy per unit area for parallel conducting plates in a vacuum.
The excellent agreement between the numerical and analytic estimates augers well
for applications of the numerical approach to more general inhomogeneous systems
where analytic methods are not available. The article also discusses the Euler—
Maclaurin regularization of the ground state expectation values of the integrated
electromagnetic local stress components in the ENZ medium and how they can be
computed numerically.

There remain a number of important effects that have been ignored in this
article. These include finite temperature corrections, finite guide conductivity cor-
rections, effects due to spatial and temporal frequency dispersion in the medium,
and contributions from material vibration, both classical and quantum. The for-
mer as noted will yield stresses from the mechanical constitutive properties of the
dielectric and play a role in maintaining static equilibrium configurations in any
experimental attempt to detect the quantum induced stresses in the presence of
gravitational fields. The considerations in Sec. 2] suggest that experiments with
smooth inhomogeneous dielectrics in free-fall may offer a possible environment for
detecting quantum induced stresses using the phenomenon of photoelasticity.

By focusing on the spectral properties of a particular ENZ type of medium with
a smooth inhomogeneous permittivity in an open guide it has been shown in some
detail how finite energy and stress expectation values can be obtained from a well-
defined regularization scheme. This has been developed into a numerical procedure
that promises wide applicability to systems that are beyond an analytic treatment
and offers a new approach to estimate the significance of quantum induced pressures
with error estimates based on a generalization of the Euler—-Maclaurin summation
formula.

Acknowledgments

The authors are most grateful to Vadim Cheianov for useful conversations. As mem-
bers of the ALPHA-X collaboration and the Cockcroft Institute of Accelerator Sci-
ence and Technology, they are also grateful for support from EPSRC (EP/J018171/)
and STFC (ST/G008248/1).

Appendix A. General Formulae for Modes in Terms of the
Gaussian Hypergeometric Function

The differential equation

d? z
Tz Yo.u(Z) + (%9) Yp,e(Z) =0

where
O, =(+VO(L+Vo+1)
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has the general (complex) solution
Ch

—— (2cosh(22) — 2)*/* (2 cosh(22) + 2)"/*(cosh 2) = (V)
sinh(27)

Yo(Z) =

XG5, (2) + C2085(2) (sinh 22)°* (cosh 2) 7

with arbitrary complex constants C7, Ce and where
1 h(2Z
g(:l:),()_2Fl< 7{%1\/%[4; + cosh( ))

2
in terms of the Gaussian hypergeometric function o F([a, b], [c]; ¢). With real § > 0
and all branch cuts drawn on the negative real Z axis, define, for real Z the real
valued expression:

140 140420
2’ 2

~ 1
Y (Z) = ———(2cosh(2Z) — 2)*/* (2 cosh(2Z —|—21/4
1(7) = s 2eomh(22) =2 (2eosh(22) +2)

x (cosh 2)~ (V0 gD (7).

Then, a complete set {2y ¢(Z)} of real continuous normalizable functions, regular
for all real Z, are defined, for ¢ odd (¢ =1,3,5,...), by

}/}G,Z(Z)v A > 0
Zou(Z) =1 .
_%,E(_Z)v A S 0
and for £ even (£ =0,2,4,...), by
{ii}&,l(z)v A Z 0
~You(2), Z<0.

These functions are used to construct the {3, (Z)} that enter into the expressions
for the pre-potential modes for fields in the dielectric guide with a permittivity

profile given by (BI0):
Y (Z2) =CRr, 20,45 (2)
for normalization constants C}. , where N = {ng,ny, £},

2 2
29Ny M
0™ =r°a <L2+L2>

x

n2 n
0™ = 12a® (Lg + = L2 +1

x

and ng,n, € {0,1,2,...} (see Sec. B). The functions {3 (Z)} coincide with the
functions constructed by a recurrence process in (313)) up to overall normalization
but have the advantage of being explicitly given for all N in terms of a finite series
involving hyperbolic functions. The normalization constants are given in ([I0).
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Appendix B. Regularization Scheme for a Homogeneous
Polarizable Medium

B.1. Regularized energy

In this section, we outline the details involved in calculating the quantum expec-
tation value of the electromagnetic ground state energies (G.0) and (GEJ) in a
homogeneous dielectric contained in a perfectly conducting cuboid cavity (with
L, =L, =L > a) in terms of integrals in I'};[F?]. The dimensionless auxiliary
function F¥ is

Fi(n,) = /:O Vuexp(—omy/u)du.

For this case M = 2 in the Euler-Maclaurin expansion and lim,_,o+ e5[F$] =
0 for all n > 0. The results for the regularized sums are then ezactly B5°° for
s € {TE,TM} and for all n > 0. The dimensionless auxiliary function F? can be
evaluated analytically:

> 2 > [ [* 2 & (e
Fs )= 2) 2 —omy -z - —oTmy - - -
7 (n2) /nz ve dy 72 do? (/nz c dy) 72 do? ( To )

4 4 —0oTn,
L
w202 7o o

yielding
Fi(a:)da::/ 2" dx
" n \7m0? 7o o
12 8n e omm
- M op2) &
(77202 + o an ) w202
Thus
4 4 4 —om
Fr(0) = Fre(l) = (= + — +2) =
w33 w202 7o o
o0 12 o0 12 8 e "
A ngj(x)dx = W ) FO.TE(.’E)d.T = <7‘(‘20’2 + E + 2) 71'20'2.
Using (5.2)):
1 otk k?  o?n?k?
So(k S] — e —omk
2(k)[F] (180 90 6 360 )
yielding
1 29  om  o?n?
So(0)[F™M] = — d S(DFP=-——- — -,
20" = g5 and S(VIF] ( 180 90+360>e
Then ([&.7) gives
12 10 4 1 29 7m0 w20\ e o7
1‘\1 FTE — _ -
2[Fo"] <7r4a4 + g3 + m2g? + o + 180 90 + 360 ) w202
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or taking the series expansion with respect to o:

12 2 1 w33
Fl FTE - ‘- 9] 4
2lFo 1 = a0~ 57 "m0 T e O
and
12 2 1
1—\0 FTM) — .
2[F5 "] miot  mwg3 180
Hence
12 2 1
1 TE] __ _ 1,TE -
P2 [FO' ] - 71'40'4 71'3037 62 180
12 2 1
O[pT™] — Orm . _ —
P2lFs™] mdot + m3g3’ 72 180

and (BI3) yields the regularized sums

> 12 2 1
. TE _—
c;lg& (Z Fo(n=) = mot + 7r3a3> 180

n,=1

. 12 2 1
fim (Z F5™(nz) = e 7T3a3> - 180

o0+
o— nazo

B.2. Regularized integrated stress

The computation of quantum induced electromagnetic integrated stress at any sec-
tion (parallel to the faces) of the cuboid involves the analysis of I'},[F3], in terms
of the dimensionless auxiliary function

F(n,) / exp (—omy/u)du

In this case, M = 2 in the Euler-Maclaurin expansion and lim,_,o+ e3[F%] = 0
for all n > 0. The results for the regularized sums are then ezactly B5°° for s €
{TE, TM} and for all n > 0. The dimensionless auxiliary function F%(n,) can be
evaluated analytically:

o [e’e] 2 2, —omn,
F(n.) = 2n2 / €T dy = ==
n. o
yielding
°_ 2 [ 4 4 —omn
/ Fi(z)de = — 22e7 dy = <ﬂ—|——n—|—2n2> 62—2.
n o J, o o 2o
Thus
. _ 2~ 0T
FM0)=0 FIP(1) =
2(0) ) = 2

o 1 o 14 =0T
A FgM(IE)dIE = W ‘/1 FgE(IE)de = <7T20'2 + 5 + 2) 252 .
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k N 1 onk k2+027r2k2 ook
Jomr 60 60 6 360

gives

TTM 1 TTE 1 3 on 027T2 —om
S2(0)[F5"] = 55 and Sa(1)[F57] = (%—W T30 60 360 ) c

Hence from (G5.7)

— 4 4 2 2 3 on  o’w?
Fl FTE — = e - —oT
2lFs"] <7r4a4 + w303 * w202 3om * 20 * 60 360 ) ‘
or taking the series expansion with respect to o:

— 4 1 w33
lrTE] - 4
LalFo ] = i — 50 + 500 HO0)
and
— 4 1
1—\0 FrM) — -
2[ o ] 7_‘_40_4 60
Therefore
_ 1
1 _ 1,7E __
Pz[FgE]—W» By" =%
_ 4 2 1
0 _ 0,7™m __
,PQ[FZ;M] - ;) + mv 2 - _@

and ([I3) yields the regularized sums

. — = 4 1

o+
o— nom1

. T™M _
011r61+ ( E F3M(n.) — —W404> =60

n,=0

Appendix C. Regularization Scheme for a Smooth Inhomogeneous
Polarizable Medium

In this section, we outline the details involved in calculating the TE and TM parts
of the quantum expectation value of the electromagnetic ground state energy (Z.1))
of the open guide (with L, = L, = L >> a) containing the medium with the
permittivity profile given by (BI0), in terms of certain o-dependent integrals labeled
as follows:

b P2
(21—
I(a,b) :A WGXP(—U\/ﬂ)dU

From (B5.7), the behavior of I'" [F£] as a function of m necessitates a value of m > 1
for (51I0) to be satisfied. However, based on the behavior of T} as a function of m,
in the following we choose m = 3 so that the values of 37%* determined by I'?, [F$]
can be calculated to 6 significant figures.
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C.1. Contribution from TE modes

For the TE mode spectrum the dimensionless auxiliary function is:

> 20+ 1
FI*() = Vu (1 - 7) exp(—ov/u)du.
® 2(0+1) V14 4u ( )

With n = 0, the Euler—-Maclaurin regularization procedure outlined in Sec. [l does
not yield a finite result, since terms in Sy, (n)[F2*?] diverge as n — 0. However a
regularization can proceed for n = 1 with I'}[F7?] defined by (5.7 and from (5.17):

DY [FIF] = F22(0) + D[F2*).
First note that
1,0 1,1 41,0 1,0 1,1 1,1
FP(1) = T55%) =350 = i) = Loy — 3T(g ey + 3L(on)- (C.1)

To compute the integral term in (&.7), we shall use the identity

/loo Fpo (x)de = /Ooo FP*(z)da — /OlFUTE(x)dx. (C.2)

For any integrable function f(z,w), one has, by reversing the order of integration,

/OOO (/gﬂ:ﬂ)f(%u)du) dx:/ooo (/Ouof(x7u)dx> du

where ug = —% + %\/4u + 1. Thus

R DSCTRE B PR 31
= 5%(0,00) ~ 320,000 T L(6,00)

since the integration over x can be performed analytically. Similarly, from

/01 (/I:H)f(a:,u)du> dr = /01 </0°° f(a:,u)du—/Om(mﬂ)f(x,u)du) dx
:/OOO (/Olf(a?,U)dx) du—/o2 (/u:f(a:,u)dx) du

1
3 1

TE _ 710 90 Ll g1 L1 73,1
/oF" (@)dr =T o) — 5Z0,2 + 5% 2L9,00) T 2L9,2) — L,y

one has

27(0,2)

since again, the integration over x can be performed analytically. Thus

o | 3 3
™= _ Ll S0 11 43,1 31,0
/1 FoP (@) de = 514 o) = 520,000 T 2L0,00) ~ Lidoo) T 3%(02)

1 4,4 11 3,1
= 5Z0.2) ~ 202 T Lo,
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using (C.2). Finally, from (5.2) with m = 3

1 1 223+/2
Sy(V[F™] = —~70D | 27D V2

15
6L0.00) T 502 ~ mexp(—ax/ﬁ) + — sexp(—oV/2)

3584

+ ﬁ 0% exp(—aV/2) — L o* exp(—av/2).

6720 8960
Therefore, using (5.7)), one obtains
2 2 1 1
Lpre) _ 41,0 41,0 200 2.0 10 140 34
D3lE5"] = Z9,2) = Z(o,00) T 3Z(0,00) ~ 3%02) T 500,000 ~ 3202 ~ Lid,00)
223V/2 15

+I(:)’6}2) + 107530 exp(—ov/2) — 3584 o exp(—oV?2)
2 1

- %02 exp(—ov/2) + ma‘g exp(—av/2). (C.3)

Since
1,0 1,1
EI®(0) = I(O,oo) — I(O,oo)’
it follows from (B.I7) that:

=~ 1 2 1 1
Fg’l[FgTE] _ 710 L1 7Ll L1 L1 3,1

©0.2) ~ 370,000 7 37020 T 5(0.00) T 5020 T L(0,0)
51 223V2

15
02 T 107590 exp(—ov/2) — —— o exp(—oV/2)

3584
V2 o, L3
— m g exp(—a\/i) + m ag exp(—ax/ﬁ). (04)
The infinite range integrals in (C4]) can be evaluated analytically with the results:
11 _ mdk -1 d (K
000 = A do’ T000) T T2\ o
(C.5)

- d2 1,1 o 7Td3’C
000) = go7L000) = 1 o8

where

Ko (5) -0 (3)

in terms of the first order Bessel function of the second kind Y7 (z) and the first
order Struve function Hy(x). Series expansions of the finite range integrals in (C4))
around o = 0 can be evaluated without computing their exact analytic form. For
example,®

2 2
I(10,02) = / Ve V" dy = / (Vu — ou)du + O(c?)
' 0 0

¢In this case the integral can be computed analytically and the series expansion of the result about
o = 0 is in agreement with the integration of the series expansion of the integrand about o = 0.
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2 30 1 5] p

—[3u 2au u:0—|—0(0)
4+/2

:T\/_—2U+O(02)

since \/ue V% = \/u—ou+O(c?). Thus, using (C.5), the series expansion of (C.4))
around o = 0, is calculated as:

~ 6 1 1 5 53392
1—1071 FTE - _ _1 _ _
3 Uo ] = 7 5002~ 30 ™)~ 1536~ 35810
0 43 47 9
2T @)+ ——In(4 2 .
Rl 768 n()+384 n(4+ 3v2) + 0(c?) (C.6)
in terms of Euler’s constant . Using (B.18)), this gives
N 6 1 1
0,11prE) _ 2 -
P lF" = 3+ 5008 ~ 33 @)
o1 7E 5  5339v2 4 43 47 (C.7)
dlre _ J2IVE T2 1(2) + —n(4 + 3V2
B 1536 35810 331 768 M) T ggymdt v2)
= 0.00393263

to 6 significant figures. The term T, (1, 00)[F.;”] cannot be evaluated analytically
but, using (5.14)), it can be bounded. For m = 3, a bound is lim,_,q+ e3[F7"] <
6.40 x 1079, yielding the relative error

limg,_,o+ e3[F77]

-3
EE 1.623 x 102,
3

Thus from (G.16):
> 6 1 1
li FfP(f) — = - —_ 4+ ]
o0t <; O = s yes Y n(0)>

5 5339v2 v 43 47
=0 Ve T 9y 4 =L (4 4 3v2
1536 35810 331 768 M3 T ggymd+ v2)

+ lim e3[FT%] = 0.00393263 + 6.40 x 10~° (C.8)
o—

to 6 significant figures.

C.2. Contribution from TM modes

For the TM modes the dimensionless auxiliary function is

F(0) = /( Y (1 - %7“) exp(—o+/) du.

04+1)(£42) V14 4u
To analyze I'9[F™] as defined by (51, first note that
1,0 L1 _ 41,0 1,0 1,1 1,1
EM™(0) = 1(2700) — 1(2700) = I(O,OO) — 1(072) — I(O,OO) + 1(0,2). (C.9)
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Next, for any integrable function f(z,w), one has, by reversing the order of inte-

gration,
/0 ( /(IH)(IH)f(a:,U)du) dr = /2 ( /0 f(x,u) da:> du

where ug = —2 + 1v/4u+ 1. Thus

/ooo F (o) de = /:O [@m -y -, ﬂ] p(moVd

VI+du
= =T+ R ~ L ~ T
= =B + i * 0 ~ %6 T i
Ty + T

since the integration over x can be performed analytically. Also, using (52]),
1an 1 a1 31129v2
™ T ) - 1) _
S3(0)[F™M] = GI(O’OO) + 61(0*2) 134320 exp( 0\/5)

17 2129v2
645120

5 3v2
35840

exp(—av/2)

ot exp(—oV/2).

4 4 1 1
Fg[F‘;mu] - _= 1,1 + _1(10,,12) + _Il,—l Il,—l _13,1

3,1
3 (0,00) 3 27(0,00) - 5 (0,2) (0,00) +1Z

(0,2)

311292
184320

C2129V2
645120

exp(—ov'2) + o exp(—oV/?2)

10240

3
17920

exp(—ov/2) o3 exp(—oV/2)

+ 3v2 o exp(—oV/2). (C.10)

Using (CXH)), the series expansion of (C.I0) around o = 0, yields

_6 2 4, ., 1o 34009v2 49y
ot 2402 384 1536 = 184320 384
245

4 4
+——m@y—§%m@+3¢®+iyr+ow%. (C.11)
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From (B8], this gives

P = 51~ 517~ g )

0nr 101 34000v2 49y 245 49 (C.12)
™ oM - =2 (4 +3
3 1536~ 181320 381 " 7os M) T ggg V2)

— 0.0734902

to 6 significant figures. As with the TE modes, the term 7, (0, 0c0)[FF™] cannot be
found analytically but, using (5I4)), it can be bounded. For m = 3, a bound is
lim,_,o+ 3[F7] < 3.17 x 1072, yielding the relative error

lim,_ o+ €9[F7]

—4
e <4.31x107%
Thus
23 49
: TM _ ik
L, (Z Fs Tz T3y ln(a)>
_ 1ot +34009f 497Jr 245 (2)_£1n(4+3\/—)
~ 1536 184320 384 = 768 384
+ lim e3[F™] = 0.0734902 + 3.17 x 10~° (C.13)
o—0

to 6 significant figures. It should be noted that the relations (C.8) and (C.I3) are
invariant under o — ¢(0o).

Appendix D. The Generalized Abel-Plana Formula

For electromagnetic systems with real eigen-frequencies given by the roots of equa-
tions that are not algebraic, an alternative numerical regularization scheme can
be constructed based on the Abel-Plana formula instead of (5I). Suppose such a

system has the real positive eigenvalue spectrum & = {u1,..., lr,...} where &
contains all the ordered roots of F(u) = 0 such that
F'(z)
A =
(2) F2)

has simple poles at the elements of & with unit residue in the complex z-plane.
Furthermore, let f(z) be analytic in z for Re(z) > &£, £ < u1. Then the generalized
Abel-Plana formula follows from the Cauchy integral formula:

S S~ [ S = L)+ 3 fin) + Qo) — Qo (1) + 5oL + L)
r=1 H1

21

where

Hn
Ly = :F/ fx £ iyo)+ (x £iyo) de
o

Yo
Qyo(r) = % ; {f (e +iy)s (o + iy) + f (e — iy) Y- (pr — iy) }dy

1950002-48



Aspects of quantum energy and stress in dielectric continua

with
A(z)

™

Yi(z) = =2 %

and any real yo > 0. This reduces to the Abel-Plana formula (p. 340, [20]) when
F(p) = sin(mp).

Recourse to this generalized Abel-Plana formula offers an alternative to the
generalized Euler-Maclaurin formulae based on (G5I) since it is rare that one can
find exact solutions for the spectra of electromagnetic modes in a general confined
system as the boundary conditions often lead to eigenvalues that are the roots
of transcendental equations. Furthermore, the criteria for its implementation as
a viable regularization scheme are somewhat more restrictive when dealing with
inhomogeneous media since one needs to assess the significance of contributions
from integrals over contours in the complex plane.
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