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Abstract

We discuss the use of a class of exact finite energy solutions to the vacuum
source-free Maxwell equations as models for multi- and single cycle laser pulses
in classical interaction with relativistic charged point particles. These compact
solutions are classified in terms of their chiral content and their influence on
particular charge configurations in space. The results of such classical interac-
tions motivate a phenomenological quantum description of a propagating laser
pulse in a medium in terms of an effective quantum Hamiltonian.

Keywords: classical electrodynamics, general laser theory, quantum descrip-
tion of interaction of light and matter

(Some figures may appear in colour only in the online journal)

1. Introduction

Advances in laser technology have made possible the exploration of physical processes on
unprecedented temporal and spatial scales. They have also opened up new possibilities for
accelerating charged particles using laser—matter interactions. Multi- and single cycle high
intensity (10'© — 10" Wem™2) laser pulses can be produced using Q-switching or mode-
locking techniques [1]. Pulses of even higher intensity (~102! Wem~2) could accelerate
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charged particles such as electrons to relativistic speeds where radiation reaction and quantum
effects may influence their dynamics [2]. Lower intensity pulses have also been used as
diagnostic tools for exploring the structure of plasmas in various states [3, 4]. In order to
interpret experimental data involving classical laser interactions with both charged and neutral
matter, theoretical models [5—-8] rely crucially on parameterizations of the electromagnetic
fields in laser pulses, particularly in situations where traditional formulations using mono-
chromatic or paraxial-beam approximations have limitations [9—11]. Such theoretical models
may not be compact in all spatial dimensions and the role of a laser pulse as a classical probe is
further limited by the scales that it is designed to resolve. Pulse shape design characteristics are
often guided by simulations of laser—matter interactions which incorporate the known laws of
physics of relevance at such scales. For example, the intense experimental activity currently
exploring the electromagnetic properties of single-cycle laser pulses with nanoscale objects
(such as dielectric and plasmonic nanoparticles) demands efficient modelling tools that
accommodate the spatial compactness of such pulses. Such tools will eventually require
incorporation of quantum effects associated with these interactions in order to properly describe
observations and yield practical applications involving nanostructured dielectrics and plasmonic
metals [12]. Furthermore an effective quantum description of the laser pulse itself would offer a
new simulation tool for designing more accurate methods of encoding quantum information.

The quanta associated with plane time-harmonic electromagnetic fields in vacuo provide
ideal discrete two-state systems (photons) that are routinely used as controllable qubits in
information science. Three-level bosonic quantum systems composed of two photons in the
same spatial and temporal configuration have also been contemplated [13] in attempts to
construct more efficient quantum gates for quantum communication. If one regards a free
propagating classical single-cycle (therefore non-time-harmonic) laser pulse in vacuo as a
spatially compact classical electromagnetic configuration with definite energy £ and temporal
width #o, one expects that when £ fy < / its dynamical evolution, in both vacuo and material
media, should be controlled by an effective quantum Hamiltonian, rather than a classical one
as is done in [14]. Such quantized collective states could then be entangled with other
quantized pulses or free photon states and their interaction with classical or quantized states of
electrically neutral continua (e.g. optically inhomogeneous and anisotropic dielectrics or
plasmas) or charged matter (e.g. trapped ions [13]) may be worthy of investigation for
technological applications such as quantum computing and encryption.

In this article we first discuss a viable methodology for parameterizing a particular class
of propagating solutions to the source-free classical Maxwell equations in vacuo that offers an
efficient means to explore the classical effects of compact laser pulses on free electrons in
dynamical regimes where quantum effects are absent. The parameterization is constructed
from a remarkable class of explicit solutions of the scalar wave equation found by
Ziolkowski [15-19] following pioneering work by Brittingham [20] and Synge [21]. Solu-
tions in this class are parameterized in terms of three real constants that are sufficient to
completely determine the characteristics of any freely propagating laser pulse in full accord
with Maxwell’s equations in free space. They describe solutions with finite total electro-
magnetic energy, electromagnetic fields bounded in all three spatial directions and experi-
mentally distinguishable chiral configurations. With simple analytic structures their
diffractive properties can be readily calculated together with the behaviour of relativistic
charged particle-pulse interactions over a broad parameter range without recourse to
expensive numerical computation. Based on this behaviour and by analogy with the effective
Hamiltonian theory of diatomic molecules, we are led to construct a Hilbert space on which to
describe certain quantum states of an electromagnetic pulse undergoing unitary evolution
generated by an effective phenomenological quantum Hamiltonian in a medium. Such a
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Hamiltonian, defined in terms of a set of parameters associated with its medium interaction,
serves as an effective quantum model for the quantum pulse evolution.

2. Parameterizing compact electromagnetic laser pulses

If a complex scalar field « satisfies [ o = 0 and II,,, is any covariantly constant (degree 2)
anti-symmetric tensor field on spacetime (i.e. I1,,,,s = 0 for all p, v, 6=0,1,2,3), then the
complex tensor field F, = 9,A, — 0,A, satisfies the source-free Maxwell equations in
vacuo with:

A, = d,(a Tl e, [Tl M

where |g| is the modulus of the determinant of the spacetime metric tensor field g with
components g,,, and €7, denotes the Levi-Civita alternating symbol. In the following, we
restrict to Minkowski spacetime, in which case the components 1I,,, can be used to encode
three independent Hertz vector fields and their duals®.

General solutions to [J o = 0 can be constructed by Fourier analysis. In cylindrical polar
Minkowski coordinates {f, r, z, 8}, axially symmetric solutions propaggging along the z-axis

have, for z > 0, the double integral representation «(t, r, z7) = f dw e Y (w, r, z)
— 00
where:

aw, r, 2) = fo K, (k) o (kr)e (O R dk f " KE (0o U)o =@ ik

in terms of the zero order Bessel function and the speed of light in vacuo c.

Conditions on the Fourier amplitudes f,(k) can be given so that the Hertz procedure
above gives rise to real singularity free electromagnetic fields with finite total electromagnetic
energy. A particularly simple class of pulses that can be generated in this way follows from
the complex axi-symmetric scalar solution:

ty
2 Wy i = )@, — i+ en)

2

a, r,z) =

where ¢y, 1, 1, are strictly positive (real) parameters with physical dimensions of length.
The relative sizes of 1, and 1/, determine both the direction of propagation along the z-axis of
the dominant maximum of the pulse profile. When /; > 1,, the dominant maximum
propagates along the z-axis to the right. The parameter £, determines the magnitude of such a
maximum. The structure of such solutions has been extensively studied in [22, 23] in
conjunction with particular choices of 11, together with generalizations discussed in [24, 25].

In general the six anti-symmetric tensors with components & 6y in a Minkowski Car-
tesian coordinate system are covariantly constant and can be used to construct a complex
eigen-basis of antisymmetric chiral tensors II**, with s € {CE, CM} and x € {—1, 0, 1},
satisfying

O, 1% = & TI" 3)

where the operator O, represents 6 rotations about the z-axis generated by —idy on tensors’.
These in turn can be used to construct a complex basis of chiral eigen-Maxwell tensor fields

% 1n the language of differential forms on Minkowski spacetime A = *d(« II), F = dA where dxda = 0, the two-
form IT satisfies VII = 0 and * denotes the Hodge map associated with g.

7 In terms of the Lie derivative, O, = —iLy, and TE*! = d(x £ iy) A dr, TIEO0 = dz A dr, TM# = «IICEx
where x = r cos(#), y = rsin(6).
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F;7. The index s indicates that the CE (CM) chiral family contain electric (magnetic) fields

pv
that are orthogonal to the z-axis when x = 0. The chiral eigen-fields Iif;,o inherit the axial
symmetry of «(t, r, z) while those with K = £1 do not. The directions of electric and
magnetic fields in any of these Maxwell solutions depend on their location in the pulse and
the concept of a pulse polarisation is not strictly applicable. The chiral content as defined here
can be used in its place. Non-chiral (complex) pulse configurations can be constructed by
superposition: F,, = ZSZH F," C*% with arbitrary constant complex coefficients C**.

The energy, linear and angular momentum of the pulse in vacuo can be calculated from
the components 7, of the Maxwell stress—energy tensor 7, = —%gw]: B — FuaF
where F,, = Re(F,,). If e and b denote time-dependent real electric and magnetic three-
vector fields associated with any pulse solution F,, its total electromagnetic energy 7, for a
fixed set of parameters and any z, is calculated from

j:uiofo:cdzfs(exb)-ds @)

where S can be any plane with constant z = zo > 0. For spatially compact pulse fields in
vacuo this coincides with the total pulse electromagnetic energy

ngvpdvzf;dz LZWdHLwrdrp(t,r,z,H), )

where p = %(Eoe -e 4+ b/%b) is integrated over all space V. This follows since
o

V - (e x b) = —p, 0, p. To correlate 7 with other laser pulse properties and the choice
of parameters, we bring the pulses F;" for various values of s and # into classical interaction
with one or more charged point particles. The world-line in spacetime of a single particle,
parameterized in arbitrary coordinates as x* = £/ (7) with a parameter 7, is taken as a solution
of the coupled nonlinear differential equations

A = - FL @) v ©)
moc

in terms of the particle charge g and rest mass m, for some initial conditions £(0), V(0), where
the particle four-velocity satisfies V¥ V, = —1 and its four-acceleration is expressed in terms
of the Christoffel symbols I'*4 poas Au(m) = 0; V(1) + Vs(7) V(D)8 ,(£(7)). In the
following, radiation reaction and inter-particle forces are assumed negligible. From the
solution £(7) one can determine the increase (or decrease) in the relativistic kinetic energy
transferred from the electromagnetic pulse to any particle and the nature of its trajectory in the
laboratory frame for different choices of s and k.

3. Interactions of compact laser pulses with matter

The analysis of the previous section can be used to investigate the behaviour of a classical
laser pulse interacting with electrically charged matter and motivates a model for a quantum
laser pulse interacting with electrically neutral matter.

In order to facilitate the classical behaviour, we reduce the above equations of motion to
dimensionless form and fix the physical dimensions of the fields involved. The Minkowski
metric tensor field g = ngx” dx” (with 8w = diag (—1, 1, 1, 1)) in inertial coordinates
x0 = ct, x! = x, x2 =y, x3 = z) has SI physical dimensions [L]*. The SI dimension of
electromagnetic quantities follows by assigning to €y, dx!“dx") in any coordinate system
the physical dimension of charge. Furthermore, in terms of Minkowski polar coordinates
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{t, r, z, 0}, introduce (for ease of graphical visualization) the dimensionless coordinates
{R=r/®l, T=ct/ty, Z=2z/=l;} and real dimensionless parameters A, ¥; = 1;/{,
(j = 1,2) where [¥}] = [®] = [E] = 1, [{p] = [L]. Then with the dimensionless complex
scalar field a(T, R, Z) = «(t, r, z) and Greek indices ranging over {7, R, Z, 0} with ¢ %%
=1, we write

moczfg

q

As = RA O, (@ T0,,)em s 7
for a choice of dimensionless covariantly constant tensor ﬁlw(T, R,Z, 0)=1L,@r,z0),
so that [egA, dx*] has the physical dimension of electric charge. The total power density P

and total energy density & are now defined by

j:f_(’o deOOC dejr d0 P(T, R, Z, 0)
g:ffo dz &(T, 2).

The real parameter A controls the strength of the electric and magnetic fields in F};;" for fixed
values of the real parameters ¥;, W,, ®, = and the overall scale £, will be fixed in terms of the
total electromagnetic energy of the pulse. For a choice of such parameters the associated real
fields e and b enable one to calculate a numerical value I" such that 7 = ¢,I". The diffraction
of the pulse peak along the z-axis can be used to define a pulse range relative to the maximum
of the pulse peak at z = 0. To this end, the density E(T, Z) defines the dimensionless range
Z, by €0, 0)/E(T;, Z,,) = 2, where the peak at Z = Z,, > 0 and T = T; > 0 is half the
height of the peak at Z = 0, T = 0. If during the interval [0, T;] the pulse propagates with
negligible deformation in Z, one may estimate its width Z, at half height and the
dimensionless pulse axial speed 3 = Z,,/7;. This yields the dimensionless pulse duration or
temporal width Ty = Z,,/8. From these dimensionless values one deduces the pulse SI
characteristics in terms of £y, and hence 7. If the picosecond is used as a unit of time, the
pulse duration becomes ty = £, Ty/c = ¢yZ,,/(5c) = N 107125 for some value N and hence
b= (cBN/Z,)10712 m, = (T'BcN/Z,) 10712, z, = Ecfn 107 ?m and z,, = {EZ,, =
(EBcNZ,4/Z,,)1072m. A dimensionless spot-size of the pulse at Z = Zy > 0, T = Z,/(3 is
then determined by the behaviour of P (R, Zy/3, Zy, 0). At each value of Z, this function
of R and 6 has a clearly defined principal maximum. If one associates a circle of
dimensionless radius R (Z;) with such a maximum locus it can be used to define a spot-size at
7 = zo with radius 7, (zo) =€y PR, (Zo) = (cBNPR,(Zy)/Z,,)10~12 m. Figure 1 displays a
clearly pronounced principle maximum in the power density profile P as a function of
X =Rcos(d) and Y = Rsin(f) at Z= 0, T = 0 for a specific choice of the parameters
(A, I, I,, ®, =). The same parameter set is used to numerically solve (6) for a collection of
trajectories for charged particles, each arranged initially around the circumference of a circle
in a plane orthogonal to the propagation axis of incident CM type laser pulses with different
chirality . The resulting space curves in three-dimensions, displayed in figure 2, clearly
exhibit the different characteristic responses to CM pulses with distinct chirality values. The
instantaneous specific relativistic kinetic energy of a particle with laboratory speed vis v — 1

in terms of the Lorentz factor  given by v~ ' = /1 — Z—z In figure 3, this quantity is

displayed as a function of 7 on the left for a charged particle accelerated by a fixed chirality
(CM,—1) type pulse where the pulse energy is varied by changing A. On the right the energy
transfer dependence on pulse chirality for both CE and CM type pulses with fixed laser
energy is displayed. We deduce that the pulse momentum and angular momentum [26] in the
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Power profile P

y

N

7
-

X x 10%

Wittty 77
f///////////////,,,//////

G,
Poizs

(CM, Kk =1)

\/

Figure 1. Power profile P of the (CM,1) laser pulse at Z = 0, T = 0 with parameters
{A =600, ¥ = 1, ¥, = 1000, ® = 0.001, = = 1}. Reproduced with permission
by [30]. Copyright 2016 Elsevier.

(CM, k = 0) (CM, k = —1)
?
.| . - /‘/
A \*
L — e

Figure 2. Three-dimensional spacecurves for particles subject to an incident (CM, 1)
laser pulse (left), (CM, 0) laser pulse (centre) and (CM, —1) laser pulse (right) with
parameters {A = 600, ¥; = 1, ¥, = 1000, & = 0.001, = = 1}. Each particle has
initial velocity {R(O) =0,00) =0,2Z(0) = ﬁ
indicates the initial spot size (R = 10 000 for (CM, +£1) laser pulses and R = 20 000 for
a (CM, 0) laser pulse) relative to the black markers on the spacecurves that denote the
initial positions of the charged test particles. Reproduced with permission by [30].
Copyright 2016 Elsevier.

}. The shaded circular disc region

propagation direction can transfer an impulsive force and torque respectively to charges lying
in an orthogonal plane. More generally, the classical configurations of a high energy pulse
labelled CE or CM could be distinguished experimentally by their interaction with different
arrangements of charged matter.

Furthermore, by a suitable choice of parameters, (CE, ) type modes can be constructed
that yield the same physical properties (7, zZr4, Zw, 8) for all . Similarly the (CM,x) type
modes yield a x independent set with physical properties distinct from those determined by
the (CE,x) modes. The pulse group speed magnitudes (as defined above) of all these con-
figurations are determined numerically and are bounded above by the value c. To illustrate
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10% = 3 o [T T T
F 4 | —— A = 1000 10° |- 1| — (CM,0)
103 | 4| ——A=100 /¥ — (CE,0)
— B ] A =10 (CM, +1)
Lo102 ) ] 1071 : (CE, +1)
10! | |
£ ! E 1075 | . I
100 108 106 100 103 106
T T
Figure 3. Specific kinetic energy transfer v — 1 to any charged test particle. On the
left, the (CM,1) pulse has parameters {V; = 1, ¥, = 1000, & = 0.001, = = 1}.
On the right, relative values of v — 1 are displayed for various (s, k) pulses
with parameters {A = 1, U} = 1, ¥, = 1000, & = 0.001, = = 1}. The differences
between the energy transfers for some pulses appear indistinguishable relative
to others owing to the logarithmic scales employed. In all cases, the charged
particle has initial position {R(0) =1,0(0) = 3, Z(0) =1} and initial velocity
{R(O) =0,Z(0) = ﬁ, 0(0) = O}. Reproduced with permission by [30]. Copyright
2016 Elsevier.
Table 1. Table showing SI laser characteristics for various (s, ) laser pulse config-
urations with parameters {¥; = 1, ¥, = 1000, ® = 0.001, = = 1}. Reproduced with
permission by [30]. Copyright 2016 Elsevier.
s K WM A Zrg (M) 7o (pS) 2 (M) r,(0) (m) I(Wem™)
CE 0 8.07 40000  1.44 3 8.99 x 10°* 0.018 2.646 x 102
CE +I 7.69 1 2.43 3 8.99 x 107* 0.009 1.009 x 10'2
CM 0 8.41 21—0 0.899 2 6.00 x 107* 0.012 9.304 x 10"
CM  +1  7.69 1 1.80 3 8.99 x 107* 0.009 1.009 x 102
CM  +1 76903 100 1.80 3 8.99 x 107* 0.009 1.009 x 10'°

some of these statements, table 1 summarizes the SI laser pulse characteristics determined by
solving the system of equations in (6) for a specific choice of {V¥;, ¥,, &, =} and various
values of A, selected to demonstrate the physical characteristics of existing laser pulses. We
conclude that both the CE and CM type pulses can propagate localized packets with linear
and angular momentum analogous to the quantum characteristics of propagating wave
packets describing particles with different masses.

These observations suggest that, for electromagnetic micropulses with £ty < /2, a
parameterized effective quantum Hamiltonian H describing a particular pair of interacting
massive point particles may provide the simplest effective description of general non-sta-
tionary quantum states of a laser pulse. Such states are then defined as elements of a complex
Hilbert space H = L?(R?, C¥) ® L*(R3, C?) where each factor denotes the space of complex
square integrable three-component vectors on R® carrying irreducible finite dimensional
representations of the three-dimensional rotation group®. Such a construction is analogous to
the Hilbert space H,ip, @ H;or used in Bohm and Loewe’s dynamic model of a vibrating and
rotating diatomic molecule after removing its translational degrees of freedom [27]. The space

8 The inner product on H =7, ® M, is defined by () ® sy & @ D) = (D1, P )rg (Do Podpp  for
D> 45; € H,, n =1, 2 in terms of the inner products (¢,, @:1>Hn on H,.
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H,ip is spanned by eigenstates of the Hamiltonian H,;, for a one-dimensional simple har-
monic oscillator parameterized by a fundamental frequency wy and the space H, is spanned
by eigenstates of the Hamiltonian H,,, for a one-dimensional rigid rotator parameterized by a
constant moment of inertia parameter Z. The simplest model for the diatomic molecule takes
for its Hamiltonian:

Hyot = Hyp @ I + 1 ® Hyyy + gvVvib ® Wt

in terms of the three phenomenological real parameters wy, Z, G and where I denotes the
identity operator on the relevant space. For certain diatomic molecules this idealized model
(and its refinements) accounts for well-established empirical formulae for their electronic
energy states. States in the space H must describe the translational modes of a quantum
packet as well as possible mode-mixing. To this end we model their unitary evolution
generated by an effective Hermitian Hamiltonian of the form:

H = Hy(x), X2) + Hin (X1, X2),

where

2 2
Hy = (—Lvil] QI+1® (—ﬁ—v;)
24, 24,

with real parameters (,, (t, > 0. For quantum pulses that are deemed relativistic, one can
include relativistic corrections by the replacement

e 2 2

—2—Vx" — \/—ﬁ2c2vxn + ,unc4 — p,c?

Ho
for n = 1,2 and working in a momentum representation. The structure of H;, (X;, X,) depends
upon the physical properties of the medium through which the pulse propagates. A simple
model that accommodates quantum birefringence, medium anisotropy and inhomogeneity
may be constructed in terms of parameterized Hermitian operators W (x;), W5 (X,):

Hiyy = Wi(x) ® Wa(xy).

The six classical chiral states labelled (s, ) that evolve according to the classical Maxwell
equations are now replaced by elements ¥, € H satisfying the Schrodinger equation:

_zgqjt = HY,
i Ot
with U, prescribed at any time #, and satisfying (¥,, ¥, ) = 1. In a direct product matrix
representation, decomposable states in H can be written (¢, X)) ® B (, Xp) with

ay (1, Xp) Bi(t, x2)
alt, x) = |an(t, x)) and B, x) = |62, X))
a3 (t, X)) B3(t, X2)

By analogy with the description of non-relativistic spin f% qubit states, call « the left qutrit
component of such a bi-qutrit state and 3 the corresponding right qutrit component. The
dynamic description of a general state ¢y € H requires an explicit interaction Hamiltonian
operator. To model interactions with a classical medium we envisage here a smooth fabricated
meta-material with specified inhomogeneous and anisotropic characteristics. This is similar to
the specification of the magnetic moment interaction of the qubit states (due to an unpaired
bound s-wave electron) of a silver atom with a classical (inhomogeneous) static magnetic field
in the Stern—Gerlach experimental arrangement. An important practical distinction however

8
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arises since the laser states, unlike electrons, are electrically and magnetically neutral and
hence their interaction with electromagnetically neutral properties of a fabricated meta-
material may be more versatile than in the Stern—Gerlach situation [28].

Consider, for example, the evolution of the left qutrit component (¢, X;) under the
Hamiltonian:

2
—ﬁ—Vil @I+ GS Nt x) @I,
241

where the constant (3 x 3) Hermitian matrix-valued vector S satisfies the commutation
relation § x § = iS, the three-vector N (¢, X{) is a classical field of unit-vectors on some
fabricated meta-material and G, is a parameter with the physical dimensions of energy. Such
a Hamiltonian assigns a single preferred field of spatial directions N (¢, x;) for the interaction
of quantum states with the medium. More complex media could involve multiple anisotropies
described by a multi-directional set of unit-vector fields.

Given (0, x;) with

3
> [ 1oy, x)P ¢ = 1
=1

(assuming an unbounded medium V), one solves the system:

2
_Adan®) AT gr x4 Gy S - NG x) et x)
i ot 2p,

for the left qutrit component at ¢ > 0. Multi-component wave-packet solutions can be
constructed by the standard Fourier transform methods used to construct wave-packets for
scalar fields. Thus in cylindrical polar coordinates (r, ¢, z) defined with respect to a preferred
time-independent, fixed z-direction N = (0, 0, 1) in a uniformly homogeneous medium,
wave-packet solutions to the above equation take the form:

ot r )= 3 I Y dk Ay k. 5) j; " ST ds Ju(rs)explikz + imé] T(t, k. s)

m=—00

for j = 1, 2, 3 where

it (722 s

L, k, s)=exp| —| — (k2 + 52 + G| |,
7\ 2,
it (722

Dt k, s) =exp| —| — &2 + s?) ||,

2( ) p P 2Ml( )]]
- :

I3(t, k, s) = exp 1 ﬁ_(k2_|_sz) —alll
i\ 2,

and the amplitudes A; ,,(k, s) are determined from the normalized initial conditions o;(0, 7, ¢,
z) by Fourier and Fourier-Bessel inversion. In these expressions contributions to ¢; from
terms in the sums that depend on the integer m indicate those from eigenstates of the orbital
angular momentum operator /T’E,% [29]. By contrast, terms in o with different j refer to spin
(qutrit) contributions to v,. With the above Hamiltonian, stationary qutrit energy eigenstates
would be non-degenerate with energy shifts (0, £G;). Generating superpositions involving
left and right qutrit states in H that cannot be reduced to decomposable states by a change of

9
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basis may offer a means to isolate and thereby control non-stationary entangled qutrits using
appropriately fabricated meta-materials.

In addition to such laser state ‘measurement’ interactions with a classical medium, one
may also include interactions with atomic quantum states. These and other uses of such
effective quantum Hamiltonians involving the dynamics of laser states will be discussed
elsewhere.

4. Conclusions

We have constructed a basis of classical chiral solutions of the source-free vacuum Maxwell
field equations from a simple particular solution to the complex scalar wave equation in
spacetime and a set of covariantly constant antisymmetric tensor fields. Such solutions offer a
simple three-parameter description of a finite-energy laser pulse that provides a more accurate
simulation tool for analysing laser—matter interactions in realistic three-dimensional situations
where plane-fronted paraxial approximations are inadequate. The analytic structure of such
solutions enables one to readily extract all the standard diffractive characteristics associated
with a laser pulse in free space. Using the classical relativistic Lorentz-force equation of
motion we have also analysed numerically the interaction of such compact pulse solutions
with charged point particles. This has explicitly demonstrated how laser configurations with
definite chirality and mode-type transfer angular momentum and energy to the charges as a
result of the interaction. From these numerical investigations we have proposed a particular
effective quantum model for systems where the classical pulse energy £ and the pulse
duration 1, satisfy €1y < /. By analogy with the effective modelling of rotating-vibrating
diatomic molecules we have proposed a simple phenomenological Hamiltonian that may be
used to describe quantum laser packets in free space and material media. It is suggested that
this Hamiltonian may have utility for simulating a novel transfer of quantum information and
for constructing models of rapid single-cycle laser pulses interacting with quantum matter and
classical fabricated materials containing structures below the nano-scale.
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