
Central Lancashire Online Knowledge (CLoK)

Title Aspects of quantum energy and stress in inhomogeneous unbounded 
dielectric continua

Type Article
URL https://clok.uclan.ac.uk/id/eprint/39739/
DOI https://doi.org/10.1142/S0129055X19500028
Date 2018
Citation Goto, Shin-itiro, Tucker, Robin W. and Walton, Timothy (2018) Aspects of 

quantum energy and stress in inhomogeneous unbounded dielectric 
continua. Reviews in Mathematical Physics, 31 (1). ISSN 0129-055X 

Creators Goto, Shin-itiro, Tucker, Robin W. and Walton, Timothy

It is advisable to refer to the publisher’s version if you intend to cite from the work. 
https://doi.org/10.1142/S0129055X19500028

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/ 

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.  
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors 
and/or other copyright owners. Terms and conditions for use of this material are defined in the 
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/


January 8, 2019 9:54 WSPC/S0129-055X 148-RMP J070-1950002

Reviews in Mathematical Physics
Vol. 31, No. 1 (2019) 1950002 (50 pages)
c© The Author(s)
DOI: 10.1142/S0129055X19500028

Aspects of quantum energy and stress

in inhomogeneous unbounded dielectric continua

S. Goto

Department of Applied Mathematics and Physics,
Graduate School of Informatics, Kyoto University, Kyoto, Japan

goto.shinichiro.5r@kyoto-u.ac.jp

R. W. Tucker

Department of Physics,
University of Lancaster and Cockcroft Institute,

Daresbury Laboratory, Warrington, UK
r.tucker@lancaster.ac.uk

T. J. Walton

Department of Mathematics,
University of Bolton, Deane Campus, Bolton, UK

t.walton@bolton.ac.uk

Received 10 November 2015
Revised 2 July 2018

Accepted 12 September 2018
Published 4 October 2018

This article explores a number of issues associated with the problem of calculating and
detecting electromagnetic quantum induced energy and stress in a stationary dielectric
material with a smooth inhomogeneous polarizability. By concentrating on a particular
system composed of an ENZ-type (epsilon-near-zero) meta-material, chosen to have a
particular anisotropic and smooth inhomogeneous permittivity, confined in an infinitely
long perfectly conducting open rectangular waveguide, we are able to deduce analyti-
cally from the source-free Maxwell’s equations and their boundary conditions a complete
set of bounded harmonic electromagnetic evanescent eigen-modes and their associated
eigen-frequencies. Since these solutions prohibit the existence of asymptotic scattering
states in the guide, the application of the conventional Lifshitz approach to the Casimir
stress problem becomes uncertain. An alternative approach is adopted based upon the
spectral properties of the system and a regularization scheme constructed with direct
applicability to more general systems composed of dielectrics with smooth inhomoge-
neous permittivities and open systems that may only admit evanescent modes. This
more general scheme enables one, for the first time, to prescribe precise criteria for the

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution
of this work is permitted, provided the original work is properly cited.
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extraction of finite quantum expectation values from regularized mode sums together
with error bounds on these values, and is used to derive analytic or numeric results for

regularized electromagnetic ground state expectation values in the guide.

Keywords: Casimir; regularization; inhomogeneous dielectric; ENZ metamaterial.
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1. Introduction

It is, perhaps, surprising that 70 years since Casimir’s prediction [1] of quantum

induced electromagnetic forces between a pair of rigid, plane, perfectly conducting,

uncharged plates in a material vacuum, there remain many challenging problems

in constructing a viable general theory of quantum fluctuation phenomena in con-

tinuous dielectric media. With the rise in developments in nanotechnology and the

fabrication of artificial dielectrics (meta-materials), such problems deserve scrutiny

since their resolution has direct relevance to both technology and our understanding

of fundamental aspects of quantum electrodynamics.

One of the earliest attempts to extend Casimir’s work to accommodate quan-

tum induced stresses in dielectric media [2] employed the powerful “fluctuation-

dissipation” approach to calculate the stress between two separated planar

half-spaces in the vacuum. It provided an analytic expression for such stresses

for dispersive media with piecewise inhomogeneous, lossy permittivity in thermal

equilibrium at arbitrary temperatures. The derivation of this expression has since

been intensively explored from a number of different starting points and has led to

some confusion regarding its universality since differing points of departure often

exploited different basic assumptions in their derivations. This has recently led to

some authors arguing that the original Lifshitz theory does not have such claimed

universality [3]. One might take the attitude that more recent derivations of the

Lifshitz formulae render the early derivations obsolete. However, alternative mod-

ern derivations [4] are also circumscribed by assumptions that are often implicit

and not always mutually compatible.

In common with many methods in quantum field theory a regularization scheme

is needed to ameliorate infinities that often arise during the computation of cer-

tain physical quantities involving an infinite number of field modes. In general such

procedures within a particular scheme lead to the isolation of singularities that

are removed to render expressions of interest finite. It remains an open question

whether any non-uniqueness of this process invalidates the scheme involved since

the final arbiter of all such schemes remains validation of the result by experiment

[28]. Furthermore, there is little consensus in the literature on how best to interpret

any regularization process that extracts a finite Casimir energy or stress from a

physical standpoint. Opinions vary, ranging from regarding Casimir regularization

as a matter of definition to interpretations based on physical properties of the sys-

tems in interaction. For example, in the computation of finite forces between disjoint

open (interacting) continua part of the mathematical procedure is sometimes
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justified as the removal of infinite back reactions of media sub-systems on them-

selves. Lifshitz used this argument in his original paper [2] and claimed that infi-

nite stresses are “in fact compensated by similar forces at the other side of the

body”. Without some indication about the mechanical constitutive properties of

the media involved, this is a strong statement should any of them sustain inhomo-

geneous stresses in non-symmetric equilibrium configurations. In addition, certain

regularization recipes are sometimes advanced as giving regularization independent

results without full justification. While admitting that a number of different schemes

appear to yield identical results it is not clear why others that yield different results

should a priori be discarded. Since the experimental detection of Casimir forces on

non-uniform material (or more generally stresses in dielectric media) is challeng-

ing, particularly in the presence of gravitational fields and thermal fluctuations,

a precise formulation that underpins each regularization scheme predicting such

phenomena is clearly necessary.

To simplify computations, much theoretical work has concentrated on planar [5],

spherically or cylindrically symmetric piecewise smooth [6] and piecewise homoge-

neous dielectric media composed of mechanically rigid sub-structures that respond

linearly to only quantum electromagnetic fluctuations [7]. Many recent derivations

approach Lifshitz stresses in media by first calculating a regularized energy (or free

energy in a thermodynamic context). For systems composed of piecewise homoge-

neous, isotropic dielectrics, the quantum induced total mechanical pressure across a

dielectric interface is then sought by differentiating an integrated expectation value

of a regularized interaction energy with respect to a geometrical parameter. How-

ever computing a quantum induced stress at any point of a piecewise anisotropic or

inhomogeneous dielectric medium with smooth spatially varying permittivities, in

general, requires calculating an expectation value of a regularized stress tensor that

includes the sum of both electromagnetic and mechanical stresses. In many circum-

stances, an essential precursor to this analysis is an estimation of the response of

the electromagnetic spectral properties of a system to a variation in the geometry

and constitutive properties of the components that comprise the system.

Although no natural or fabricated material continuum is strictly inextensible

many Casimir calculations on media at rest proceed by assuming that any non-

fluidic volume filling dielectrics involved are mechanically rigid (incompressible)

and remain static. This inhibits any induced electrostriction effects. However these

assumptions imply (even in the absence of quantum induced stresses and inhomo-

geneous stresses due to the weight of the medium) that the materials involved may

be subject to classical mechanical constraints that will result in (possibly localized)

classical mechanical stresses (see Sec. 2). Although such mechanical stresses may

not influence the electromagnetic spectral problem they are important [8] when it

comes to interpreting the results of calculation in order to confront prediction with

experiment. For example, in the Lifshitz configuration, both the induced Casimir

type stresses that arise in the infinite volume rigid plane separated dielectric half

spaces and the constraint induced stresses needed for static equilibrium may be
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different from those in finite volume subsystems with similar dielectric properties

used in any laboratory setup.

It has recently been suggested [9] that the Lifshitz prescription can be used to

construct the interface stresses for a pair of slabs with piecewise smooth inhomoge-

neous permittivities by regarding each slab as composed of a large but finite stack of

piecewise homogeneous permittivities and then taking the limit as the number in the

stack tend to infinity. That this does not in general yield a finite result should come

as no surprise since the regularization scheme associated with the reflection coeffi-

cients for a finite stack of piecewise homogeneous media is not guaranteed to yield

compatible results when using the reflection coefficients associated with the lim-

iting smooth inhomogeneous medium. Numerical evidence supports this assertion.

This leaves open the question how best to calculate quantum expectation values of

regularized electromagnetic stress tensor components for media with smooth but

inhomogeneous permittivities even at zero temperature and without dissipation.

We have argued in [7] that for the original Lifshitz open system, one can proceed

without explicit mode regularization and first enclosing such systems in a confining

cavity of finite volume and then letting the cavity expand to infinite volume.a The

physically allowed quantum states for open media involve mode functions that are

regular at all points in space and spatially bounded at infinity. If, furthermore, some

propagating modes enable one to construct spatially asymptotic scattering states,

one can in principle compute reflection and transmission coefficients, even in the

presence of smooth inhomogeneous dielectric media in the system. In the absence of

dissipation, one can then attempt to construct an analytic function in the complex

angular frequency plane with properties that enable one to discard certain contours

in the right-half plane. The singularity structure of the reflection coefficient(s) con-

tains information about the allowed evanescent Maxwell eigen-modes and one may

generate (via the Cauchy integral formula) a sum rule relating double integrals over

complex functions of real frequency to double integrals of such functions over the

imaginary frequency axis. It is this latter double integral that can ultimately be

related to expressions proposed by Lifshitz, based on a regularized Maxwell stress

tensor in dielectric media. In this approach, when asymptotic propagating modes

exist, it is the construction of appropriate analytic functions from the associated

reflection coefficients that ensures a viable regularization scheme and yields results

equivalent to those found by Lifshitz in his original analysis. In general, however, for

media where such scattering states are not present, the traditional Lifshitz approach

to the calculation of Casimir stresses in polarizable media is, at best, suspect.

Since all physical systems are in reality open it may appear at first sight that

aside from technical complications, the general approach taken by Lifshitz et al.

offers, in principle, the only avenue to estimate Casimir type stresses in open sys-

tems, including those with spatially varying permittivities. However with the advent

aFor open systems, one can strictly construct a complete set of orthogonal electromagnetic modes
without recourse to a distributional normalization.
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of meta-material technology it is possible to contemplate open dielectric systems

that do not permit propagating electromagnetic modes. The absence of scattering

states then prohibits any approach based on the use of analytic functions con-

structed out of asymptotic reflection or transmission coefficients. For such systems

an approach based on the construction of regularized expectation values of Maxwell

stress tensors offers a possible alternative. In the following such an alternative is

discussed in some detail for a particular open waveguide geometry filled with a

particular spatially smooth inhomogeneous (non-dispersive) dielectric medium.

This article is organized as follows. Concerning the imposition of mechanical

constraints needed to maintain material interfaces in a rigid configuration, Sec. 2

summarizes the conditions involved in maintaining classical static equilibrium in the

presence of stationary electromagnetic quantum fluctuations. In Sec. 3, a particular

model of a lossless, dispersion free but spatially smooth inhomogeneous dielectric in

a perfectly conducting waveguide is introduced that although open, does not admit

propagating electromagnetic modes of any frequency. The electromagnetic spectral

problem for this system is solved exactly. Section 4 discusses electromagnetic field

quantization in a classical dielectric background and the problem of calculating

quantum energies and stresses. With the aid of the Euler–Maclaurin summation

formula, a consistent regularization scheme is formulated in Sec. 5 to facilitate such

calculations and offers, for the first time, a means to reliably extract possible errors

in numerical estimates from the remainder terms in the Euler–Maclaurin expansion.

In Sec. 6, this summation scheme is verified by evaluating analytically the regular-

ized electromagnetic quantum induced internal energy and stress inside a particular

closed perfectly electrically conducting cuboid containing a homogeneous dielectric.

This is compared in Sec. 7 to an analytic calculation of the regularized quantum

induced energy in a particular open waveguide containing a spatially smooth inho-

mogeneous dielectric that does not permit propagating electromagnetic modes in

the guide. These analytic results are found to be in good agreement with a new

numerical scheme based on a subtraction procedure, the interpretation of which is

discussed in Sec. 8. In Sec. 9, we summarize our results and conclude that they

offer a viable method to estimate quantum induced stresses in systems with smooth

inhomogeneous permittivities and a viable numerical regularization scheme with

error estimates derived from a generalized Euler–Maclaurin summation.

2. Continuum Statics

The detection of electromagnetic Casimir forces on material continua in the lab-

oratory is notoriously difficult due to the competing effects of classical stresses of

non-electromagnetic origin. Material containing an inhomogeneous dielectric may

also be composed of an inhomogeneous substance with a variable mass density.

Its weight in the laboratory may then give rise to additional classical stresses that

depend on the orientation and geometry of the material as well as its compressibility

and temperature.
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In this section, we summarize the classical Newtonian isothermal balance laws

for a static configuration of rigid (incompressible) massive material bodies that

can interact with Newtonian gravity and exhibit linear electrical polarizability in

external electromagnetic fields. Continuum mechanics in Euclidean 3-space exploits

the Killing symmetry of the Euclidean 3-metric at a fundamental level. Thus, in a

global Cartesian coordinate system, points x in this space can be labeled {xi} with

−∞ < xi < ∞, i = 1, 2, 3 and in these coordinates, the Euclidean 3-metric tensor

field is written

g = δijdx
i ⊗ dxj

in terms of the Kronecker symbol δij with i, j = 1, 2, 3. Furthermore, in these

coordinates, the vector fields {∂/∂xi} ≡ {∂i} satisfy L∂ig = 0 and constitute a

basis of Killing vector fields for R3. A three-dimensional material body I can be

described by a map

ΦI : [0, 1]3 → R
3

(u1, u2, u3) �→ ΦI(u1, u2, u3)

where the parameter domain [0, 1]3 is conveniently the unit 3-cube. In R3, a classical

material Cauchy stress tensor field on the material body I can be written

GI = GI

ij(x)dx
i ⊗ dxj .

If X = X i(x) ∂i is an arbitrary vector field on R3, we write

GI(X) ≡ GI

ij(x)X
i(x)dxj

and

σI

X ≡ #(GI(X)) = GI

ij(x)X
i(x)#dxj ≡ GI

ij(x)X
i(x)εjkldx

k ∧ dxl

where # is the Hodge map [10] written here in terms of the Levi-Civita alternating

symbol εjkl. With the aid of the map ΦI , restricting its image in R3 to a surface, any

2-form σI

X can be “pulled back” to any 2-chain parameterizing any two-dimensional

surface in R3 and thus facilitates the construction of integrals of stress (or torque

density) over arbitrarily shaped surfaces when X generates translations (or rota-

tions relative to any origin).

If a material body does not deform under stress, it is said to be incompressible. In

general, properties of incompressibility may reside anywhere throughout the body

or in a particular region in the neighborhood of its perimeter. Consider then a region

of an isolated body with finite volume VI and stress tensor GI bounded by a single

closed surface AI . Let AI be in complete contact with an incompressible medium of

volume VII . Let VII be bounded by surfaces AI and AIII where AIII is in complete

contact with an exterior medium having stress tensor GIII (see Fig. 1). The stress

tensors GI and GIII transmit electromagnetic influences to all regions of R3, but

the stress in region II must be determined from any inextensibility constraints that

maintain its rigidity. In addition to the forces transmitted by GI and GIII , there are
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Fig. 1. Three-dimensional domains I, II and III and bounding surfaces AI and AIII referred
to in Sec. 2.

in general additional “body forces” acting in regions I, II and III due to externally

directed fields. These include gravitational forces and externally prescribed forces

on the body required to maintain it in static equilibrium with its environment.

The Cartesian component of the total contact force GJ

i [AJ ] in direction ∂i is∫
AJ σ

J

∂i
for J ∈ {I, III}. If the body is to remain in static equilibrium under

the action of these forces and additional body forces with Cartesian components

BL

i [VL] for L ∈ {I, II} together with integrated mechanical forces with Cartesian

components RII
i [VII ] that maintain the shapes of VI and VII , one has the global

static equilibrium conditions

GI

i [AI ] + GIII

i [AIII ] + BI

i [VI ] + BII

i [VII ] +RII

i [VII ] = 0 for i = 1, 2, 3. (2.1)

To maintain the static equilibrium of a collection of stationary interacting but

isolated bodies of fixed shape, further externally applied stresses are necessary.

In general, these additional stresses can be applied in different ways to maintain

equilibrium. Such stresses can be implemented by external mechanical forces that

are distributed over materials that physically connect the bodies or by external

static force fields interacting with them.

Even if one or more of the bodies do not have a finite volume, then the arguments

above that require the presence of deformation resisting stresses remain. However,

they then apply to any arbitrary finite sub-domain containing an inextensible body

with a finite volume and part of its boundary. It is worth noting that in estab-

lishing the external stresses required to maintain static equilibrium of a collection

of material bodies (whether deformable or not), one stores potential energy that

can be released when some or all of the applied constraints are released. If VI is a

domain containing part or all of the volume of a stationary body in the presence

of external fields transmitted to it by a stress tensor GI and body force density BI ,

1950002-7
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the integrated force in direction ∂i on VI is

F I

i [VI ] = GI

i [∂VI ] + BI

i [VI ] (2.2)

where ∂VI denotes the boundary of VI . For a volume VI containing material with

mass density ρ having finite support in VI immersed in the Earth’s gravitational

field

BI

i [VI ] = −g0
∫
VI

ρg (∂3, ∂i) dx
1 ∧ dx2 ∧ dx3 for i = 1, 2, 3

in terms of the Earth’s acceleration of gravity g0 and ∂3 pointing vertically up from

the surface of the Earth. Furthermore, if GI is smooth on VI

GI

i [∂VI] =

∫
∂VI

σI

∂i
.

In this framework, the 3-domain VI is ΦI([0, 1]3) and ∂VI is its boundary. It fol-

lows from (2.1) that for an isolated body, (2.2) will not be the same as
∫
AIII σ

III

∂i
,

even if one neglects gravitational body forces. Since ρ > 0, the gravitational body

force is strictly only zero if g0 is zero. However, even if the body has a dielectric

permittivity that depends upon position, the integrated contact force GI

i [∂VI ] in

an inhomogeneous electromagnetic field is not guaranteed to be always non-zero.

These arguments based on classical balance laws lead immediately to:

Theorem 2.1. In the limit when the volume VII for an isolated body tends to

zero and the forces BII
i [VII ] +RII

i [VII ] tend to an integrated surface traction force

component T I
i [AI ], the static balance conditions become:

GI

i [AI ] + GIII

i [AIII ] + BI

i [VI ] + T I

i [AI ] = 0 for i = 1, 2, 3 (2.3)

where

T I

i [AI ] ≡ lim
VII→0

(BII

i [VII ] +RII

i [VII ])

and GJ
i [AJ ] is the integrated contact force on the area AJ bounding the volume VJ for

J ∈ {I, II, III}. In this situation, there will exist a non-zero jump GI
i [α

I ]−GIII
i [αI ]

compatible with (2.3) across any interface αJ ⊆ AJ .

In most practical cases of relevance, it is precisely at such interfaces where the

characteristic properties (such as mass density or permittivity) change discontinu-

ously and where additional information is required in order to match fields across

these interfaces. In the context of constructing Casimir forces on a collection of

rigid dielectric bodies, one requires a specification of all electromagnetic interface

conditions and boundary conditions for global harmonic solutions to Maxwell’s

equations, together with a Maxwell stress tensor SJ for each body in the system.

After quantization of the electromagnetic field in the background of a classical

dielectric medium, the above balance conditions and definition (2.2) should be used

with GJ

i [∂VJ ] replaced by its stationary regularized ground state expectation value

for i = 1, 2, 3 and each domain of volume VJ in the system.
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3. Eigenmodes in a Smooth Inhomogeneous Dielectric

In this section, following the methodology in [5], we construct a complete set of

electromagnetic eigen-modes in an infinitely long waveguide of uniform rectangular

cross-section filled with a rigid dielectric medium. If the medium has a spatially

homogeneous and isotropic permittivity, a waveguide composed of sides with arbi-

trary conductivity can sustain propagating electromagnetic fields with a continuum

of frequencies above a series of mode cutoff frequencies (the frequency cutoff is

abrupt — i.e. each harmonic mode has a unique cutoff frequency — if and only if

the sides are perfectly conducting) determined by the geometric dimensions of the

cross-section and conductivity of the medium and sides of the guide. The same is

true for smooth inhomogeneous isotropic media with relative permittivity εr > 1

at all points inside the dielectric. However, as will be shown explicitly below, if

the medium possesses a positive but smoothly varying inhomogeneous permittivity

along the axis of guide, that approaches zero asymptotically along the axis, then in

general, this is no longer the case and there may be no propagating modes allowed

at any frequency. For such media, all electromagnetic modes have a spatially evanes-

cent behavior along the axis of the guide and a spectrum with discrete frequencies.

Such media belong to the class of meta-materials that are sometimes referred to as

ENZ dielectrics [11].

To facilitate the following analysis, we consider the idealized case of a dielectric

medium without dispersion or absorption and a guide with perfectly conducting,

uniform, rectangular cross section. Harmonic fields of angular frequency ω inside

the medium must satisfy the source-free Maxwell equations

∇×Eω = iωBω, ∇ ·Bω = 0

∇×Hω = −iωDω, ∇ ·Dω = 0
(3.1)

subject to perfectly conducting boundary conditions on all sides of the guide. The

guide axis is chosen to be parallel to the z-axis of a Cartesian frame and the sides

of the guide are taken to be at x = 0, x = Lx, y = 0 and y = Ly (see Fig. 2).

Suppose initially that the medium has positive permittivity ε0κ1(z), positive

permeability μ0κ2(z) and electromagnetic constitutive relations

Dω = ε0κ1(z)Eω and Bω = μ0κ2(z)Hω. (3.2)

Since the medium is electrically neutral, one may choose a gauge with harmonic

vector potential Aω such that

∇ · (κ1(z)Aω ) = 0 (3.3)

and

Eω = iωAω and Bω = ∇×Aω. (3.4)

Then (3.1) are satisfied provided

1

κ1(z)
∇×

(
1

κ2(z)
∇×Aω

)
− ω2

c20
Aω = 0 (3.5)
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Fig. 2. Geometry of the dielectric waveguide with a smooth inhomogeneous relative permittivity
profile κ1(z) = κ0 sech

2(z/a).

where c20 = 1/(ε0μ0). Since the interior of the guide is assumed to be simply con-

nected, there are no harmonic TEM modes and the Hodge–De Rham decomposition

determines a family of harmonic TE and TM modes in terms of pre-potentials

ΥTE

ω ,ΥTM

ω by the relations

ATE

ω =
1

ε0κ1(z)
∇×ΥTE

ω and ATM

ω =
1

ε0κ1(z)
∇× (∇×ΥTM

ω ) (3.6)

leading to the following result:

Theorem 3.1. The harmonic pre-potentials

ΥTE

ω,Ns
=
(
0, 0, κ1(z)

√
κ2(z)f

TE

NTE
(z) cos(kxx) cos(kyy)

)
ΥTM

ω,Ns
=
(
0, 0,

√
κ1(z)f

TM

NTM
(z) sin(kxx) sin(kyy)

) (3.7)

constitute a basis of solutions with Υs
ω =

∑
Ns

Υs
ω,Ns

that determine fields that

satisfy (3.1) and perfectly conducting boundary conditions at x = 0, x = Lx, y = 0

and y = Ly, provided
b

kx =
nxπ

Lx
and ky =

nyπ

Ly
(nx, ny = 0, 1, 2, . . .) (3.8)

bThe starting value in the nx, ny range is determined by the existence of non-zero electric and
magnetic fields for those values of nx, ny, in both the TE and TM sector independently.
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and when the fs
Ns

(z) are solutions to

d2f s
Ns

dz2
+

[
κ1κ2(ω

s
Ns

)2

c20
− k2x − k2y +

1

2ψs

d2ψs

dz2
− 3

(2ψs)2

(
dψs

dz

)2]
f s
Ns

= 0 (3.9)

for s ∈ {TE, TM}, with

ψTE = κ2(z) and ψTM = κ1(z).

Proof. Direct substitution of the harmonic pre-potentials into (3.6) then (3.5).

The basis label Ns appropriate to solutions of (3.9) will be made explicit below

(for a particular dielectric medium) and is used to discriminate between distinct

physical modes with angular frequency ωs
Ns

.

All solutions to the differential equation (3.9) that are regular and bounded in

the domain 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly,−∞ < z < ∞ yield physically acceptable

solutions defining electromagnetic fields in the open, perfectly conducting guide

containing a medium with constitutive properties described by the real, bounded

functions κ1(z), κ2(z). In general, physically acceptable modes with real frequencies

can be found that are oscillatory as a function of z, as well as being exponentially

damped as |z| → ∞. However, if we choose

κ1(z) = κ0 sech
2
(z
a

)
and κ2(z) = 1 (3.10)

with constants κ0 > 0, a > 0, then only bounded evanescent modes are found for all

frequencies as z → ±∞. In this case, after introducing the dimensionless variables

Z =
z

a
, Ωs

Ns
=
ωs

Ns
a
√
κ0

c0
, χ = a

√
k2x + k2y (3.11)

and writing Ys
Ns

(Z) = f s
Ns
(z), (3.9) becomes

d2Ys
Ns

dZ2
+

(
(Ωs

Ns
)2

cosh2(Z)
− θs

)
Ys

Ns
= 0, s ∈ {TE, TM} (3.12)

where

θTE = χ2 and θTM = χ2 + 1.

It will be shown below that the absence of propagating modes in the guide is a

consequence of the positivity of θs for both values of s. If one ignores the s indices,

(3.12) arises in analyzing the physical states for a particle that satisfies the one-

dimensional Schrödinger equation with a Pöschl–Teller potential well [12] of the

form −U0 sech
2(z/a). However, aside from the indices s, the fundamental difference

from (3.12) is that θ is then the spectral parameter that fixes the particle energy

and Ω2 plays the role of the potential strength U0. Discrete and continuum physical

states are found with θ > 0 and θ < 0 respectively. In the three-dimensional
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electromagnetic case considered here, the parameter θ is positive (or zero) due to

the imposition of the boundary conditions on the sides of the guide and this is

responsible for limiting the allowed states in the waveguide (for both values of s) to

those describing superpositions of only discrete electromagnetic field eigen-modes.

For arbitrary Ωs
Ns
, θs the general solution of (3.12) is expressible in terms of a

combination of Gaussian hypergeometric functions (see Appendix A). However, it

is non-trivial to isolate from this general representation the physical eigen-solutions

(regular and normalizable for all z in the guide) compatible with the constraints

θs ≥ 0. A more effective approach for finding the mode eigen-frequencies (and in the

process a means to construct the associated eigen-modes) is based on the Frobenius

method for solving ordinary differential equations. Since (3.12) is symmetric under

Z → −Z, one may classify solutions as even or odd under this transformation. This

leads directly to the following:

Theorem 3.2. For even � = 0, 2, 4, . . . one finds physically acceptable solutions to

(3.12) of the form

Ys
Ns
(Z) =

1

cosh
√
θs

(Z)

�/2∑
r=0

C
nx,ny

�,2r cosh−2r(Z)

where Ns = {nx, ny, �} and the real coefficients C
nx,ny

�,2r are all determined in terms

of C
nx,ny

�,0 provided

(Ωs
Ns
)2 = (�+

√
θs)(� +

√
θs + 1).

Similarly, for odd � = 1, 3, 5, . . . one finds solutions to (3.12) of the form

Ys
Ns

(Z) =
sinh(Z)

cosh
√
θs

(Z)

(�−1)/2∑
r=0

C
nx,ny

�,2r+1 cosh
−(2r+1)(Z) (3.13)

where the real coefficients C
nx,ny

�,2r+1 are all determined in terms of C
nx,ny

�,1 provided

(Ωs
Ns
)2 = (�+

√
θs)(� +

√
θs + 1). (3.14)

Proof. See Appendix A.

This is an essential prerequisite in developing our regularization programme

below and the fact that, for all Ns, these eigenvalues increase monotonically with

increasing � will play an important role. One may readily verify the following con-

sequence of this theorem:

Corollary 3.1. The {Ys
Ns
(Z)} satisfy the orthogonality conditions∫ ∞

−∞

dZ

cosh2(Z)
Ys
nx,ny,�(Z)Y

s
nx,ny,�′(Z) = Λs

nx,ny,� δ��′
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for constants {Λs
nx,ny,�

} that are determined by a choice of mode normalization.

The completeness relation may then be written:∑
�

Ys
nx,ny,�(Z)Y

s
nx,ny,�(Z

′)/Λs
nx,ny,� = cosh2(Z) δ(Z − Z ′).

Since each θs depends uniquely on nx, ny for each s, for typographic clarity we

can abbreviate {nx, ny, �} by {θs, �} and write Ys
nx,ny,�

(Z) = Cs
nx,ny,�

Zs
θs,�(Z) for

such a choice. Explicit formulae for these functions are derived in Appendix A and

some are displayed in Fig. 3.

A complete set of normalizable pre-potentials is thereby obtained by substituting

these solutions into (3.7). The electromagnetic field eigen-modes are then calculated

from (3.6) and (3.4). Some of the pre-potential eigen-modes are pure gauge (i.e. they

give rise to vanishing electromagnetic fields). If nx = 0 and ny = 0, (in which case

θTE = 0, θTM = 1), all field eigen-modes are zero. Furthermore, if nx = 0 and ny > 0

or nx > 0 and ny = 0, all TM field eigen-modes are zero. It is clear that all time

harmonic eigen-modes have spatially oscillatory behavior in directions transverse

to the axis of the guide, and exponentially decreasing behavior along the axis of

−3 −2 −1 0 1 2 3

−0.2

0

0.2

0.6

1

Z

Zs
θs,�(Z)

ZTE

π2/100,0
(Z) = ( sech(Z))2+π/10

ZTE

π2/50,0
(Z) = ( sech(Z))2+π

√
2/10

ZTE

π2/50,1
(Z) = sinh(Z)( sech(Z))3+π

√
2/10

ZTM

1+π2/50,0
(Z) = ( sech(Z))2+

√
π2/50+1

ZTM

1+π2/50,1
(Z) = sinh(Z)( sech(Z))3+

√
π2/50+1

Fig. 3. Behavior of the functions ZTE
θ,�(Z) and ZTM

θ,� (Z) that illustrates the evanescent structure
of the five lowest frequency pre-potential eigen-modes in an open guide with a square cross-section

containing a medium with relative permittivity sech2(Z) and unit relative permeability.
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the guide in both directions away from the section at z = 0 where the permittivity

attains its maximum value. In particular, none of the harmonic fields propagate in

the guide.

4. Field Quantization in a Classical Dielectric Background

Suppose the spectrum {ωs
Ns
} of the electromagnetic field modes in the dielectric

medium is uniquely labeled by a triple of discrete indices Ns and each associated

real eigen-mode is normalized within this domain. Since the complete set of corre-

sponding real field eigen-modes Es
ω,Ns

,Bs
ω,Ns

can be constructed from the harmonic

mode pre-potentials, one can introduce Hermitian field operators

Ês(x, y, z, t) =
∑
Ns

(
Es

ω,Ns
(x, y, z)âsNs

† exp(−iωs
Ns
t)

+Es ∗
ω,Ns

(x, y, z)âsNs
exp(iωs

Ns
t)
)

≡
∑
Ns

Ês
ω,Ns

(x, y, z, t)

and

B̂s(x, y, z, t) =
∑
Ns

(
Bs

ω,Ns
(x, y, z)âsNs

† exp(−iωs
Ns
t)

+Bs ∗
ω,Ns

(x, y, z)âsNs
exp(−iωs

Ns
t)
)

≡
∑
Ns

B̂s
ω,Ns

(x, y, z, t),

in terms of the generators âsNs
, âsNs

† of an operator algebra satisfying[
âsNs

, âs
′

N′
s

†
]
= δNsN′

s
δss

′

and multi-mode ground states |Ψs〉 =
⊗

Ns
|0Ns〉 defined by âsNs

|Ψs〉 = 0 with

normalization 〈0Ns | 0Ns〉 = 1 for all s,Ns. These relations permit a construction

of a Fock space basis for quantum states of the electromagnetic field. The elec-

tromagnetic quantum field theory in the medium is first defined by adopting the

Hamiltonian ∑
s

Ĥs =
∑
s,Ns

∫
V
Ĥs

Ns
dx dy dz

with local (Hermitian) Hamiltonian density Ĥs
Ns

= (Ĥ s
Ns

+ Ĥ s
Ns

†)/2 where

Ĥ s
Ns

=
1

2

(
Ês

ω,Ns
· D̂s

ω,Ns
+ B̂s

ω,Ns
· Ĥs

ω,Ns

)
, (4.1)

and each time-harmonic mode normalized so that

〈Ĥs
Ns

〉 ≡
〈
Ψs

∣∣∣∣∫V Ĥs
Ns
dx dy dz

∣∣∣∣Ψs

〉
=

1

2
�ωs

Ns
(4.2)

where V is the domain containing the dielectric.
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Suppose Ô is a local Hermitian operator that has the mode decomposition Ô =∑
s,Ns

Ôs
Ns

. For any operator Ô acting on states in the Fock space, the expectation

value of Ô in the general state Φ:

EΦ[Ô] ≡ 〈Φ|Ô|Φ〉, (4.3)

that includes an infinite number of eigen-modes will rarely converge. In the physical

context here this is sometimes ascribed to the neglect of contributions that should

be included in order to bring a particular physical system into existence.

Undoubtedly, the most elegant interpretation of the sums (4.3) based on eigen-

systems is in terms of a complex function ζ
̂O of σ ∈ C associated with the spectrum

{λr} of Ô and having the representation
∑

r λ
−σ
r for some Re(σ) > σ0. The reg-

ularized value of (4.3) is then defined as ζ
̂O(−1) [13–15]. It is often a non-trivial

task to determine this value directly from any particular spectrum {λr} and to

identify the nature of the singularities of ζ
̂O(σ) in the complex σ-plane. Indeed, the

analytic properties of a zeta function associated with the spectrum given by (3.14)

are not available. This is a prime motivation for our approach: the accommodation

of systems with spectra for which an analytic continuation of ζ
̂O(σ) in σ is not

known.

Alternative procedures that involve both real and complex analytic continua-

tions or point-splitting schemes offering subtraction processes motivated by physical

criteria [16–19] do exist. Casimir’s original subtraction scheme [1] was based on

the Euler–Maclaurin formula and employed a smooth attenuation map Fσ in the

summation for Ô in (4.3) simulating the high-frequency transparency of physically

realistic conducting plates. It was then straightforward to show that, for the elec-

tromagnetic source-free ground state Hamiltonian Ĥvac obtained from (4.1) with

D̂s
ω,Ns

= ε0Ê
s
ω,Ns

and B̂s
ω,Ns

= μ0Ĥ
s
ω,Ns

, the expression

∑
s

(∑
Ns

〈Ψs|Ĥs
vac,Ns

Fσ(Ĥ
s
vac,Ns

)|Ψs〉 −
∫
〈Ψs|Ĥs

vac,Ns
Fσ(Ĥ

s
vac,Ns

)|Ψs〉 dN s(Ω)

)

with dN s(Ω) the density of states in the absence of the original Casimir system

plates was a convergent power series in the real parameter σ characterizing the

onset of the high frequency transparency regime. However, the generation of such a

series using any such smooth cut-off function is not generic. Whilst it does occur for

conducting plates in the vacuum, the presence of a smooth inhomogeneous dielectric

medium between the plates does not in general lead to a convergent power series in

a physically motivated attenuation parameter. Furthermore, sharp cut-off functions

are unphysical and the Euler–Maclaurin approach requires certain differentiability

conditions for its implementation.

Based on the Euler–Maclaurin formula, a procedure will be explicitly con-

structed in Sec. 5 to regularize electromagnetic energy and stress associated with

the eigen-system describing the evanescent modes in the previous section. In the
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following, we will also exploit explicit expressions for the normalized states in a per-

fectly conducting cuboid cavity filled with a homogeneous (non-dispersive) medium

of constant relative permittivity.

Theorem 4.1. The cuboid TE pre-potential (3.7) for fields in a perfectly conducting

cuboid cavity with rectangular dimensions Lx × Ly × a, filled with a homogenous

(non-dispersive) medium of constant relative permittivity κ1 = κ0 > 0 and relative

permeability κ2 = 1, is given by fTE

NTE
(z) = CTE

NTE
sin(kzz) where

kz =
πnz

a
(nz = 1, 2, 3, . . .),

and nx, ny = 0, 1, 2, . . . with nx �= ny = 0. The associated angular frequency eigen-

value ωTE

N is given by:

(ΩTE

N )2 ≡
(ωTE

N )2a2κ0

c20
= a2(k2x + k2y + k2z) (4.4)

where N = {nx, ny, nz} and

(CTE

N )2 =
4�ε0η

TE

κ0LxLya(k2x + k2y)ω
TE

N
(4.5)

where

ηTE =

⎧⎪⎨⎪⎩
1, for nx, ny ≥ 1

1

2
, for nx = 0 or ny = 0.

Similarly, the cuboid TM pre-potential follows with fTM

NTM
(z) = CTM

NTM
cos(kzz)

where

kz =
πnz

a
(nz = 0, 1, 2, . . .)

and nx, ny = 1, 2, . . .. The associated angular frequency eigenvalue ωTM

N is given by:

(ΩTM

N )2 ≡
(ωTM

N )2a2κ0

c20
= a2(k2x + k2y + k2z) (4.6)

and

(CTM

N )2 =
4�c20ε0η

TM

κ0LxLya(k2x + k2y)(ω
TM

N )3
(4.7)

where

ηTM =

⎧⎪⎨⎪⎩
1, for nz ≥ 1

1

2
, for nz = 0.
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Proof. For the TE pre-potential, the modes with nz = 0 and the modes with

nx = ny = 0 do not contribute to the fields in the system since they are pure gauge

modes. Hence, from Theorem 3.1:

ΥTE

ω =

∞∑
nx=1

∞∑
ny=1

∞∑
nz=1

ΥTE

ω,N +

∞∑
nx=1

∞∑
nz=1

ΥTE

ω,nx,0,nz
+

∞∑
ny=1

∞∑
nz=1

ΥTE

ω,0,ny,nz
(4.8)

where

ΥTE

ω,N ≡ ΥTE

ω,nx,ny,nz
=
(
0, 0, κ0 CTE

N sin(kzz) cos(kxx) cos(kyy)
)

with normalization constants {CTE

N }. This pre-potential generates fields that satisfy
the appropriate boundary conditions on the cavity boundary and determines (4.4)

for the angular frequency ωTE

N . Furthermore, one may verify (4.5) for the normal-

ization constants {CTE

N } using (3.2), (3.4), (3.6) and (4.2) for this pre-potential.

Similarly for the cuboid TM pre-potential, the modes with nx = 0 and the

modes with ny = 0 do not contribute to the fields in the system since they are pure

gauge modes, yielding:

ΥTM

ω =
∞∑

nx=1

∞∑
ny=1

∞∑
nz=0

ΥTM

ω,N (4.9)

where

ΥTM

ω,N =
(
0, 0,

√
κ0 CTM

N cos(kzz) sin(kxx) sin(kyy)
)

in terms of the normalization constants {CTM

N }. This pre-potential generates fields

that satisfy the appropriate boundary conditions on the cavity boundary and deter-

mines (4.6) for the angular frequency ωTM

N . One readily verifies (4.7) using (3.2),

(3.4), (3.6) and (4.2) for this pre-potential.

In the following, we also require explicit expressions for the normalized states in

the open guide containing the inhomogeneous dielectric (3.10) and for the general

ground state expectation value of the electromagnetic energy and stress operator:

Theorem 4.2. With N = {nx, ny, �}, the ground state expectation values of the

Hamiltonian densities Ĥs
N for the system containing the inhomogeneous dielectric

(3.10) are given by:

〈ĤTE

N 〉 =
(CTE

N )2 (ωTE

N )2 κ0LxLy(k
2
x + k2y)

4ε0ηTE
ITE

N ,

〈ĤTM

N 〉 =
(CTM

N )2 (ωTM

N )4 κ0LxLy(k
2
x + k2y)

4ε0c20
ITM

N

where

IsN ≡
∫ ∞

−∞

dZ

cosh2(Z)
(Z�,θs(Z))2.
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The normalization constants {Cs
N} are then explicitly given in terms of these con-

vergent integrals:

(CTE

N )2 =
2�ε0η

TE

κ0LxLy(k2x + k2y)ω
TE

N ITE

N
,

(CTM

N )2 =
2�ε0c

2
0

κ0LxLy(k2x + k2y)(ω
TM

N )3ITM

N
.

(4.10)

Proof. Using Corollary 3.1 and calculations in Appendix A, these follow directly

from the normalization condition (4.2).

To compute the induced Casimir force (or torque) expectation values in any state

on any surface in V , one requires a Hermitian operator-valued electromagnetic stress

tensor in the medium. A natural choice for a medium at rest can be constructed

from the classical symmetrized Minkowski Maxwell electromagnetic stress tensor

with Cartesian components [22, 23]:

Sij(x, y, z) = −1

2
(EiDj +DiEj + BiHj +HiBj) +

1

2

(
EkD

k +BkH
k
)
δij

and for media with constitutive properties given by (3.10):

D = ε0κ1(z)E and B = μ0H.

Replacing the classical fields E,B,D,H by the operator mode expansions

Ês, B̂s, D̂s, Ĥs yields for the ground state expectation values of the stress operator

tensor components:

〈Ŝs
ij(x, y, z)〉 ≡

∑
Ns

〈Ψs|(Ŝs
Ns

)ij(x, y, z, t)|Ψs 〉 ≡
∑
Ns

〈(Ŝs
Ns
)ij〉(x, y, z) (4.11)

with

(Ŝs
Ns
)ij = −1

2

[
(Ês

ω,Ns
)i(D̂

s
ω,Ns

)j + (D̂s
ω,Ns

)i(Ê
s
ω,Ns

)j

]
− 1

2

[
(B̂s

ω,Ns
)i(Ĥ

s
ω,Ns

)j + (Ĥs
ω,Ns

)i(B̂
s
ω,Ns

)j

]
+

1

2

[
(Ês

ω,Ns
)k(D̂

s
ω,Ns

)k + (B̂s
ω,Ns

)k(Ĥ
s
ω,Ns

)k
]
δij . (4.12)

Note that in these expressions, the electromagnetic fields and hence (Ŝs
Ns
)ij are all

real-valued functions on the domain containing the dielectric.

5. Regularization

If the frequency of the electromagnetic normal modes of a system increases

indefinitely as a function of the number of zeroes associated with the modes

then the ground state energy of each mode will also increase indefinitely. In
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such circumstances, the series in (4.11) will, in general, diverge. A mathemati-

cal regularization process is then required to extract a finite value for expectation

values. As noted in the introduction, all computations of Casimir stresses involve,

either explicitly or implicitly, such a process. It was also noted that applications

in the recent literature of Lifshitz methods to certain problems involving smooth

inhomogeneous permittivities did not lead to finite stress fields in certain uncharged

systems. Furthermore, the absence of scattering states constructed from modes

in a certain meta-material prohibits the traditional application of Lifshitz meth-

ods, employing reflection and non-zero transmission coefficients, in determining any

quantum induced stress in a dielectric medium.

Interpretations of some regularization processes are sometimes motivated by the

notion that only energy differences are physical [4, 24] and that perfectly conducting

confining surfaces are idealizations that should be replaced by physical interfaces

between media that exhibit dispersion with absorption. Approaches along these

lines are to be found in [25, 18]. Implicit in such methods are regularization processes

based on subtraction schemes that involve a suitable Green’s function for the system

under consideration. Such functions can be constructed from an analysis of the

spectral properties of a complete set of solutions to a particular Maxwell boundary-

value problem.

Many regularization processes require the introduction of an auxiliary expression

that is a function of an auxiliary variable defined on the real line or the complex

plane. The process proceeds by recognizing the presence of singularities of this

auxiliary function in the auxiliary variable. If this is possible the function can then

be either analytically continued from its original domain of definition to any chosen

value of the auxiliary variable where the continued function is finite or rendered

finite by explicitly removing its singular parts [4].

In the quantum description of the waveguide system above, emphasis is on the

electromagnetic ground state energy (derived from a choice of Hamiltonian density)

and components of a local electromagnetic ground state stress tensor (derived from

a choice of electromagnetic stress tensor field). For general systems composed of

piecewise spatially homogeneous media, it is possible to relate certain integrals of the

latter (total pressures) to derivatives with respect to geometric parameters in the

expression for the former. However for systems composed of smooth inhomogeneous

media this is not in general possible. In such systems, the electromagnetic ground

state energy contributes to the total global internal (free) energy of the system while

the local electromagnetic ground state stress tensor components can be used to

calculate contributions to the local stresses and average forces at points and surfaces

respectively in the medium. Regularization of an energy density expectation value

requires a knowledge of the electromagnetic eigen-mode frequencies as a function of

system parameters while regularization of a stress expectation value requires, either

explicitly or implicitly, a knowledge of both the mode frequencies and a complete

set of mode eigen-functions for the system. This is tantamount to a knowledge of

the appropriate classical electromagnetic Green’s function for the system.
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Since we have a complete set of real solutions to the Maxwell boundary-value

problem for a smooth inhomogeneous, non-dispersive ENZ type material, we estab-

lish in this section a general real analytic regularization scheme based on the vener-

able Euler–Maclaurin summation formula [21, 26]. This will be used in subsequent

sections to explicitly demonstrate the regularization of quantum expectation values

in the context of a simple homogeneous system and that certain derivatives of the

global regularized energy density expectation value coincide with the regularized

pressure on a confining surface. It is then used to calculate analytically the quantum

contribution to the global regularized internal energy of the open waveguide system

containing the smooth inhomogeneous dielectric medium described in Sec. 3 as well

as outlining how the average quantum induced force on either side of an arbitrary

cross-section in the guide follows from an explicit knowledge of the electromagnetic

eigen-modes in the medium.

Theorem 5.1 (The Euler–Maclaurin Identity). For any finite integer n ≥ 0,

m ∈ Z
+ and any (2m+ 1)-differentiable map f : I ⊂ R → R with [n,N ] ⊂ I :
N∑

k=n

f(k)−
∫ N

n

f(x)dx =
1

2
(f(n) + f(N) )

+

m∑
r=1

B2r

(2r)!
(f (2r−1)(N)− f (2r−1)(n))

+
1

(2m+ 1)!

∫ N

n

P2m+1(x)f
(2m+1)(x)dx (5.1)

where {Bk} denotes the set of Bernoulli numbers, {Pk(x)} = {B̃k(x−�x�)} denotes

the set of periodic functions associated with the Bernoulli polynomials {B̃k(x)} and

the integer N satisfies N > n ≥ 0.

Proof. See [20].

For real-valued functions f satisfying the criteria of the theorem above, the

freedom to start the summations on the left above at k = n and x = n for any

n ≥ 0 can often be exploited to facilitate the evaluation of limits that involve the

derivatives of f in the subsequent analysis. Following Hardy [20], we introduce the

abbreviations:

Sm(k)[f ] =

m∑
r=1

B2r

(2r)!
f (2r−1)(k)

Tm(n,N)[f ] =
1

(2m+ 1)!

∫ N

n

P2m+1(x)f
(2m+1)(x)dx.

(5.2)

Then, since

Tm(n,N)[f ] = Tm(n,∞)[f ]− Tm(N,∞)[f ],
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the Euler–Maclaurin formula can be rewritten

N∑
k=n

f(k)−
∫ N

n

f(x)dx =
1

2
f(N) + Sm(N)[f ]− Tm(N,∞)[f ] + Cn,m[f ] (5.3)

where

Cn,m[f ] ≡ 1

2
f(n)− Sm(n)[f ] + Tm(n,∞)[f ]. (5.4)

It should be stressed that (5.3), involving no limiting operations, is an identity for

any admissible finite values of n,N,m provided all terms in (5.3) exist. In general,

the formula will break down if one lets m → ∞ for fixed N . If, however, f(x) is

such that for some finite integer m ≥ 1:∫ ∞

n

|f (2m+1)(x)| dx <∞ (5.5)

then, since limN→∞ Tm(N,∞)[f ] = 0 as N → ∞,

N∑
k=n

f(k)−
∫ N

n

f(x)dx − 1

2
f(N)− Sm(N)[f ] → Cn,m[f ]. (5.6)

If furthermore for some integer M ≥ 1, (5.5) remains valid for all m ≥ M then

limN→∞(SM+1(N)[f ]− SM (N)[f ]) = 0 which implies Cn,m[f ] is independent of m

for m ≥M .

In summary, this leads to the following:

Theorem 5.2 (The Euler–Maclaurin Summation Formula). For any finite

integer n ≥ 0,m,M ∈ Z+ and any (2m+ 1)-differentiable map f : I ⊂ R → R with

[n,∞) ⊂ I, if ∫ ∞

n

|f (2m+1)(x)| dx <∞

is satisfied for all m ≥M, in the N → ∞ limit:

∞∑
k=n

f(k)−
∫ ∞

n

f(x)dx − lim
N→∞

{
1

2
f(N) + SM (N)[f ]

}
= Cn,M [f ]

where SM (N)[f ] and Cn,M [f ] are given by (5.2) and (5.4) respectively.

The finite number Cn,M [f ] is the Hardy–Ramanujan value (p. 327, [20]) assigned

to the “divergent series”
∑∞

k=n f(k). Based on these arguments the existence of a

finite Cn,M [f ] depends critically on f(x) satisfying (5.5) for all integers m ≥M .

For the application to Casimir problems in three dimensions, we encounter

summations indexed by a triple N. It proves expedient to replace these by a sim-

pler, single-indexed summation with integral summands obtained in the limit when

Lx, Ly become large compared with a particular scale a. In order for the integrals

in this summation to exist, we shall introduce a one-parameter family of (regulator)

maps {fσ} depending smoothly upon a real dimensionless parameter σ ≥ 0, each of
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which satisfy the criteria of the Euler–Maclaurin identity. Furthermore, we explore

conditions on fσ that enable one to assign a finite value to the “divergent series”∑∞
k=n fσ(k) for all σ, generalizing the Euler–Maclaurin summation formula.

To this end, introduce the mapping σ �→ Γn
m[fσ] with

Γn
m[fσ] ≡

1

2
fσ(n)− Sm(n)[fσ] +

∫ ∞

n

fσ(x)dx (5.7)

and split it into the terms

Γn
m[fσ] = Pn

m[fσ] +
∞∑
j=0

βn
m,j [fσ]σ

j (5.8)

where Pn
m[fσ] contains any terms in Γn

m[fσ] that are singular as σ tends to zero from

above. In terms of the (non-unique) decomposition (5.8), in the limit as N → ∞
the Euler–Maclaurin identity (5.1) can be recast into the form

∞∑
k=n

fσ(k)− Pn
m[fσ]− lim

N→∞

(
1

2
fσ(N) + Sm(N)[fσ]

)

= Tm(n,∞)[fσ] +

∞∑
j=0

βn
m,j [fσ]σ

j (5.9)

for any n ≥ 0. If furthermore for some integer M ≥ 1,∫ ∞

n

|f (2m+1)
σ (x)| dx <∞ for all σ ≥ 0 (5.10)

remains valid for all m ≥M then limN→∞(SM+1(N)[fσ]− SM (N)[fσ]) = 0 which

implies the right-hand side of (5.9) is independent of m for m ≥ M . Thus with

the above definitions, we arrive at the following generalization of Euler–Maclaurin

summation:

Theorem 5.3 (A Generalized Euler–Maclaurin Summation Formula). Let

{fσ} denote a one-parameter family of maps depending smoothly upon a real dimen-

sionless parameter σ ≥ 0, each of which satisfy the criteria of the Euler–Maclaurin

summation formula. Then
∞∑

k=n

fσ(k)− Pn
M [fσ]− lim

N→∞

(
1

2
fσ(N) + SM (N)[fσ]

)

= TM (n,∞)[fσ] +

∞∑
j=0

βn
M,j [fσ]σ

j (5.11)

for all n ≥ 0, σ ≥ 0 where Pn
M [fσ], β

n
M,j [fσ] are defined through (5.8), and

SM (N)[fσ], TM (n,∞)[fσ] and defined through (5.2). In the limit σ → 0+, this takes

the form:

lim
σ→0+

( ∞∑
k=n

fσ(k)− Pn
M [fσ]− lim

N→∞

{
1

2
fσ(N) + SM (N)[fσ]

})
= T n

M + βn
M

(5.12)
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where

T n
M = lim

σ→0+
TM (n,∞)[fσ] and βn

M ≡ lim
σ→0+

∞∑
j=0

βn
M,j[fσ]σ

j = βn
M,0[fσ].

This theorem is central to our construction of a regularization procedure and

along with the definitions above, immediately yields the following practical result:

Corollary 5.1. For all real-valued functions {fσ} satisfying the criteria of the

generalized Euler–Maclaurin summation formula:

βn
M = lim

σ→0+
(Γn

M [fσ]− Pn
M [fσ]).

For the applications in the following, the real-valued function fσ will be chosen

so that limN→∞ fσ(N) = 0 and limN→∞ SM (N)[fσ] = 0, yielding

lim
σ→0+

( ∞∑
k=n

fσ(k)− Pn
M [fσ]

)
= T n

M + βn
M . (5.13)

Furthermore, it will be shown that, while βn
M may be amenable to exact analytical

evaluation, in general, TM (n,∞)[fσ] is not. However, it follows from the Fourier

series representation of the periodic Bernoulli functions [27] that they are bounded:

|Pk(x)| ≤
2k!ζR(k)

(2π)k
,

where ζR(k) denotes the Riemann zeta function. Hence, the Tm(n,∞)[fσ] satisfy

|Tm(n,∞)[fσ]| ≤ εnm[fσ] ≡
2ζR(2m+ 1)

(2π)2m+1

∫ ∞

n

|f (2m+1)
σ (x)| dx (5.14)

for all n,m, σ ≥ 0. Thus, from (5.10), the integral in (5.14) is finite and bounded,

and for any n,m, σ one may readily calculate the value of this bound. Although

the magnitude of this bound in the limit σ → 0+ will, in general, vary in a compli-

cated manner as a function of M , one may verify that for particular values of M ,

the bound may be significantly smaller in magnitude than |βn
M |. This observation

enables one to select M for an asymptotic approximation of the left-hand side of

(5.13), regarded as a function of M . Consequently, in the following we refer to this

bound as an “error term”.

Provided, for fixed values of n,m, the term Sm(n)[fσ] exists as σ → 0+, the

relation (5.13) shows how the singularities of
∑∞

k=n fσ(k) can be compensated by

singularities in the other terms on its left-hand side, since the terms on the right-

hand side are finite as σ → 0+. This corresponds to a viable regularization scheme

for a particular choice of fσ(k) that ensures that all the conditions above are sat-

isfied. We identify the right-hand side of (5.13) with a finite assignment to the

divergent series
∑∞

k=n fσ(k) in the generalized Euler–Maclaurin scheme.
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If the terms Sm(n)[fσ] in Γn
m[fσ] do not exist as σ → 0+, a finite assignment to∑∞

k=n fσ(k) cannot be given in the limit. However, for such sums, one may be able

to write

N∑
k=n

fσ(k) =

n0−1∑
k=n

fσ(k) +

N∑
k=n0

fσ(k) (5.15)

for some N > n0 > n ≥ 0 such that Sm(n0)[fσ] exists, so that the sum
∑∞

k=n0
fσ(k)

can be regularized. Then from (5.13) in the N → ∞ limit:

lim
σ→0+

( ∞∑
k=n0

fσ(k)− Pn0

M [fσ]

)
= T n0

M + βn0

M .

In terms of n and n0, we obtain the result

lim
σ→0+

( ∞∑
k=n

fσ(k)− P̂n,n0

M [fσ]

)
= T n0

M + β̂n,n0

M (5.16)

where

Γ̂n,n0

M [fσ] ≡
n0−1∑
k=n

fσ(k) + Γn0

M [fσ] (5.17)

admits the series representation

Γ̂n,n0

M [fσ] = P̂n,n0

M [fσ] +

∞∑
j=0

β̂n,n0

M,j [fσ]σ
j (5.18)

with P̂n,n0

M [fσ] containing only terms that are singular functions of σ and

β̂n,n0

M ≡ lim
σ→0+

∞∑
j=0

β̂n,n0

M,j [fσ]σ
j = β̂n,n0

M,0 [fσ].

In summary, the assignment of a finite value T n0

M +β̂n,n0

M to the divergent summation

limσ→0+
∑∞

k=n fσ(k) is modeled on the process used by Hardy in [20] to assign

a finite value to summations of the form
∑∞

k=n f(k) using the Euler–Maclaurin

identity.

We argue below that the sums limq(σ)→0+
∑∞

k=n fq(σ)(k) admit a viable regu-

larization if they can be given the same finite assignment using this generalized

summation for all real positive monotonic functions q with q(0) = 0. The assign-

ment, when it exists, is computed by isolating terms in the Euler–Maclaurin identity

that diverge as q(σ) → 0+ and can be estimated with computable error bounds. In

the following sections, this procedure is used to recover by analytic means standard

results for a regularized energy and stress in a homogeneous dielectric, as well as

a regularized energy in the smooth inhomogeneous dielectric contained in the open

guide with only evanescent modes. In each case, the compensating singular terms

are made explicit.
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For the three-dimensional Casimir problems under consideration here one is

confronted with infinite range summations of the type (4.3) indexed by a triple of

discrete indices with summands depending on the parameter σ. In the following,

we exploit an approximation where Lx and Ly become large relative to a length

scale a� Lx, Ly in order to reduce the summation over nx, ny to a parameterized

single integral indexed by an integer so that the summation formula (5.16) becomes

directly applicable.

6. Quantum Induced Internal Energy and Stress in a

Homogeneous Polarizable Medium

The expectation value of the ground state energy due to a finite number N
max

of electromagnetic modes of type s in the perfectly conducting cuboid cavity of

dimensions Lx × Ly × a, filled with a homogenous (non-dispersive) medium of

constant relative permittivity κ0 > 0, is:

〈Ĥs〉 = �

2

Nmax∑
N

ωs
N =

�c0
2
√
κ0 a

Nx∑
nx

Ny∑
ny

Nz∑
nz

Ωs
N (6.1)

where κ0(ω
TM

N /c0)
2 = κ0(ω

TE

N /c0)
2 = k2x+k

2
y +k

2
z with kx = nxπ/Lx, ky = nyπ/Ly,

kz = nzπ/a and N = {nx, ny, nz}. For a cuboid cavity with Lx, Ly � a, the prop-

erties of the spectra as given by Theorem 4.1 — particularly the mode expansions

(4.8) and (4.9) — enable one to reduce the triple sum (6.1) to a single summation

over nz. This is a particular consequence of the following theorem:

Theorem 6.1. For both the TE and TM modes with spectra defined in Theorem 4.1

for the perfectly conducting cuboid cavity filled with a homogeneous medium, when

Lx, Ly � a and N
max

→ ∞:

lim
Lx → ∞
Ly → ∞

1

LxLy

∞∑
N

JM(k2x + k2y, nz) =
1

2π

∞∑
nz=0

∫ ∞

0

JM(ρ2, nz)ρ dρ (6.2)

where JM :R+ × R+ → R, provided the integrals exist. The label M is used below

to distinguish different ground state expectation values.

Proof. When Lx, Ly � a and N
max

→ ∞, {kx, ky} tend to a continuum with

density of states measure dkx dky = (π2/LxLy)dnx dny. For the TE modes one

has, after integrating over all directions of the transverse vector with components

(kx, ky) and kx, ky ≥ 0, for any expression JM(k2x + k2y, nz):

∞∑
nz=1

∞∑
nx=1

∞∑
ny=1

JM(k2x + k2y, nz) →
LxLy

2π

∞∑
nz=1

∫ ∞

0

JM(ρ2, nz)ρ dρ

∞∑
nz=1

∞∑
nx=1

JM(k2x, nz) →
Lx

π

∞∑
nz=1

∫ ∞

0

JM(k2x, nz)dkx

1950002-25



January 8, 2019 9:54 WSPC/S0129-055X 148-RMP J070-1950002

S. Goto, R. W. Tucker & T. J. Walton

∞∑
nz=1

∞∑
ny=1

JM(k2y , nz) →
Ly

π

∞∑
nz=1

∫ ∞

0

JM(k2y, nz)dky ,

(6.3)

since in the large Lx, Ly limit, the discrete transverse contribution ρ2 ≡ k2x + k2y to

the spectrum Ω tends to a continuum starting at ρ = 0. Thus

1

LxLy

∞∑
N
f(k2x + k2y, nz) →

1

2π

∞∑
nz=1

(∫ ∞

0

JM(ρ2, nz)ρ dρ

+
2

Ly

∫ ∞

0

JM(k2x, nz)dkx +
2

Lx

∫ ∞

0

JM(k2y, nz)dky

)
yielding

lim
Lx → ∞
Ly → ∞

1

LxLy

∞∑
N

JM(k2x + k2y, nz) =
1

2π

∞∑
nz=1

∫ ∞

0

JM(ρ2, nz)ρ dρ. (6.4)

The regularized contributions from the TM modes follow a similar prescription to

those of the TE modes. Specifically, when Lx, Ly � a andN max → ∞ one has for

any expression JM(k2x + k2y, nz):

∞∑
nz=0

∞∑
nx=1

∞∑
nx=1

JM(k2x + k2y, nz) →
LxLy

2π

∞∑
nz=0

∫ ∞

0

JM(ρ2, nz)ρ dρ

so

lim
Lx → ∞
Ly → ∞

1

LxLy

∞∑
N

JM(k2x + k2y, nz) =
1

2π

∞∑
nz=0

∫ ∞

0

JM(ρ2, nz)ρ dρ (6.5)

and the result follows.

Since the regularization scheme developed in Sec. 5 is purely mathematical, given

a sequence of partial sums containing summands f(k) there is no unique prescription

to define fσ(k) compatible with the necessary properties leading to (5.13). In order

to regularize sums involving expressions for ground state expectation values 〈 UM 〉,
we choose

JM(ρ2, nz) ≡ 〈UM〉Wq(σ′)(ρ
2, nz)

for some positive monotonic real-valued function q of a dimensionless parameter

σ′ ∈ [0,∞] with q(0) = 0 and positive real-valued function Wq(σ′) :R
+ × Z

+ → R

with limnz→0Wq(σ′)(ρ
2, nz) = 0 for all ρ. For physical applications the constant �

used in the normalization conditions (4.2) is to be identified with the experimen-

tally determined value of Planck’s constant. This requirement is consistent with the

demand that Wq(0)(ρ
2, nz) = 1 for all q. Since the mode normalizations must be

maintained for all observables constructed in terms of electromagnetic fields this

condition is required for the regularization of all auxiliary functions constructed
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from such JM(ρ2, nz). Thus from (6.1), writing σ = q(σ′) and choosing the dimen-

sionless regulator Wσ(Ω
TE

N ) = exp(−σΩTE

N ) to define

〈ĤTE〉(σ) ≡ �c0
2
√
κ0 a

∞∑
nx,ny,nz

ΩTE

N exp(−σΩTE

N ),

one has for large Lx, Ly compared with a, using (6.4):

〈ĤTE〉(σ)
LxLy

=
�c0

4
√
κ0 a

∞∑
nz=1

∫ ∞

0

ρ

√
ρ2a2

π2
+ n2

z exp(−σπ
√
ρ2a2/π2 + n2

z )dρ

=
�c0π

2

8
√
κ0 a3

∞∑
nz=1

∫ ∞

n2
z

√
u exp(−σπ

√
u )du

≡ �c0π
2

8
√
κ0 a3

∞∑
nz=1

F TE

σ (nz) (6.6)

with u(ρ2, nz) = ρ2a2/π2 + n2
z and the dimensionless auxiliary function

F TE

σ (nz) =

∫ ∞

n2
z

√
u exp(−σπ

√
u )du.

For M = 2, the error term limσ→0+ ε
1
2[F

TE
σ ] = 0 and (5.7) yields the Laurent series

expansion (see Appendix B.1):

Γ1
2[F

TE

σ ] =
12

π4σ4
− 2

π3σ3
− 1

180
+
π3σ3

756
+O(σ4).

From (5.8) and (5.13), this gives

lim
σ→0+

( ∞∑
nz=0

F TE

σ (nz)−
12

π4σ4
+

2

π3σ3

)
= − 1

180
(6.7)

yielding a finite regularized expectation value for the TE energy per unit area:

〈ĤTE〉R
LxLy

≡ − �c0π
2

1440
√
κ0 a3

. (6.8)

Similarly, using the dimensionless regulator Wσ(Ω
TM

N ) = exp
(
−σΩTM

N
)
to define

〈ĤTM〉(σ) ≡ �c0
2
√
κ0 a

∞∑
nx,ny,nz

ΩTM

N exp
(
−σΩTM

N
)
,

one has for large Lx, Ly using (6.5):

〈ĤTM〉(σ)
LxLy

=
�c0π

2

8
√
κ0 a3

∞∑
nz=0

F TM

σ (nz) (6.9)
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with u(ρ2, nz) = ρ2a2/π2 + n2
z and the dimensionless auxiliary function

F TM

σ (nz) =

∫ ∞

n2
z

√
u exp(−σπ

√
u )du.

This has the same structure as the dimensionless auxiliary function used to sum

the TE modes, but here the sum starts at nz = 0. For M = 2, the error

term limσ→0+ ε
0
2[F

TM
σ ] = 0 and (5.7) yields the Laurent series expansion (see

Appendix B.1):

Γ0
2[F

TM

σ ] =
12

π4σ4
+

2

π3σ3
− 1

180
.

From (5.8) and (5.13), this gives

lim
σ→0+

( ∞∑
nz=0

F TM

σ (nz)−
12

π4σ4
− 2

π3σ3

)
= − 1

180

yielding a finite regularized expectation value for the TM energy per unit area:

〈ĤTM〉R
LxLy

= − �c0π
2

1440
√
κ0 a3

, (6.10)

which coincides with (6.8). Therefore the ground state expectation value of the

total energy per unit area is:

〈Ĥ〉R
LxLy

=
〈ĤTE〉R
LxLy

+
〈ĤTM〉R
LxLy

= − �c0π
2

720
√
κ0 a3

(6.11)

which reduces to Casimir’s result [1] when κ0 = 1.

It is straightforward to show that for any p> 0, a regulator of the form

Wσ(Ω
s
Ns

) = exp(−σ (Ωs
Ns

)p) will yield the same finite regularized energy expecta-

tion value per unit area independent of p for both the TE and TM modes. However,

the exposed singular behavior in σ is p-dependent. Although this falls short of a

rigorous proof, it lends credence to our argument that this Euler–Maclaurin regu-

larization scheme is independent of the regulator involved.

A calculation of the regularized ground state expectation value of the electro-

magnetic stress tensor in the dielectric requires the complete set of system eigen-

mode functions. This has been obtained in Sec. 3 for the cuboid containing a

homogeneous medium and the smooth inhomogeneous medium with relative per-

mittivity (3.10).c

To extract a finite stress expectation at any point labeled by (x, y, z) in a dielec-

tric with electromagnetic mode spectra labeled by the integers {nx, ny, �} define,

for all i, j, the auxiliary functions

Ss
ij(σ, x, y, z) =

∞∑
�

F s
σ,ij(�, x, y, z)

cThis information enables one to construct the appropriate electromagnetic Green’s function for
each system.
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where, from (4.12), for some regulator Wσ:

F s
σ,ij(�, x, y, z) =

∞∑
nx

∞∑
ny

〈(Ŝs
Ns

)ij〉(x, y, z) Wσ(Ω
s
nx,ny,�).

In principle one could now apply (5.13) to F s
σ,ij(�, x, y, z) for fixed σ, x, y, z and

all i, j. Analyzing Γn
M [F s

σ,ij ] or Γ̂n,n0

M [F s
σ,ij ] as a function of σ in order to extract

a regularized local stress in the dielectric would undoubtedly be computationally

intensive. However using this approach to calculate the total normal force acting

on either side of any cross-section where z is the constant z0 is less involved. The

contribution from type s modes to such a regularized force is generated from

Fs(σ, z0) =
∞∑
�

F s
σ(�, z0) (6.12)

where

F s
σ(�, z0) =

∞∑
nx

∞∑
ny

∫ Lx

0

∫ Ly

0

〈(Ŝs
Ns

)33〉(x, y, z0) Wσ(Ω
s
nx,ny,�)dx dy.

After the integration over x and y the nx, ny dependence of the summands in

F s
σ(�, z0) arises from only k2x + k2y. Hence if Lx, Ly are large compared with the

inhomogeneity scale parameter a in (3.10) it follows from (6.4) and (6.5) that

F s
σ(�, z0) =

Lx Ly

2π

∫ ∞

0

ρ f̄ s(�, z0, ρ) W̃
s
σ(�, ρ) dρ (6.13)

where W̃ s
σ(�, ρ) =Wσ(Ω

s
nx,ny,�

) and

f s
(
�, z0,

√
k2x + k2y

)
=

∫ Lx

0

∫ Ly

0

〈(Ŝs
nx,ny,�)33〉(x, y, z0)dx dy. (6.14)

Thus the triple indexed summation over {nx, ny, �} reduces to a single infinite range

summation (over �) with single integrals (over ρ) as summands. Equation (5.13) or

(5.17) can then be used to generate T n
M + βn

M or T n0

M + β̂n,n0

M respectively for both

s ∈ {TE, TM}. To implement this regularization scheme analytically and extract a

finite “renormalized” value for the total expectation value of the normal average

Casimir pressure in the dielectricd on either side of any plane z = z0, after dividing

by the area LxLy, an explicit formula for each auxiliary function is required.

The regularized ground state expectation value of the normal force 〈F̃〉R at

the boundary z= z0 of the cuboid cavity with constant κ1 = κ0 can be extracted

dOne may verify that this normal pressure is the total pressure since, at any fixed plane z = z0,
the tangential forces are zero. Regularized pressures are, of course, equal in magnitude but act in
opposite directions on such planes with opposite normals.
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using (6.13) and (6.12) with � = nz and the dimensionless regulator Wσ(Ω
s
Ns

) =

exp(−σΩs
Ns

). Define

FTE(σ, z0)

LxLy
=

�c0π
2

8
√
κ0 a4

∞∑
nz=1

F TE

σ (nz)

in terms of the dimensionless auxiliary function

F TE

σ (nz) =

∫ ∞

n2
z

n2
z√
u
exp(−σπ

√
u )du.

With M = 2, the error term limσ→0+ ε
1
2[F

TE
σ ] = 0 and (5.7) gives the Laurent series

expansion (see Appendix B.2)

Γ1
2[F

TE

σ ] =
4

π4σ4
− 1

60
+
π3σ3

504
+O(σ4)

with (5.8) yielding

lim
σ→0+

( ∞∑
nz=1

F TE

σ (nz)−
4

π4σ4

)
= − 1

60
.

Hence the finite TE regularized contribution to the pressure is:

〈FTE(z0)〉R
LxLy

= − �c0π
2

480
√
κ0 a4

.

For the TM modes

FTM(σ, z0)

LxLy
=

�c0π
2

8
√
κ0 a4

∞∑
nz=0

F TM

σ (nz)

in terms of the dimensionless auxiliary function

F TM

σ (nz) =

∫ ∞

n2
z

n2
z√
u
exp(−σπ

√
u )du

which is the same as that for the TE modes. With M =2, the error term limσ→0+

ε02[F
TM
σ ] = 0 and (5.7) gives the Laurent series expansion (see Appendix B.2)

Γ0
2[F

TM

σ ] =
4

π4σ4
− 1

60

with (5.8) yielding

lim
σ→0+

( ∞∑
nz=1

F TM

σ (nz)−
4

π4σ4

)
= − 1

60
.

Hence the finite TM regularized contribution to the pressure is:

〈FTM(z0)〉R
LxLy

= − �c0π
2

480
√
κ0 a4
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which is an equal contribution to the pressure as that from the TE modes. Thus,

the ground state expectation value of the total regularized (tensile) pressure on the

plate at z = z0 is then

〈F(z0)〉R
LxLy

=
〈FTE(z0)〉R
LxLy

+
〈FTM(z0)〉R
LxLy

= − �c0π
2

240
√
κ0 a4

,

which reduces to Casimir’s result [1] when κ0 = 1. Once again, any regulator of the

form Wσ(Ω
s
Ns

) = exp(−σ(Ωs
Ns

)p) for p > 0 produces the same regularized value.

Thus for this system with a homogeneous medium between the planes, one has the

expected result:

〈F(z0)〉R
LxLy

= − ∂

∂a

(
〈Ĥ〉R
LxLy

)
.

7. Quantum Induced Internal Energy and Stress in a Smooth

Inhomogeneous Polarizable Medium

The calculation of the ground state expectation value of the electromagnetic energy

in the open waveguide containing the smooth inhomogeneous medium with per-

mittivity given in (3.10) is based on the angular frequency mode spectrum given

by (
ωs
nx,ny,�

)2
=

c20
a2κ0

(
Ωs

nx,ny,�

)2
=

c20
a2κ0

(
�+

√
θs
)(
�+

√
θs + 1

)
where the nx, ny dependence of θs is given by (3.11) and nx, ny, � = 0, 1, 2, . . ..

Following the previous strategy we have:

Theorem 7.1. With Lx, Ly � a, the inhomogeneity scale in (3.10), the ground

state energy expectation value per unit area in the guide can be determined from:

〈Ĥ〉(σ)
LxLy

=
�c0

8π
√
κ0 a3

( ∞∑
�=0

F TE

σ (�) +

∞∑
�=0

F TM

σ (�)

)
(7.1)

where, using the dimensionless regulator Wσ(Ω
σ
nx,ny,�

) = exp(−σΩs
nx,ny,�

), one has

dimensionless auxiliary functions

F TE

σ (�) =

∫ ∞

�(�+1)

F�(u) exp(−σ
√
u )du (7.2)

and

F TM

σ (�) =

∫ ∞

(�+1)(�+2)

F�(u) exp(−σ
√
u )du (7.3)

with

F�(u) =
√
u

(
1− 1 + 2�√

1 + 4u

)
. (7.4)
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As before, for large Lx, Ly compared with a, the summands in (7.1) have reduced

to single quadratures since the medium inhomogeneity depends only on z. To apply

(5.13) for the TE modes, it is necessary to start the summation on the left-hand

side of (5.1) at n = 1 in order to have well defined limits on the right-hand side as

N tends to infinity. It is shown in Appendix C that, with M = 3:

lim
σ→0+

( ∞∑
�=0

F TE

σ (�)− 6

σ4
− 1

24σ2
+

1

384
ln(σ)

)
= 0.00393263± 6.40× 10−6

and

lim
σ→0+

( ∞∑
�=0

F TM

σ (�)− 6

σ4
+

23

24σ2
+

49

384
ln(σ)

)
= 0.07349016± 3.17× 10−5

to 6 significant figures. Hence

lim
σ→0+

( ∞∑
�=0

F TE

σ (�) +

∞∑
�=0

F TM

σ (�)− 12

σ4
+

11

12σ2
+

25

192
ln(σ)

)

= 0.0774228± 3.81× 10−5, (7.5)

to 6 significant figures, yielding a finite positive regularized quantum ground state

energy per unit area:

〈Ĥ〉R
LxLy

= 0.07742
�c0

8π
√
κ0 a3

= 0.2247

(
�c0π

2

720
√
κ0 a3

)
(7.6)

in the smooth inhomogeneous dielectric, which is approximately one fifth of the

magnitude of the regularized quantum ground state energy per unit area associ-

ated with the canonical Casimir parallel plate system (with gap a) filled with a

homogeneous dielectric with relative permittivity κ0 (6.11), to 4 significant figures.

In [29], a numerical algorithm based on the Abel–Plana formula (see

Appendix D) was developed in order to estimate numerically certain values assigned

to sums that arose in estimating the quantum induced force difference between

plates confining a different smooth inhomogeneous dielectric medium. Since in that

problem one could not solve for the spectra analytically, it was assumed that mode

sums could be regularized using an exponential regulator in a variable s and the

algorithm employed a novel filtering method to numerically fit the regularized sums

to Laurent series in s in order to extract the coefficients independent of s. In this

article, we have denoted the regularizing parameter by σ instead of s.

Motivated by the results derived above from an analysis of Γn
M [fσ] for various

functions fσ based on the Euler–Maclaurin scheme, a natural generalization of the

filtering algorithm developed in [29] is here proposed by including terms containing

powers and logarithmic functions of σ in the numerical fits and taking into account

the criteria and error bounds implicit in its formulation. For example, if it is assumed

that a sum of the form
∑∞

k=n fσ(k) is to be regularized one proceeds to numerically
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approximate Γ(σ) ≡ Γn
m[fσ] given by (5.7) for some n and choice of positive integer

parameters m,J1, J2,K1,K2 according to

Γ(σ) =

J2∑
j=−J1

K2∑
k=−K1

cj,k (ln(σ))
j σk (cj,k ∈ R, σ > 0) (7.7)

with J2 > J1 ≥ 0,K2 > K1 ≥ 0. The algorithm developed in [29] can be generalized

to seek a stable optimal fit in that parameter domain for values of m ≥ M . From

such a fit, one may extract the value of c0,0 yielding a numerical estimate of the

associated regularized sum. In parallel, one may use the bounds (5.14) to calculate

limσ→0+ ε
n
m[fσ] as a function of m and hence estimate the relative error that can

be assigned to the optimal values of c0,0.

However as noted in Sec. 5, in some cases the choice of n may necessitate the

isolation of certain terms in Γn
m[fσ] according to (5.15). This is achieved by choosing

a value of some integer n0 > n such that Sm(n0)[fσ] has a finite value. In such

cases, one proceeds as above but with Γ(σ) ≡ Γ̂n,n0
m [fσ] as given by (5.17).

In the current context one may test the efficacy of such types of ansätz with

fσ = F s
σ using (C.4) and (C.10) in Appendix C by applying the same algorithm to

a fit of the simpler form:

Γs(σ) = csL ln(σ) +
N∑

j=0

csj
σj

(csL, c
s
j ∈ R), (7.8)

if one chooses a range of σ suitably close to σ = 0. It can be seen from Figs. 4–7

that with this ansätz the algorithm yields excellent agreement with the analytic

results for both the TE and TM mode contributions to the regularized quantum

2 3 4 5 6 7
−10

−5

0

5

10

N

cTE
0

4 5 6 7
0.003932

0.003934

0.003936

0.003938

N

m = 3

m = 4

m = 5

m = 6

β̂0,1,TE

3

Fig. 4. Numerical values of the constant cTE
0 in (7.8) as a function of the largest inverse power N,

derived from fitting this form to the values of Γ̂0,1
m [F TE

σ ] given by (5.7) over the range 1/20000 ≤
σ ≤ 1/2000 for the various values of m indicated in the legend. The plot on the right indicates
these variations of cTE

0 on an expanded scale. The numerical values of cTE
0 are compared with

the value β̂0,1,TE

3 determined as the σ-independent term in the analytic series representation of

Γ̂0,1
m [F TE

σ ] in (5.18).
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2 3 4 5 6 7
−10

−5

0

5

10

N

cTM
0

4 5 6 7

0.0735

0.0736

0.0737

0.0738

N

m = 3

m = 4

m = 5

m = 6

β0,TM

3

Fig. 5. Numerical values of the constant cTM
0 in (7.8) as a function of the largest inverse power N,

derived from fitting this form to the values of Γ0
m[F TM

σ ] given by (5.7) over the range 1/20000 ≤
σ ≤ 1/2000 for the various values of m indicated in the legend. The plot on the right indicates
these variations of cTM

0 on an expanded scale. The numerical values of cTM
0 are compared with

the value β0,TM

3 determined as the σ-independent term in the analytic series representation of
Γ0
3[F

TM
σ ] in (5.8).

2 3 4 5 6 7 8

10−5

10−4

m

ε̂ 1,TE
m

2 3 4 5 6 7 8

10−4

10−3

m

ε̂ 0,TM
m

Fig. 6. Variation of ε̂ns,s
m ≡ limσ→0+ εns

m [F s
σ ] with m for contributions from the TE modes on the

left and the TM modes on the right, calculated numerically from (5.14). For each s ∈ {TE, TM}
and corresponding ns ∈ {0, 1}, a value of m in the vicinity of a local minimum of these curves
offers a potential value of Ms and a corresponding relative error |ε̂ns,s

Ms
/βns,s

Ms
| for the numerical

estimate of βns,s
Ms

determined in Figs. 4 and 5.

induced energy per unit area inside the ENZ type smooth inhomogeneous dielectric

to 6 significant figures.

Given the evanescent behavior of the dielectric eigen-modes in the open guide as

|z| tends to infinity it is tempting to exploit expression (7.6) for the global energy

per unit area to estimate the quantum pressure on a pair of perfectly conducting

planes inserted in the location of the planes z = ±a/2. For Lx, Ly � a this effec-

tively transforms the open guide into a pair of parallel conducting plates separated

by a gap of width a, containing a dielectric with permittivity approximating that

given by (3.10). However there is no a priori reason to expect that differentiat-

ing (7.6) with respect to the parameter a would give an estimate of the induced
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2 3 4 5 6 7 8

0.0770

0.0775

0.0780

0.0785

m

βm

Fig. 7. This figure shows how the results of the numerical algorithm used to determine
βm ≡ β̂0,1,TE

m + β0,TM
m compare favorably with the analytically calculated values indi-

cated here in boldface for various m. Their associated error bounds are determined from

limσ→0+
(
ε1m[F TE

σ ] + ε0m[F TM
σ ]

)
by numerical integration of the integral in (5.14). The dotted line

passes through the value of cTE
0 + cTM

0 determined by the numerical algorithm above with m = 3.

electromagnetic pressure at the inserted plates in the presence of the smooth inho-

mogeneous dielectric medium.

From the general formulation given in Sec. 6, the total normal force acting on

either side of any cross-section at z = z0 in the guide can be determined, for some

n,M , in terms of Γn
M [F s

σ] or Γ̂n,n0

M [F s
σ] once the F

s

σ are known analytically from

(6.13) and (6.14). The integration in (6.14) can be performed analytically for both

s = TE and s = TM yielding

fTE(�, z0, ρ) =
�c20

4κ0 ωTE

N a2ITE

N

[(
dZθTE ,�

dZ

)2
−ZθTE,�

d2ZθTE,�

dZ2

]
Z=z0/a

and

fTM(�, z0, ρ) =
�c20

4κ0 ωTM

N a2ITM

N

[(
dZθTM ,�

dZ

)2
−

ZθTM ,�

cosh(Z)

d2

dZ2
(cosh(Z)ZθTM ,�)

+
Z2

θTM ,�

cosh2(Z)
(3 cosh(Z)2 − 1)

]
Z=z0/a

with θTE = a2ρ2 and θTM = a2ρ2 + 1, though the computation of the integral (6.13)

appears resistant to analytic evaluation. Despite this technical hurdle the regular-

ization process based on the Euler–Maclaurin formula is directly applicable and

since all integrals in the formula yield finite values, in the absence of a strictly

analytic evaluation of (6.13) the numerical approach outlined above is available.

Given a user defined tolerance one can seek suitable values for the number of terms
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(determined by n, n0 and M) to include in the regularized assignment compatible

with this tolerance. If such values exist one has a numerical estimate with a well

defined error bound determined by T n
M or T n0

M for the regularized average quantum

stress across any cross-section of the smooth inhomogeneous dielectric in the open

guide.

8. Density of States in the Large Volume Continuum Limit

Since the spectrum of electromagnetic states in the particular inhomogeneous ENZ

dielectric considered in this article is known analytically it is of interest to calculate

the asymptotic behavior of their density as a function of specific angular frequency

Ω in the large volume limit:

Theorem 8.1. In the limit when Lx, Ly become large with Lx/a and Ly/a finite,

the continuum limit for the density of states for TE and TM modes in the open

guide behaves like:

dN s

dΩ
� L2

4πa2
(Ω2 − Ω ).

Proof. Since the dependence of the spectral parameter Ωs
nx,ny,�

on the geometrical

parameters is known explicitly one may calculate a density of states in the limit

when Lx, Ly become large with Lx/a and Ly/a finite by counting the number of

eigen-modes N s(Ω) of type s with spectral parameters less than or equal to some

Ω in this limit [30]. As the geometrical parameters increase the discrete spectrum

tends to a continuum that populates a finite volume

N s(Ω) =

∣∣∣∣∣
∫
Vs

Ω

d� ∧ dnx ∧ dny

∣∣∣∣∣
in the Cartesian space with coordinates nx, ny, �. When Lx = Ly = L the compact

domains Vs
Ω are bounded by portions of the planes � = 0, nx = 0, ny = 0 and the

iso-spectral surfaces of revolution given implicitly by:

Ω2 −
(
�+

aπ

L

√
n2
x + n2

y

)(
�+

aπ

L

√
n2
x + n2

y + 1
)
= 0

for the TE modes (for these modes VTE

Ω is a quarter of the volume of a right circular

cone based on the plane � = 0) and

Ω2 −
(
�+

√
a2π2n2

x

L2
+
a2π2n2

y

L2
+ 1

)(
�+

√
a2π2n2

x

L2
+
a2π2n2

y

L2
+ 1 + 1

)
= 0

for the TM modes. These surfaces can be conveniently parameterized as:

� =
1

2

√
4Ω2 + 1− 1

2
−Fs(u), nx =

L

aπ
u cosφ, ny =

L

aπ
u sinφ

with FTE(u) = u, FTM(u) =
√
u2 + 1 and

0 ≤ u ≤ us0, 0 ≤ φ ≤ π

2
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where us0 is the positive root of �(us0) = 0, yielding

Vs
Ω =

(
L

πa

)2
· π
2
·
∫ us

0

0

�(u)u du

with

uTE

0 =
1

2

√
4Ω2 + 1− 1

2
and uTM

0 =
1

2

√
4Ω2 − 2ξ − 2

where ξ =
√
4Ω2 + 1. Then

VTE

Ω =
L2

96πa2
(
√
4Ω2 + 1− 1)3

VTM

Ω =
L2

24πa2
(3 ξΩ2 − 9Ω2 + 4− (2Ω2 − ξ + 1)

√
4Ω2 − 2ξ + 2).

Therefore, the number of eigenvalues N s(Ω) less than some Ω is given asymptoti-

cally by

N TE(Ω), N TM(Ω) =
L2

12πa2
Ω3 − L2

8πa2
Ω2 +O(Ω)

where, remarkably, the asymptotic expressions for the TE and TM modes are iden-

tical to order O(Ω). The result then follows.

Thus in the large L continuum limit the density of states for TE and TM modes

behaves like:

dN s

dΩ
� L2

4πa2
(Ω2 − Ω).

The expression

E(σ) = �c0
2a

√
κ0

∫ ∞

0

Ω e−σΩ

{
dN TE

dΩ
+
dN TM

dΩ

}
dΩ � �c0L

2

π
√
κ0 a3

(
3

2σ4

)
(8.1)

indicates approximately how the large system energy grows with L as σ → 0+. It is

of interest to compare this with the σ behavior of P̂0,1
3 [F TE

σ ] and P0
3 [F

TM
σ ] derived

from (C.7) and (C.12), respectively, in Appendix C. To leading order in σ these

yield for both values of s:

P̂0,1
3 [F TE

σ ], P0
3 [F

TM

σ ] � 6

σ4

and a large L energy growth

E(σ) = �c0L
2

8πa3
√
κ0

( P̂0,1
3 [F TE

σ ] + P0
3 [F

TM

σ ]) � �c0L
2

π
√
κ0a3

(
3

2σ4

)
in precise agreement with (8.1). Thus, the compensating singular parts

Pn
m[F s

σ ], P̂n,n0
m [F s

σ ] that arise are determined solely by the dependence of the eigen-

spectrum on the geometry of the physical system. As Vs
Ω → ∞ and L → ∞

for fixed a < L, the cross-section of the guide grows without bound but the
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inhomogeneous dielectric retains its profile. Thus one may identify in this com-

pensation a one-parameter family of “large volume guides” containing a smooth

inhomogeneous medium. When the parameter a also grows to infinity along with

L the medium approaches a homogeneous dielectric with relative permittivity κ0.

Since σ is dimensionless and the perfectly conducting boundary conditions are

maintained in all limiting processes, there is no compelling reason to interpret the

regularization process in terms of a physical variation of these conditions with mode

frequency.

9. Conclusions

In this article, a number of related aspects associated with the problem of determin-

ing the ground state expectation values of the electromagnetic quantum field energy

and stress in a smooth inhomogeneous polarizable medium have been addressed.

After reflecting on the approach taken by Lifshitz et al. and subsequent attempts

by some others to calculate such quantities we have pointed out the need to accom-

modate the relevance of classical mechanical material stresses that must inevitably

arise when a physical material continuum is constrained in space in any way.

A description of classical mechanical stress induced in incompressible media in

static equilibrium with external constraints was presented in terms of the Cauchy

Euclidean stress tensor field for a general body. Any attempt to confront contribu-

tions to this tensor from theoretical predictions of electromagnetic quantum induced

dielectric stresses with experiment should take the material constitutive properties

of the medium into account.

Given these general requirements the article has concentrated attention on a

specific system composed of a particular meta-material confined in an infinitely

long perfectly conducting open waveguide. The dielectric material has been chosen

to have an anisotropic and smooth inhomogeneous permittivity that enables one to

deduce from the source free Maxwell equations a complete set of electromagnetic

eigen-modes and eigen-frequencies analytically. Since these spectral values inhibit

propagating harmonic modes in the guide the Lifshitz theory, based on asymptotic

scattering states, appears problematic so we have been led to an alternative regular-

ization scheme, based on the Euler–Maclaurin summation formula, for estimating

quantum expectation values of electromagnetic energy and stress in the dielectric

containing only evanescent eigen-modes.

A detailed exploration of the conditions required for the application of this

scheme has been given and shown analytically to yield finite regularized values for

the ground state expectation value of the electromagnetic energy in both a constant

permittivity and particular inhomogeneous ENZ dielectric. Precise criteria have

been given for the general applicability of this scheme used to estimate quantum

expectation values together with bounds on the estimate. It has been shown how

these criteria can be exploited to construct a general numerical scheme based on

earlier work in [29] and benchmarked by comparison with the exact analytic results
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for the Casimir energy per unit area for parallel conducting plates in a vacuum.

The excellent agreement between the numerical and analytic estimates augers well

for applications of the numerical approach to more general inhomogeneous systems

where analytic methods are not available. The article also discusses the Euler–

Maclaurin regularization of the ground state expectation values of the integrated

electromagnetic local stress components in the ENZ medium and how they can be

computed numerically.

There remain a number of important effects that have been ignored in this

article. These include finite temperature corrections, finite guide conductivity cor-

rections, effects due to spatial and temporal frequency dispersion in the medium,

and contributions from material vibration, both classical and quantum. The for-

mer as noted will yield stresses from the mechanical constitutive properties of the

dielectric and play a role in maintaining static equilibrium configurations in any

experimental attempt to detect the quantum induced stresses in the presence of

gravitational fields. The considerations in Sec. 2 suggest that experiments with

smooth inhomogeneous dielectrics in free-fall may offer a possible environment for

detecting quantum induced stresses using the phenomenon of photoelasticity.

By focusing on the spectral properties of a particular ENZ type of medium with

a smooth inhomogeneous permittivity in an open guide it has been shown in some

detail how finite energy and stress expectation values can be obtained from a well-

defined regularization scheme. This has been developed into a numerical procedure

that promises wide applicability to systems that are beyond an analytic treatment

and offers a new approach to estimate the significance of quantum induced pressures

with error estimates based on a generalization of the Euler–Maclaurin summation

formula.
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Appendix A. General Formulae for Modes in Terms of the

Gaussian Hypergeometric Function

The differential equation

d2

dZ2
Yθ,�(Z) +

(
Ω2

θ,�

cosh2 Z
θ

)
Yθ,�(Z) = 0

where

Ω2
θ,� ≡ (�+

√
θ)(� +

√
θ + 1)
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has the general (complex) solution

Yθ,�(Z) =
C1√

sinh(2Z)
(2 cosh(2Z)− 2)3/4 (2 cosh(2Z) + 2)1/4(coshZ)−(�+

√
θ)

×G(−),1
θ,� (Z) + C2 G(+),3

θ,� (Z)(sinh 2Z)3/2 (coshZ)�+
√
θ

with arbitrary complex constants C1, C2 and where

G(±),α
θ,� (Z) ≡ 2F1

([
1± �

2
,
1± �± 2

√
θ

2

]
,
[α
2
±
√
θ ± �

]
;
1 + cosh(2Z)

2

)
in terms of the Gaussian hypergeometric function 2F1([a, b], [c]; ζ). With real θ > 0

and all branch cuts drawn on the negative real Z axis, define, for real Z the real

valued expression:

Ŷθ,�(Z) =
1√

sinh(2Z)
(2 cosh(2Z)− 2)3/4 (2 cosh(2Z) + 2)1/4

× (coshZ)−(�+
√
θ) G(−),1

θ,� (Z).

Then, a complete set {Zθ,�(Z)} of real continuous normalizable functions, regular

for all real Z, are defined, for � odd (� = 1, 3, 5, . . .), by

Zθ,�(Z) =

{
Ŷθ,�(Z), Z ≥ 0

−Ŷθ,�(−Z), Z ≤ 0

and for � even (� = 0, 2, 4, . . .), by

Zθ,�(Z) =

{
iŶθ,�(Z), Z ≥ 0

−Ŷθ,�(Z), Z ≤ 0.

These functions are used to construct the {Ys
Ns

(Z)} that enter into the expressions

for the pre-potential modes for fields in the dielectric guide with a permittivity

profile given by (3.10):

Ys
Ns

(Z) ≡ Cs
Ns

Zθ,�s(Z)

for normalization constants Cs
Ns

, where Ns ≡ {nx, ny, �},

θTE = π2a2

(
n2
x

L2
x

+
n2
y

L2
y

)

θTM = π2a2

(
n2
x

L2
x

+
n2
y

L2
y

)
+ 1

and nx, ny ∈ {0, 1, 2, . . .} (see Sec. 3). The functions {Ys
Ns

(Z)} coincide with the

functions constructed by a recurrence process in (3.13) up to overall normalization

but have the advantage of being explicitly given for all Ns in terms of a finite series

involving hyperbolic functions. The normalization constants are given in (4.10).
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Appendix B. Regularization Scheme for a Homogeneous

Polarizable Medium

B.1. Regularized energy

In this section, we outline the details involved in calculating the quantum expec-

tation value of the electromagnetic ground state energies (6.6) and (6.9) in a

homogeneous dielectric contained in a perfectly conducting cuboid cavity (with

Lx = Ly = L � a) in terms of integrals in Γn
M [F s

σ ]. The dimensionless auxiliary

function F s
σ is

F s
σ(nz) =

∫ ∞

n2
z

√
u exp(−σπ

√
u)du.

For this case M = 2 in the Euler–Maclaurin expansion and limσ→0+ ε
n
2 [F

s
σ ] =

0 for all n ≥ 0. The results for the regularized sums are then exactly βn,s
2 for

s ∈ {TE, TM} and for all n ≥ 0. The dimensionless auxiliary function F s
σ can be

evaluated analytically:

F s
σ(nz) = 2

∫ ∞

nz

y2e−σπy dy =
2

π2

d2

dσ2

(∫ ∞

nz

e−σπy dy

)
=

2

π2

d2

dσ2

(
e−σπnz

πσ

)

=

(
4

π2σ2
+

4nz

πσ
+ 2n2

z

)
e−σπnz

πσ

yielding ∫ ∞

n

F s
σ(x)dx =

∫ ∞

n

(
4

π2σ2
+

4x

πσ
+ 2x2

)
e−σπx

πσ
dx

=

(
12

π2σ2
+

8n

πσ
+ 2n2

)
e−σπn

π2σ2
.

Thus

F TM
σ (0) =

4

π3σ3
F TE
σ (1) =

(
4

π2σ2
+

4

πσ
+ 2

)
e−σπ

πσ∫ ∞

0

F TM

σ (x)dx =
12

π4σ4

∫ ∞

1

F TE

σ (x)dx =

(
12

π2σ2
+

8

πσ
+ 2

)
e−σπ

π2σ2
.

Using (5.2):

S2(k)[F
s
σ ] =

(
1

180
− σπk

90
− k2

6
+
σ2π2k2

360

)
e−σπk

yielding

S2(0)[F
TM

σ ] =
1

180
and S2(1)[F

TE

σ ] =

(
− 29

180
− σπ

90
+
σ2π2

360

)
e−σπ.

Then (5.7) gives

Γ1
2[F

TE

σ ] =

(
12

π4σ4
+

10

π3σ3
+

4

π2σ2
+

1

πσ
+

29

180
− πσ

90
+
π2σ2

360

)
e−σπ

π2σ2
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or taking the series expansion with respect to σ:

Γ1
2[F

TE

σ ] =
12

π4σ4
− 2

π3σ3
− 1

180
+
π3σ3

756
+O(σ4),

and

Γ0
2[F

TM

σ ] =
12

π4σ4
+

2

π3σ3
− 1

180
.

Hence

P1
2 [F

TE
σ ] =

12

π4σ4
− 2

π3σ3
, β1,TE

2 = − 1

180

P0
2 [F

TM
σ ] =

12

π4σ4
+

2

π3σ3
, β0,TM

2 = − 1

180

and (5.13) yields the regularized sums

lim
σ→0+

( ∞∑
nz=1

F TE

σ (nz)−
12

π4σ4
+

2

π3σ3

)
= − 1

180

lim
σ→0+

( ∞∑
nz=0

F TM

σ (nz)−
12

π4σ4
− 2

π3σ3

)
= − 1

180
.

B.2. Regularized integrated stress

The computation of quantum induced electromagnetic integrated stress at any sec-

tion (parallel to the faces) of the cuboid involves the analysis of Γn
M [F s

σ], in terms

of the dimensionless auxiliary function

F s
σ(nz) =

∫ ∞

n2
z

n2
z√
u
exp(−σπ

√
u)du.

In this case, M = 2 in the Euler–Maclaurin expansion and limσ→0+ ε
n
2 [F

s
σ] = 0

for all n ≥ 0. The results for the regularized sums are then exactly βn,s
2 for s ∈

{TE, TM} and for all n ≥ 0. The dimensionless auxiliary function F s
σ(nz) can be

evaluated analytically:

F s
σ(nz) = 2n2

z

∫ ∞

nz

e−σπy dy =
2n2

ze
−σπnz

πσ

yielding∫ ∞

n

F s
σ(x) dx =

2

πσ

∫ ∞

n

x2e−σπx dx =

(
4

π2σ2
+

4n

πσ
+ 2n2

)
e−σπn

π2σ2
.

Thus

F TM
σ (0) = 0 F TE

σ (1) =
2e−σπ

πσ∫ ∞

0

F TM

σ (x)dx =
4

π4σ4

∫ ∞

1

F TE

σ (x)dx =

(
4

π2σ2
+

4

πσ
+ 2

)
e−σπ

π2σ2
.
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Using (5.2)

S2(k)[F
s
σ] =

(
k

3σπ
+

1

60
− σπk

60
− k2

6
+
σ2π2k2

360

)
e−σπk

gives

S2(0)[F
TM

σ ] =
1

60
and S2(1)[F

TE

σ ] =

(
1

3σπ
− 3

20
− σπ

60
+
σ2π2

360

)
e−σπ.

Hence from (5.7)

Γ1
2[F

TE

σ ] =

(
4

π4σ4
+

4

π3σ3
+

2

π2σ2
− 2

3σπ
+

3

20
+
σπ

60
− σ2π2

360

)
e−σπ

or taking the series expansion with respect to σ:

Γ1
2[F

TE

σ ] =
4

π4σ4
− 1

60
+
π3σ3

504
+O(σ4)

and

Γ0
2[F

TM

σ ] =
4

π4σ4
− 1

60
.

Therefore

P1
2 [F

TE
σ ] =

4

π4σ4
, β1,TE

2 = − 1

60

P0
2 [F

TM
σ ] =

4

π4σ4
+

2

π3σ3
, β0,TM

2 = − 1

60

and (5.13) yields the regularized sums

lim
σ→0+

( ∞∑
nz=1

F TE

σ (nz)−
4

π4σ4

)
= − 1

60

lim
σ→0+

( ∞∑
nz=0

F TM

σ (nz)−
4

π4σ4

)
= − 1

60
.

Appendix C. Regularization Scheme for a Smooth Inhomogeneous

Polarizable Medium

In this section, we outline the details involved in calculating the TE and TM parts

of the quantum expectation value of the electromagnetic ground state energy (7.1)

of the open guide (with Lx = Ly = L � a) containing the medium with the

permittivity profile given by (3.10), in terms of certain σ-dependent integrals labeled

as follows:

Ip,q
(a,b) ≡

∫ b

a

up/2

(1 + 4u)q/2
exp(−σ

√
u)du.

From (5.7), the behavior of Γn
m[F s

σ ] as a function of m necessitates a value of m ≥ 1

for (5.10) to be satisfied. However, based on the behavior of T n
m as a function of m,

in the following we choose m = 3 so that the values of βn,s
m determined by Γn

m[F s
σ ]

can be calculated to 6 significant figures.
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C.1. Contribution from TE modes

For the TE mode spectrum the dimensionless auxiliary function is:

F TE

σ (�) =

∫ ∞

�(�+1)

√
u

(
1− 2�+ 1√

1 + 4u

)
exp(−σ

√
u)du.

With n = 0, the Euler–Maclaurin regularization procedure outlined in Sec. 5 does

not yield a finite result, since terms in Sm(n)[F TE
σ ] diverge as n → 0. However a

regularization can proceed for n = 1 with Γ1
3[F

TE
σ ] defined by (5.7) and from (5.17):

Γ̂0,1
3 [F TE

σ ] = F TE

σ (0) + Γ1
3[F

TE

σ ].

First note that

F TE

σ (1) = I1,0
(2,∞) − 3I1,1

(2,∞) = I1,0
(0,∞) − I1,0

(0,2) − 3I1,1
(0,∞) + 3I1,1

(0,2). (C.1)

To compute the integral term in (5.7), we shall use the identity∫ ∞

1

F TE

σ (x)dx =

∫ ∞

0

F TE

σ (x)dx −
∫ 1

0

F TE

σ (x)dx. (C.2)

For any integrable function f(x, u), one has, by reversing the order of integration,∫ ∞

0

(∫ ∞

x(x+1)

f(x, u) du

)
dx =

∫ ∞

0

(∫ u0

0

f(x, u) dx

)
du

where u0 = − 1
2 + 1

2

√
4u+ 1. Thus∫ ∞

0

F TE

σ (x)dx =

∫ ∞

0

[√
u

2
(
√
1 + 4u− 1)− u3/2√

1 + 4u

]
exp(−σ

√
u)du

=
1

2
I1,−1
(0,∞) −

1

2
I1,0
(0,∞) − I3,1

(0,∞)

since the integration over x can be performed analytically. Similarly, from∫ 1

0

(∫ ∞

x(x+1)

f(x, u) du

)
dx =

∫ 1

0

(∫ ∞

0

f(x, u) du−
∫ x(x+1)

0

f(x, u)du

)
dx

=

∫ ∞

0

(∫ 1

0

f(x, u)dx

)
du−

∫ 2

0

(∫ 1

u0

f(x, u)dx

)
du

one has∫ 1

0

F TE

σ (x)dx = I1,0
(0,∞) −

3

2
I1,0
(0,2) +

1

2
I1,−1
(0,2) − 2I1,1

(0,∞) + 2I1,1
(0,2) − I3,1

(0,2),

since again, the integration over x can be performed analytically. Thus∫ ∞

1

F TE

σ (x) dx =
1

2
I1,−1
(0,∞) −

3

2
I1,0
(0,∞) + 2I1,1

(0,∞) − I3,1
(0,∞) +

3

2
I1,0
(0,2)

− 1

2
I1,−1
(0,2) − 2I1,1

(0,2) + I3,1
(0,2)
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using (C.2). Finally, from (5.2) with m = 3

S3(1)[F
TE

σ ] = −1

6
I(1,1)
(0,∞) +

1

6
I(1,1)
(0,2) −

223
√
2

107520
exp(−σ

√
2) +

15

3584
σ exp(−σ

√
2)

+

√
2

6720
σ2 exp(−σ

√
2)− 1

8960
σ3 exp(−σ

√
2).

Therefore, using (5.7), one obtains

Γ1
3[F

TE

σ ] = I1,0
(0,2) − I1,0

(0,∞) +
2

3
I1,1
(0,∞) −

2

3
I1,1
(0,2) +

1

2
I1,−1
(0,∞) −

1

2
I1,−1
(0,2) − I3,1

(0,∞)

+ I3,1
(0,2) +

223
√
2

107520
exp(−σ

√
2)− 15

3584
σ exp(−σ

√
2)

−
√
2

6720
σ2 exp(−σ

√
2) +

1

8960
σ3 exp(−σ

√
2). (C.3)

Since

F TE

σ (0) = I1,0
(0,∞) − I1,1

(0,∞),

it follows from (5.17) that:

Γ̂0,1
3 [F TE

σ ] = I1,0
(0,2) −

1

3
I1,1
(0,∞) −

2

3
I1,1
(0,2) +

1

2
I1,−1
(0,∞) −

1

2
I1,−1
(0,2) − I3,1

(0,∞)

+ I3,1
(0,2) +

223
√
2

107520
exp(−σ

√
2)− 15

3584
σ exp(−σ

√
2)

−
√
2

6720
σ2 exp(−σ

√
2) +

1

8960
σ3 exp(−σ

√
2). (C.4)

The infinite range integrals in (C.4) can be evaluated analytically with the results:

I1,1
(0,∞) =

π

4

dK
dσ

, I1,−1
(0,∞) = −π d2

dσ2

(
K
σ

)
I3,1
(0,∞) =

d2

dσ2
I1,1
(0,∞) =

π

4

d3K
dσ3

(C.5)

where

K(σ) ≡ Y1

(σ
2

)
−H1

(σ
2

)
,

in terms of the first order Bessel function of the second kind Y1(x) and the first

order Struve function H1(x). Series expansions of the finite range integrals in (C.4)

around σ = 0 can be evaluated without computing their exact analytic form. For

example,e

I1,0
(0,2) =

∫ 2

0

√
u e−σ

√
u du =

∫ 2

0

(
√
u− σu)du+O(σ2)

eIn this case the integral can be computed analytically and the series expansion of the result about
σ = 0 is in agreement with the integration of the series expansion of the integrand about σ = 0.
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=

[
2

3
u3/2 − 1

2
σu2

]2
u=0

+O(σ2)

=
4
√
2

3
− 2σ +O(σ2)

since
√
u e−σ

√
u =

√
u−σu+O(σ2). Thus, using (C.5), the series expansion of (C.4)

around σ = 0, is calculated as:

Γ̂0,1
3 [F TE

σ ] =
6

σ4
+

1

24σ2
− 1

384
ln(σ)− 5

1536
− 5339

√
2

35840

− γ

384
− 43

768
ln(2) +

47

384
ln(4 + 3

√
2) +O(σ2) (C.6)

in terms of Euler’s constant γ. Using (5.18), this gives

P̂0,1
3 [F TE

σ ] =
6

σ4
+

1

24σ2
− 1

384
ln(σ)

β̂0,1,TE

3 = − 5

1536
− 5339

√
2

35840
− γ

384
− 43

768
ln(2) +

47

384
ln(4 + 3

√
2)

= 0.00393263

(C.7)

to 6 significant figures. The term Tm(1,∞)[F TE
σ ] cannot be evaluated analytically

but, using (5.14), it can be bounded. For m = 3, a bound is limσ→0+ ε
1
3[F

TE
σ ] ≤

6.40× 10−6, yielding the relative error

limσ→0+ ε
1
3[F

TE
σ ]

|β̂0,1,TE

3 |
≤ 1.623× 10−3.

Thus from (5.16):

lim
σ→0+

( ∞∑
�=0

F TE

σ (�)− 6

σ4
− 1

24σ2
+

1

384
ln(σ)

)

= − 5

1536
− 5339

√
2

35840
− γ

384
− 43

768
ln(2) +

47

384
ln(4 + 3

√
2)

± lim
σ→0+

ε13[F
TE

σ ] = 0.00393263± 6.40× 10−6 (C.8)

to 6 significant figures.

C.2. Contribution from TM modes

For the TM modes the dimensionless auxiliary function is

F TM

σ (�) =

∫ ∞

(�+1)(�+2)

√
u

(
1− 2�+ 1√

1 + 4u

)
exp(−σ

√
u) du.

To analyze Γ0
3[F

TM
σ ] as defined by (5.7), first note that

F TM

σ (0) = I1,0
(2,∞) − I1,1

(2,∞) = I1,0
(0,∞) − I1,0

(0,2) − I1,1
(0,∞) + I1,1

(0,2). (C.9)
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Next, for any integrable function f(x, u), one has, by reversing the order of inte-

gration, ∫ ∞

0

(∫ ∞

(x+2)(x+1)

f(x, u)du

)
dx =

∫ ∞

2

(∫ u0

0

f(x, u) dx

)
du

where u0 = − 3
2 + 1

2

√
4u+ 1. Thus∫ ∞

0

F TM

σ (x)dx =

∫ ∞

2

[√
u

2
(
√
1 + 4u− 3)−

√
u(1 + u)√
1 + 4u

+
√
u

]
exp(−σ

√
u)du

= −1

2
I1,0
(2,∞) +

1

2
I1,−1
(2,∞) − I1,1

(2,∞) − I3,1
(2,∞)

= −1

2
I1,0
(0,∞) +

1

2
I1,0
(0,2) +

1

2
I1,−1
(0,∞) −

1

2
I1,−1
(0,2) − I1,1

(0,∞) + I1,1
(0,2)

−I3,1
(0,∞) + I3,1

(0,2)

since the integration over x can be performed analytically. Also, using (5.2),

S3(0)[F
TM

σ ] = −1

6
I(1,1)
(0,∞) +

1

6
I(1,1)
(0,2) −

31129
√
2

184320
exp(−σ

√
2)

− 17

10240
σ exp(−σ

√
2) +

2129
√
2

645120
σ2 exp(−σ

√
2)

+
3

17920
σ3 exp(−σ

√
2)− 3

√
2

35840
σ4 exp(−σ

√
2).

Therefore, from (5.7),

Γ0
3[F

TM

σ ] = −4

3
I1,1
(0,∞) +

4

3
I1,1
(0,2) +

1

2
I1,−1
(0,∞) −

1

2
I1,−1
(0,2) − I3,1

(0,∞) + I3,1
(0,2)

+
31129

√
2

184320
exp(−σ

√
2) +

17

10240
σ exp(−σ

√
2)

− 2129
√
2

645120
σ2 exp(−σ

√
2)− 3

17920
σ3 exp(−σ

√
2)

+
3
√
2

35840
σ4 exp(−σ

√
2). (C.10)

Using (C.5), the series expansion of (C.10) around σ = 0, yields

Γ0
3[F

TM

σ ] =
6

σ4
− 23

24σ2
− 49

384
ln(σ)− 101

1536
+

34009
√
2

184320
− 49γ

384

+
245

768
ln(2)− 49

384
ln(4 + 3

√
2) +

4

45
σ +O(σ2). (C.11)
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From (5.8), this gives

P0
3 [F

TM

σ ] =
6

σ4
− 23

24σ2
− 49

384
ln(σ)

β0,TM

3 = − 101

1536
+

34009
√
2

184320
− 49γ

384
+

245

768
ln(2)− 49

384
ln(4 + 3

√
2)

= 0.0734902

(C.12)

to 6 significant figures. As with the TE modes, the term Tm(0,∞)[F TM
σ ] cannot be

found analytically but, using (5.14), it can be bounded. For m = 3, a bound is

limσ→0+ ε
0
3[F

TM
σ ] ≤ 3.17× 10−5, yielding the relative error

limσ→0+ ε
0
3[F

TM
σ ]

|β0,TM

3 |
≤ 4.31× 10−4.

Thus

lim
σ→0+

( ∞∑
�=0

F TM

σ (�)− 6

σ4
+

23

24σ2
+

49

384
ln(σ)

)

= − 101

1536
+

34009
√
2

184320
− 49γ

384
+

245

768
ln(2)− 49

384
ln(4 + 3

√
2)

± lim
σ→0+

ε13[F
TM

σ ] = 0.0734902± 3.17× 10−5 (C.13)

to 6 significant figures. It should be noted that the relations (C.8) and (C.13) are

invariant under σ �→ q(σ).

Appendix D. The Generalized Abel–Plana Formula

For electromagnetic systems with real eigen-frequencies given by the roots of equa-

tions that are not algebraic, an alternative numerical regularization scheme can

be constructed based on the Abel–Plana formula instead of (5.1). Suppose such a

system has the real positive eigenvalue spectrum S = {μ1, . . . , μr, . . .} where S

contains all the ordered roots of F (μ) = 0 such that

Δ(z) =
F ′(z)
F (z)

has simple poles at the elements of S with unit residue in the complex z-plane.

Furthermore, let f(z) be analytic in z for Re(z) > ξ, ξ < μ1. Then the generalized

Abel–Plana formula follows from the Cauchy integral formula:
n∑

r=1

f(μr)−
∫ μn

μ1

f(x)dx =
1

2
f(μ1) +

1

2
f(μn) +Qy0(n)−Qy0(1) +

1

2i
(L+ + L−)

where

L± = ∓
∫ μn

μ1

f(x± iy0)ψ±(x± iy0) dx

Qy0(r) =
1

2

∫ y0

0

{f(μr + iy)ψ+(μr + iy) + f(μr − iy)ψ−(μr − iy)}dy
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with

ψ±(z) =
Δ(z)

π
± i

and any real y0 > 0. This reduces to the Abel–Plana formula (p. 340, [20]) when

F (μ) = sin(πμ).

Recourse to this generalized Abel–Plana formula offers an alternative to the

generalized Euler–Maclaurin formulae based on (5.1) since it is rare that one can

find exact solutions for the spectra of electromagnetic modes in a general confined

system as the boundary conditions often lead to eigenvalues that are the roots

of transcendental equations. Furthermore, the criteria for its implementation as

a viable regularization scheme are somewhat more restrictive when dealing with

inhomogeneous media since one needs to assess the significance of contributions

from integrals over contours in the complex plane.
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