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Completely bounded homomorphisms
of the Fourier algebra revisited

Matthew Daws*

Communicated by Adrian Ioana

Abstract. Assume that A(G) and B(H) are the Fourier and FourierStieltjes algebras of
locally compact groups G and H, respectively. Ilie and Spronk have shown that continu-
ous piecewise affine maps @: Y € H — G induce completely bounded homomorphisms
®: A(G) — B(H) and that, when G is amenable, every completely bounded homomor-
phism arises in this way. This generalised work of Cohen in the abelian setting. We believe
that there is a gap in a key lemma of the existing argument, which we do not see how to
repair. We present here a different strategy to show the result, which instead of using
topological arguments, is more combinatorial and makes use of measure-theoretic ideas,
following more closely the original ideas of Cohen.

1 Introduction

Cohen [1] classified all bounded homomorphisms from the group algebra L!(G)
to the measure algebra M (H'), for locally compact abelian groups G, H ; this was
later expounded with different proofs by Rudin [8]. The characterisation given was
in terms of Pontryagin duals and so, in modern language, is more naturally stated
as studying homomorphisms between the Fourier algebra A(@) and the Fourier—
Stieltjes algebra B(ﬁ ), these algebras being introduced by Eymard [2] for arbi-
trary locally compact groups. It is now widely recognised that it is natural to work
in the category of operator spaces and completely bounded maps when studying
Fourier algebras of non-abelian groups. In [3], Ilie provided a generalisation of
Cohen’s result for discrete groups, characterising completely bounded homomor-
phisms A(G) — B(H) in terms of coset rings of H, and piecewise affine maps.
In [4], Ilie and Spronk extended this result to all locally compact groups, mak-
ing use of open coset rings. We also mention [7] which shows similar results for
merely contractive (not completely bounded) homomorphisms.

We do not fully follow the proof given in [4], nor that of Rudin in [8]. The
proof of a key lemma in [4] appears to have a gap, and we have been unable
to see how to repair this. In this paper, we return to Cohen’s original proof for
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2 M. Daws

inspiration and provide a new proof of the main result of [4], using a more compli-
cated combinatorial argument and using measure theory ideas. Cohen’s proof is,
in places, firmly a proof about abelian groups, which necessitates new ideas in the
non-abelian setting.

The papers [3,4] have been widely cited, used and generalised in the 15 years
since they were published, and we feel it is important that this result has a solid,
careful proof attached to it. Let us now provide some further background, which
will allow us to be precise about the perceived problems in [4,8]. We will then give
an overview of our alternative strategy. The rest of the paper is concerned with the
precise details of executing this new strategy.

Let X be a set. For us, a ring of subsets of X, say &, is a (non-empty) collection
of subsets of X such that, for A, B € §,also ANB,AUB e §,andif A € §,
also X \ A € 8. Then 0, and so also X, are in &, and notice that § is also closed
under taking symmetric differences.

Let G be a group, and let H < G be a subgroup. A coset of H is a left coset,
soH, for some so € G. We remark that right cosets Hso = so(s, L Hsg) are left
cosets of the (possibly different) subgroup s, UHso. If C = soH is a coset, then
C71C = H and CC~!C = C. With Gy another group, a map a: H — G is
affine if a(rs™'t) = a(r)a(s) ‘a(t) forr,s,t € H. This is equivalent to H — Gy,
s = a(so) ‘a(sgs) being a group homomorphism. Given a subset A C G, let
aff(A) be the smallest coset containing A.

The coset ring of G, denoted 2(G), is the smallest ring of subsets of G contain-
ing all cosets of all subgroups of G. Given Y € G,amap «: Y — G is piecewise
affine when Y is the finite disjoint union of sets (¥;)7_, in (G), and for each i,
there is an affine map «;: aff(¥;) — G with a|y, = «;|y,. See [3, Sections 2, 4]
and [4, Section 1.2] for combinatorial details about cosets and Q2(G).

Now let G be a locally compact group, and let 2,(G) be the ring of sets gen-
erated by open cosets of G. As an open subgroup is also closed, the same applies
to open cosets, and so every member of ©2,(G) is clopen. The key lemma in [4]
is Lemma 1.3 (ii), which states that, with G another locally compact group, if
a:Y — G is piecewise affine, and « is continuous, and Y is open, then « has
a continuous extension to @: Y — G. Furthermore, Y is open, and in the decom-
position Y = |I; Yi, we may assume that each ¥; € ©,(G), and for each i, there
is an open coset C; containing Y;, and a continuous affine map «;: C; — G which
agrees with @ on Y;. The use of this lemma is that it allows us to combine the al-
gebraic property that « is piecewise affine with the topological property that o is
continuous, and conclude that « is the “union” of continuous affine maps.

In the proof of [4, Lemma 1.3 (ii)], we have a coset K and subcosets Ny, ..., Ni
of infinite index, and it is claimed that if ¥ = K\ U; Nj with Y having non-
empty interior, then Y = K \ | ies Nj, where J is the collection of indices with
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N; having non-empty interior. This is not true. A counter-example from [10] ex-
hibits a compact abelian group G¢ and an index 2 subgroup Hy so that both Hy
and H, = Go \ Hy have empty interior, and yet of course Go = Ho U H;. If we
set G = K = Gg X Z and N; = H; x {0}, then each N; has infinite index in K,
each has empty interior, Y = K \ (Ng U N1) = Go x (Z \ {0}) is already clopen,
as is K, and yet Y # K. The same issue can be seen in the middle of [8, Sec-
tion 4.5.2].

This counter-example does not mention (piecewise) affine maps, but we could
simply let o be the identity. The moral seems to be that we chose a “silly” way
to write o as a piecewise affine map. However, given an arbitrary piecewise affine
map o which we happen to know is continuous, we need some argument to show
that we can exhibit that « is piecewise affine in a “sensible” way. Cohen’s original
argument uses knowledge about the graph of « and then a delicate combinatorial
argument to show that we can exhibit the graph using sets built from the graph
itself (compare Theorem 3.2 below). This result can then be used to show that
we can exhibit that « is piecewise affine using at least measurable sets (the sub-
group Hy in the example above is not measurable) which together with a measure-
theoretic argument then yields an analogue of [4, Lemma 1.3 (ii)]. We will use
exactly the same general approach, but adapted to possibly non-abelian groups.

Some of our argument closely follows Cohen’s paper [1]. We must say that
we find many of Cohen’s arguments rather hard to follow. In particular, our key
technical result, Proposition 3.9, is similar to the lemma on [1, pp. 223-224], the
proof of which we do not understand. From our limited understanding, it seems
clear, however, that this lemma of Cohen requires at least that every subgroup
involved be normal (which is automatic if the groups are abelian!). Given that we
need to check that all results hold for non-abelian groups, and that our central
argument is entirely new, we have decided to give full details for all our results.
We indicate in a number of places where we follow Cohen quite closely.

2 Initial setup of the problem

We fix locally compact groups G, H and a completely bounded homomorphism
®: A(G) — B(H). Following the proof of [4, Theorem 3.7], there is a continuous
map o: H — G, with ®(u)(s) = u(a(s)) for each s € H. Here G is either
the one-point compactification of G if G is not compact, or the disjoint union
G U {oo} if G is compact. We extend each u € A(G) to a (continuous) function on
Goo by setting u(0co) = 0. Then Y = a~!(G) is open in H. Under the additional
hypothesis that G is amenable, o: Y — G is piecewise affine if we regard H and G
as just groups, with no topology. In what follows, we shall not use amenability
again.
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From now on, G and H will be arbitrary groups, with additional hypothe-
ses stated as needed. Given ¥ € H and «: Y — G, we shall in the sequel write
o:Y € H — G. The graph of « is

G(a) ={(s,a(s)):s€Y} C HxQG.

An extremely useful result is the following.

Lemma 2.1 ([4, Lemma 1.2]). Letw: Y € H — G be a map. Then
9(x) € Q(H x G)
if and only if a is piecewise affine.

In the next section, we shall prove our main result, Theorem 3.2. In the follow-
ing section, we apply this to show that « can be exhibited as a piecewise affine
map with the component sets involved at least being Borel, Proposition 4.4. In the
o-finite case, a measure-theoretic argument then yields what we want and can be
bootstrapped into a proof in the general case, Theorem 4.7.

3 Combinatorial lemma

We begin by making a non-standard, but useful, definition. (This definition is
sometimes termed the “measure theory ring of sets”, but we shall stick to our
ad hoc definition for clarity.)

Definition 3.1. Let X be a set and § a collection of subsets of X. We say that § is
a relative ring of subsets when § is closed under finite unions, intersections, and
relative complements, in the sense that if A, B € §, then A\ B € §. This means
that @ € &, but perhaps X is notin &.

Let G be a group and « a collection of subsets of G. Let R («) be the relative
ring of subsets generated by o and all left translations of elements of . Let R (o)
be the relative ring of subsets generated by « and all two-sided translates of «, that
1s, sets of the form sA¢, where A € «, 5,1t € G.

This section is devoted to proving the following result. As to why we work with
two-sided translates and not just left translates, see Remark 3.16 below.

Theorem 3.2. Let G be a group, and let Y € Q(G). Then there are subgroups
Hy,Hy,...,Hyin Ro({Y'}) such that Y € R({H1,..., Hy}).

We first of all collect some combinatorial lemmas. These results are similar in
spirit to arguments found in [1, Section 3]. In the following, the empty intersection
is by definition equal to X, and the empty union equal to @.
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Lemma 3.3. Let X be a set, let A be a collection of subsets of X, and let B be in

the relative ring generated by . Then B is the finite (disjoint if we wish) union of
sets of the form

ﬂA mﬂ(X\B)_(ﬂA)\(QB,) (3.1)

i=1 i=1
for somen > 1, m > 0, and some A;, B; € U.
Proof. Let B be the relative ring generated by 2, so B € B. Let B’ be the collec-
tion of finite unions of sets of the form (3.1) so that % € B’ C B. We shall prove
that B’ is a relative ring of sets so that B’ = B, as claimed.

By definition, B’ is closed under unions. If (Pk);cz1 and (Q;)j_, are of the
form (3.1), set P = | J Px and Q = J; Qy; then

PNQ=(PU---UP)N(Q1U---UQy) = ]P0y

k.l

and clearly P; N Q; is of the form (3.1). So ¥’ is closed under intersections.
Furthermore,

PNOQ=PNX\NQ)=PNX\Q0)N---N(X\Qy).

Thus, to show that P \ Q € ¥/, it suffices to show that, say P N (X \ Q1) € ¥'.
Let 01 = (V=1 4i Nj=1 (X \ B)) so that

Pﬁ(X\Ql)zPﬂ(U(X\Ai)UUBJ)

i=1 j=1

=J@n@\aynulJwns)

i=1 j=1
= U(P\A)U U(PﬂBj
i=1 j=

Aseach P N B € B’ and B’ is closed under unions, it remains to show that, say
P\A,€®,but P\ A1 = Uk 1 Px \ Ay, so in fact, it remains to show that,
say Py \ A1 € B'.If P, = ﬂl_lC ﬂﬂ]_l(X\D ), then

Pl\Alzﬂcmﬂ(X\Dj)m(X\Al)

i=1 j=1
and so indeed P \ A; € ¥'.
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Having shown that B8 = %', it is easy that each member of B is a disjoint union
of sets of the form (1) because, for any sets (A;), we have that

UAz'=A1U(Az\Al)U(A3\(A1UAz))U"'- o

i=1

We shall use the following repeatedly, and so we pull it out as a lemma.

Lemma 3.4. Let G be a group, and let Hy, ..., H, be subgroups. There are sub-
groups K1, ..., Ky, each a subgroup of some H;, and with [K; : K; N K;] =1
or oo for all i, j, and with each H; a finite union of cosets of the K;. If the family
of subgroups {H;} is closed under taking intersections, then the family {K;} is
a subfamily of {H;}.

Proof. 1f, forsome i, [Hy : H; N H;]isnot 1 or oo, then L = Hy N H; is a sub-
group of H; of finite index, and so H; can be covered by finitely many translates
of L. We can hence replace H; by L; notice that [L : L N H;] = 1. We claim
further that, by replacing Hy by L, if previously [Hy : Hy N H;] € {1, oo}, then
we do not change this property.

Indeed, if [Hy : Hy N H;] =1, then Hy = Hy N Hj, and so also L C H;,
so [L:LNH;]=1.1f [H : HH N Hj] = oo, then let K = H; N H; so that
LNH =H NH NH; =LNK,and hence we have LN K < L < H;. To-
wards a contradiction, suppose that [L : L N H;] < 0o, so [L : L N K] < 0. As
L is of finite index in H{, we can find t; € H; with H{ = U;"=1 ti L, and we can
find r; in L with L = (J7, ;(L N K). Thus

m m m
Hy=|JuL=JJur@LnkK).

i=1 i=1j=1

and so certainly H; = Ui,j tirjK,so [Hy : Hi N Hj] <mm’ < oo, a contradic-
tion.

By performing this argument finitely many times, we may suppose that, for
each i, [Hy : Hy N H;] € {1, 00}. We now look at H, and apply the same argu-
ment, and so forth. This process could lead to repeats, and so possibly n’ < n.

For the final remark, note that, by construction, each K; is an intersection of
some of the H;, and thus {K;} is a subfamily of the {H }. o

The following result is used extensively in [1,4] and appears to have first been
shown in [5]. Given the tools we now have, this is easy, so we give the proof. This
proof is essentially Cohen’s from [1].
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Lemma 3.5. Let G be a group. G cannot be written as the finite union of cosets of
infinite index.

Proof. Towards a contradiction, suppose that G is the finite union of cosets of
subgroups Hy, ..., Hy, where [G : H;] = oo for each i. By Lemma 3.4, there are
subgroups of these, say Ki,..., Ky with [K; : K; N K;] =1 or oo for all i, j,
and still with each K; of infinite index in G. As each H; is the finite union of
cosets of some Kj;, it follows that G can be covered by finitely many cosets of
the K;, say Cq, ..., Cp.

As K is of infinite index in G, there is some coset of K which is not a member
of our covering, say K = sK1. Then K N K; is a coset of K1 N K; or is empty for
each i. However, as G is covered by the C;, also K is covered by {K N C;}. If C;
is a coset of Hy, then K N C; = @, so we conclude that K is covered by finitely
many cosets of the subgroups K5, K3, ..., K. By translating by s~!, also K7 is
covered by finitely many cosets of the subgroups K», K3, ..., K.

We now complete the argument by using induction on the number of subgroups,
k’. If we have only one subgroup, that is, k&’ = 1, the result is trivially true. The
previous paragraph then provides the induction step. o

As the intersection of two cosets is again a coset, Lemma 3.3 immediately im-
plies that every member of Q2(G) is the finite disjoint union of sets of the form
Eo\ U?:l E;, where each E is a coset, and by replacing E; with Eg N E;, we
may suppose further that E; C Ey for each i. In fact, by using the arguments
above, we can say more (again, see [1, 3]).

Corollary 3.6. Let G be a group. Every member of Q(G) is either empty or is
a finite disjoint union of sets of the form

Eo\ | J Ei. 3.2)

i=1
where each E; is a coset, E; C Ey, and E; has infinite index in Eq for eachi > 0.

Proof. Let Y € Q(G), so in particular, Y is in the ring generated by some sub-
groups Hi, ..., H, and their translates. By adding in intersections, we may sup-
pose that the finite family { H;} is closed under intersections. By Lemma 3.4, we
may suppose that [H; : H; N H;] = 1 or oo for each i, j. By using this lemma,
the resulting family { H;} may no longer be closed under intersections, but if H
is an intersection of some of the H;, then H is at least a finite union of cosets of
some H;.
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By Lemma 3.3, Y is the disjoint union of say n sets of the form Eq \ |7~ Ei,
where Ej is a coset of some finite intersection of the Hj, and each E; is a coset
of some H;. Hence Ey is a finite union of cosets of the H;, and so (by maybe
increasing n) we may suppose that E¢ actually is a coset of some H;. As before,
by replacing E; by E¢ N E;, we may suppose that E; is a subcoset of Eg. As
[H; : Hi N H;] = oo unless H; € Hj, if E; has finite index in Eg, then E; and
E( must be cosets of the same subgroup, and as E; C Eg, we must have Eg = E;,
a case which may be ignored. o

We now depart from the presentation of [1] and collect some further lemmas
which will be used later.

Lemma 3.7. Let G be a group, and let Hy, ..., H, be subgroups of infinite in-
dex in G. Let (K;)_ | be cosets of the H;, and let C = | J; K;. There is m and
Heooostm € Gwith(); t;C = 0.

Proof. Notice that

ﬁ 1iC = ﬁ Juk; = U{ﬁ tina)}»

i=1 i=1 i=1

where the union is over all functions j: {1,...,m} — {1,..., N}. Thus we need to
find #; so that (72, ; K (i) = @ for any such function j. In what follows, suppose
that K is the coset sj Hy ) for each j.

Set 11 = e, the identity. We claim that there is 7> with K; N1, K; = @ forall ;.
Indeed, if not, then for each 75, there is j with s; Hy ;) = f2s; Hk(j) (as cosets are
either equal or dlS_]Olnt) Equivalently, for each 15, there is j with s; Ltys ;i € Hi(jy,
S0 Iy €5 Hk(])s . As each subgroup s; Hk(])s is of infinite 1ndex in G, this
shows that G is covered by a finite union of subgroups of infinite index, a contra-
diction.

Suppose we have chosen 71, . . ., #, with the property that 1 K (1) N -+ - Nip Kj( )
is only (possibly) non-empty when the j(7) are all distinct. We have already shown
this is true for p = 2. To show that the claim holds for p + 1, it suffices to find
tp+1 with ; K; N1, 41 K; = @ for all i < p and all j. This is sufficient, for if
we have j(1),...,j(p + 1) not all distinct, say j(k) = j(k’) for k < k’, then if
k' < p, we know already that ﬂ —1 tiKji) = 0, while 1f k' = p + 1, then by
construction, fx K k) N tp+1K;x) = 9, so certainly ﬂl_l i Ky = 0.

To find 7,41, we again proceed by contradiction and suppose that, for each
t € G, there are some i, j with £;K; = 1K so that t;s; H(jy = tsj Hi(), 8O
sj_ltl._ltsj € Hy(j). Thatis, € J; ; tiSJHk(j)sj_l which is again a finite union
of cosets of infinite index, which cannot cover G.
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So, by induction, our claim holds for all p. Thus ﬂlp —1 1i Kj(;) can only possibly
be non-empty when the j(i) are all distinct, but there are only N many choices,
and so if p > N, we have shown our claim. O

Lemma 3.8. Let G be a group, H a subgroup, and Hy, ..., H, subgroups with
[H : HN H;] = oo foreachi. Let C be a union of finitely many cosets of the H;.
There are m and ty, ... .t € H with(); Ct; = 0.

Proof. The proof is similar to the previous one; but note here we need to choose
t; in H not G. Let our cosets be C; for j = 1,..., N. Again, we need to find #;
with Cjqyt1 N +++ N Cjnytm = O for any choices j(i). Set 1y = e.

Suppose we have f1, ..., so thatif j(1),..., j(p) are not distinct, then

p
ﬂ Cj(i)ti =0.

i=1

Proceeding by induction, 7,11 € H needs to satisfy that C;z; N Cjtp41 = @ for
all i, j. If no such 7,11 exists, then for all € H, there are some i, j with

Citi NCjt # 0.

If C; = sHy, say, then sHyt; N sHyt # @, so there are a, b € Hy with sat; = sbt,
so at; = bt, so ttl-_l =b"lq € Hy,sot € Hit;. Thus H C Ui,k Hyt;, but as
each 7; € H, we have H N Hyt; = (H N Hy)t;, and so H = {J; x (H N Hy)t;.
As each H N Hy, is of infinite index in H, this is a contradiction. o

We now start on our proof of Theorem 3.2. We start with ¥ € Q(G), so there
are subgroups Hy, ..., H, sothat Y is in the relative ring of sets generated by the
H; (if necessary, we can choose one of the H; to be G). We may suppose that the
family {H;} is closed under intersection. Then apply Lemma 3.4 to suppose that
[H; : Hi N H;j] =1oroocforalli, j,and thatif H is the intersection of some of
the H;, then H is a finite disjoint union of cosets of some H;. Using Lemma 3.3

as in the proof of Corollary 3.6, Y is a finite union of sets L1, ..., L;,,, where
. nl .
Li=EQ\|JEP. (3.3)
j=1

where each Ej(.i ) is a coset of some Hj., and Ej(i ) is a subcoset of infinite index in
E§) foreach i and j > 0.

Our proof will be an induction, with the base case provided by the following
proposition.
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Proposition 3.9. With notation as above, if H; is not contained in any other Hj,

then there is a subgroup H which contains H; as a finite-index subgroup (possibly
H = H;) such that H € R>({Y }) and such thatY € R{H}yU{H; : j #1}).

Given this, we can now prove Theorem 3.2.

Proof of Theorem 3.2. We can form a directed acyclic graph (DAG, see [6] for
example) with vertices the subgroups H;, and with a directed edge from H; to H;
when H; © H; and there is no other Hy with H; © Hy © H;. We shall say that
H; is top level if H; is not contained in any other H;, that is, there is no edge
into H;. The depth of a DAG is the length of the longest directed path in the DAG.

For each top level H;, let H be given by Proposition 3.9. For any i # j as
[H; : Hi N H;j] =1 oroo,also [H : HN H;] =1 or oco; see Lemma 3.15 be-
low. Also, if H; N H; is the finite union of cosets of Hy, then sois H N Hj; see
Lemma 3.15 below. Hence we may replace H; by H and not change any of our
assumptions. Do this for all top level H; so that Y € R({H;}) and each top-level
H;isin Ry({Y}).

We shall give a proof by induction on the depth of the DAG. Notice that Propo-
sition 3.9, and the previous paragraph, shows that the result is true when the DAG
has depth O (that is, all subgroups are top level).

Let H be some top level H;. Let Y =| |; L; as before (see (3.3)), and reorder
these so that E(()i) is a coset of H fori < ng, and not for i > ng. Define

no ' no )
Yo=|JES\v | JEY.

i=1 i=1

From the form that each L; is written in, namely that E (@) is a coset of infinite
index in E () it is clear that £ is not a coset of H for ] > 1. From this, it fol-
lows that Yo € R({H N H;} \ {H}). For each i, either H N H; = H which we
remove, or H N H; is a union of cosets of some H}, where necessarily Hy C H.
Thus actually Yo € R({Hy : C H}).

Now the family {Hy : Hy g H } forms a subgraph of our DAG; in fact, it is
DAG “underneath” H (all the vertices which have a path leading to them from H).
Thus it is of smaller depth, so by induction, there are subgroups H J/ in R>({Yo})
with Yy € JR({H;}). Notice that, as Y, H € Ry({Y'}), also Yy € R2({Y }), and so
also each ij € Rr({Y)).

Next, reorder so that H; is top level fori < ng, and not fori > ng, soifi > ny,
the subgroup H; is contained in some H; with j < ng. For i < ng, let 4; be
the union of the sets E|; (%) which are cosets of H;. Set B; = A; \'Y, and set
C =Y\l <ng Ai- We have shown that, for each 7, there are subgroups H " in
R{Y}) with B; € {R({H D.
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We now consider C. As each E((,i ) is a coset of some Hj, either Eg )c 4 j for
some j, or otherwise E(g’) is a coset of some H; which is not top level. Since
each EJ(’) is a subcoset of E(()l), we see that C is contained in

U{E(()i) : E(gi) coset of some H; which is not top level},

and so C € R({H; : H; not top level}). The DAG given by removing all top level
subgroups has smaller depth, and so again by induction, there are subgroups H j{’
in Ry,({C}) with C € R({H;’}). Notice that

C e Ra({Y. Ai}) € Ro({Y. H; 21 = no}) = R2({Y'}),

and so each ij’ e Rr({Y'}).

Let o be the collection of all the H // ,the H ]V , and the top level H;, so each
subgroup in « is in R ({Y }). Then A4;, B;,C € R(x). As A; \ Bi = A; NY, we
see that

Ccu U(Al-\B,-):<Y\UA,-)U Juiny =v.

i<ng i<ng i<ng
Thus also ¥ € R(«), which completes the proof. |

Thus it remains to show Proposition 3.9.

Definition 3.10. Given the subgroups (H;), and A C G some subset, we shall say
that a coset sH; is big in A if A N sH; cannot be covered by finitely many cosets
of subgroups in {H; : i # j}.

Let us make some easy remarks about this definition, which we put into a lemma
for future reference.

Lemma 3.11. Let (H;) be subgroups as above.
(1) If A € B and sH; is big in A, then it is big in B.
(2) With A =\J?_, Ai, we have that sH; is big in A if and only if it is big in

some A;.

Proof. (1)is clear. For (2),if sH; isnotbigin any A;, so sH; N A; can be covered,
and hence so can A (as A is a finite union); the converse follows as 4; C A for
eachi. O

In the following results, we state the result for the subgroup Hi, but this is
merely for notational convenience, as clearly there is nothing special about H; as
compared to any other H;.
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Lemma 3.12. With Y = | |; L; as before, we have that sH, is big in Y if and only
if some L; is of the form Eg \ Uj E; with Eg = sHy. Furthermore, in this case,
the choice of i is unique.

Proof. If L; = sHy \ |J E; and yet sH; is not big in L;, then sHy N L; = L;
can be covered by finitely many cosets of infinite index in H;. Union these cosets
with the {E; : j > 0} and we have covered all of sH by finitely many cosets of
infinite index in H1, a contradiction. So sH; is big in L; and hence big in Y, by
Lemma 3.11(1).

If sHy is bigin Y, then by Lemma 3.11 (2), we have that s H; is big in some L;.
If L; = Eo\UJ ;i Ej, then towards a contradiction, suppose that Ey is not sHj.
If Ey is some other coset of Hy, then sH; N Eg = 0, so certainly s H; is not big
in L;. So Ey is a coset of some other subgroup H;, and so sHy N H; is either
empty (again, not possible) or is a coset of H; N H; which has infinite index
in Hy. Then sHy N L; is contained in a coset of infinite index in sH and so is
covered, so sH1 is not big in L;, a contradiction.

To show uniqueness, let each L; have the form (3.3). If Eéi) = E(()j) =sHq,
thenif i # j, then as L; and L; are disjoint, we must have that

2O UL | gD

is all of s Hy, a contradiction as these are cosets of infinite index. O

Let C be the union of all E(()i ) which are cosets of H 1, so by the lemma, C is
the union of all cosets of H; which are big in Y. Define

n
B = {U s; Hy : there exists A € R({Y }) so that sH is big in A

=1 if and only if sH; = s; Hy for some i }.

That is, B is the collection of sets B which are finite unions of cosets of H;, with
the given property: there is A € R({Y }) such that a coset sH; is big in A4 if and
only if sH, C B.

Lemma 3.13. B = R({C}).

Proof. To get a handle on B, we need some information about R({Y }). By Lem-
ma 3.3, every A € R({Y}) is of the form

A= (ﬁsiY)\(Ole),

i=1 =1
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where n > 1 and s;,¢; € G. (This follows as if 2 is left-invariant, so will be R(2).)
We wish to know when sH; is big in A, in terms of the form Y =| | L; as in
equation (3.3).

Let us think about these two parts individually. Consider

vy =| |Line; = |(EF neEgH\ (U ES ulJeE?)).
i,J i,j k l

As argued in the “uniqueness” part of Lemma 3.12, either E(()i) = tE(()j ) =sH,,
or E(gi) N tE(()j ) N sH; is either empty or is a coset of infinite index in sHy. It
then follows from Lemma 3.12 that s Hy is big in Y N ¢Y if and only if there are
(unique) i, j with E{) = tE{/) = sH. A similar argument now shows that sH;
is big in () s;Y if and only if, for each i, there is a (necessarily unique) j with
S; E(()j) = sH;.

By Lemma 3.11 (2), we see that sH is big in | J #; Y if and only if there is some
j with sHy bigin#; Y, if and only if, by Lemma 3.12, there is j and a (necessarily
unique) k with sH; = t; E(()k).

Let Bo = (s;Y and By = |Jt;Y,s0 A = By \ Bj.

e If sH; is not big in By, then it is not big in A by Lemma 3.11 (1).

e If sH is big in By and not big in By, then as Bp = A U By, also sH; is big
in A by Lemma 3.11 (2).

e If sH; is big in both By and Bj, then from above, we know that sH; N By
is equal to sH; with a finite union of cosets of infinite index removed, while
sH1 N B contains a set of the form sH; with a finite union of cosets of infinite
index removed. Thus sH; N (Bg \ Bj) is contained in a finite union of cosets of
infinite index, so sHj is not bigin A = By \ Bj.

In conclusion, sH; is big in A if and only if sH; is big in By but not big in Bj.
Now sHj is big in By if and only if sHy C s;C for all i, that is, sH; € [s;C.
Also, sHy is bigin By exactly when s Hy C ¢;C for some j, thatis, sH; C U 1 C.
Thus

\JtsHy = sHybigin A} = () s:C\ | J1;C. (3.4)
as all these sets are unions of cosets of H. This shows that 8 C R({C}).

To show the converse, we simply observe that, by Lemma 3.3, any member of
R{C}) is of the form given by the right-hand side of equation (3.4) for some
(s;) and (#;), and so the associated A will be a member of R({Y }), showing that
REC)H) < B. D

Proposition 3.14. There is a subgroup H, which is in B and so a finite union of
cosets of Hy, such that any element of 8B is a finite union of cosets of H.
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Proof. Every member of B is a finite union of cosets of H;. Let
H=s1HU---Us,H € 8B

be chosen with n > 0 minimal (so H is the disjoint union of n cosets of Hy, and
any member of B is the disjoint union of at least n cosets of H;). By translating,
we may suppose that s; = e, the identity. We will show that H is a subgroup.

If A= |t Hy € 8B,then AN H € B and so is either empty or the union of at
least n cosetsof Hi. AsANH C H,wemusthave H = AN HorANH = @.
In particular, for each s, either sH N H = H orsH N H = @.If s € H, then as
ee H,alsosesH,sose HNsH,so HNsH = H. Thus HH C H. Also,
ecHNs 'H,andso HNs 'H = H,soin particular,

st=s"lees 'H C H,

and we conclude that H is a subgroup.

Given A € B and s € G, notice that sH N A = s(H N s~ ' A) is either empty
or equal to sH because s 1A € B. It follows that A is a (necessarily finite) union
of cosets of H. |

Lemma 3.15. Let H be a subgroup containing Hy with [H : H1] < oc. For each
i > 1, wehavethat [H : H N H;] = oo or 1, and that H N H; is a finite union of
cosets of some Hy,.

Proof. Fori > 1, we know that either
[Hy: Hy N Hi] =1oroo.

If [Hy : Hy N Hi] =1, then H; € H; C H. Otherwise, [Hy : H; N H;] = oo,
and we claim that also [H : H N H;] = oo. If not, then H = Ul'-'=1 si(H N H;)
say, and as Hy < H, it follows that H; = Hy N H = |J H1 Ns;(H N H;). For
each i, either H; N s; (H N H;) is empty or is a coset of

H{N(HNH;)=H; N H;,

and so [Hy : H; N H;] < n, a contradiction.

Let Hy N H; be a finite union of cosets of some Hy, this being one of our prop-
erties of the family {H;}. As H; is finite index in H, we have H = U7=1 sjHy
say. Then H N H; = Uj s; Hy N Hj, and for each j, either s; Hy N H; is empty
or is a coset of H; N H;, which is a finite union of cosets of Hy. Thus H N H; is
also a finite union of cosets of Hj. |

We can now complete the proof of Proposition 3.9.
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Proof of Proposition 3.9. Our hypothesis is that H; is not contained in any other
Hj. We have been supposing, by reordering, that i = 1. Let H be given by Propo-
sition 3.14. We need to show that H € Ro({Y })and Y € R({H} U {H; : j # 1}).

As H € B, there is some Ag € R({Y}) € R({H,}) sothat sHy is bigin Ao if
and only if sH; € H. Then Ay has the form

0= J(F" U ED). (35)
i J

where each F j(i) is some coset of some Hy, and each I*"j(i), j > 0, is a subcoset
of infinite index in F{"). Then sH; is big in Ao if and only if sH; = F{") for
some 7. It follows that H \ Ay is contained in the union of (1) Fj(i), where Féi) is
acoset of Hy, and (2) F()(i) a coset of some H; for j > 1.So H \ Ay is contained
in a finite union of cosets of {H N H; : j > 1}. By Lemma 3.15, H N H; is of
infinite index in H for j > 1, and so we can apply Lemma 3.7 to H to find (#;) in
H with

0 =(\ti(H\ Ao) = H\ | J1; Ao.

Soif we set Bo = |J; ti Ao, then H C Bg and By € R({Y}).

We claim that s H; is big in By if and only if s H; € H, which is equivalent to
s € H. As H C By, “if” is clear. To show “only if”, suppose sH; is big in By,
so by Lemma 3.11 (2), sH is big in t; A for some i, so tl._lsHl is big in Ay, so
t7'sHy € H,sosHy Ct;H = H.

Bp has the same form as in equation (3.5), so again sH; € H if and only if
some F @) s equal to s Hy. Thus, again, we see that By is contained in the union of
H and cosets of {H; : j > 1}, say Bo € H U UlN Aj, so each A; is a coset of
some H;, j > 1. With C = |J; 4;, by Lemma 3.8, there are t1, ..., t, € H with
ﬂl‘Cti =@0.AsBy C HUC,

(VBoti S(YHUC) =(\(HUCy) =HU[\Cti =H
i i i i
Thus clearly H = (); Bot;, andso H € Ry({Y'}).
To finish the proof of Proposition 3.9, it remains to show that
Y € RUHYULH; 1 j # 1)),

By Lemma 3.13, we have that U{E(gi) : E(gi) acoset of H;} is a union of cosets
of H. Reorder so that E(()l) U---u E(()k) = sH, say, so that

i=1 i=1j
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Notice that each E{/) is a coset of some H; for some 7 > 1. As H; is not contained
in any other Hy, no E](i), with j > 0, is a coset of Hy. Thus, in this way, we can
replace every usage of a coset of H; by a coset of H, so proving the claim and
completing the proof. |

Remark 3.16. It was only in the final step of the previous proof that we started to
work with right translations, as well as left translations. This seems necessary, as
the following example shows. Consider [F, the free group with generators a, b, and
set H ={a)=1{a" :n€Z}and Hy = bH;b~'. Then H;, H, are subgroups
and H; N Hy = {e}, so the family { H;, H»} satisfies our assumptions.

Now let Y = H; L b~ Hy which is the disjoint union of cosets of the H;.
Then Y = (a ) U (a )b™'. For x € IF,, let x = ya”, where y is a reduced word
in a,b which does not end in a,a™!, and n € Z, so that x{(a) = y{a). Thus
xY = y(a) U y{a)b™!, and so xY is either equal to Y or disjoint from Y.

We conclude that R({Y }) just consists of finite disjoint unions of left translates
of Y. In particular, neither H; nor H; is in R({Y'}).

4 Application to completely bounded maps

We now use Theorem 3.2 to give a new proof of the main result of [4]. We are
now following the end of [1, Section 4] fairly closely, but again with more details
provided and changes made from the abelian setting.

Lemma 4.1. Let G, H be topological spaces, Y € H a subset, and a: Y — G
a map which is continuous when Y has the subspace topology. Suppose there is
a continuous map «:Y — G extending o. Let T = §(a) € H x G, the graph
ofa. If T = U N C for some open U and closed C in H x G, thenY =Y NV
for some open V. C H. In particular, Y is Borel.

Proof. AsT CC,alsoT CC,andasI"' CU,alsoT CTNUCCNU =T,
so we conclude that T =T N U.

We claim that § (@) = T, which follows by continuity of @. Indeed, given y € Y,
let (y;) be a net in Y converging to y so that «(y;) = @(y;) — «(y) by continu-
ity, and hence (y;,a(y;)) — (y,@(y)). Hence € (@) € T. Given (y,x) € T, let
(yi,a(y;)) be anetin I" converging to (y, x), so y; — y, a(y;) — X, so continu-
ity of @ ensures that @(y) = x. Thus T’ C € ().

Let Vo ={yeY :(y,a(y)) € U}.Giveny € Vy,as U C H x G is open, by
the definition of the product topology, there are W; € H and W, € G both open,
with y € Wy, @(y) € Waand Wy x W, C U.Thena (W) is openin Y, so there
is Wo € H open with Wy ny = &_I(Wz). Given x € Wo N Wy NY, we have
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that x € @ ' (Wa), soa@(x) € Ws,and x € Wy, so (x,a(x)) € U,sox € V. Also,
yeWynNWwn Y. Thus Vj is open in Y, as we have shown that each point y has
an open neighbourhood, namely Wo N W1 N Y.

Let V C H be open with V N'Y = Vj. Given y € Vp, so (y.a@(y)) € U, also
(v.@(y) e @) =T, and so (y,@(y)) e UNT =T, and so y € Y. Con-
versely, if y € Y, then (y,@(y)) = (y,a(y)) e T =T NU,andso y € V. Thus
Y NV =Y asrequired. o

Proposition 4.3 below is implicitly assumed in the proof of [4, Lemma 1.3 (ii)],
but we do not see why it follows immediately “by uniformity of the topology”;
compare the argument on [1, p. 223], which we follow.

Lemma 4.2. Let L = Eo \ U} —, Ex be of the form (3.2), so Ey is a coset and
each Ey is a subcoset of infinite index. For any N, there are ay,...,ay € L with,
fori # j, ai_laj ¢ Ek_lEkforanyk > 1.

Proof. We first show that this is true for N = 2. If not, then for all a, b € L, there
is some k witha~1b € Ek_lEk. That is, for each a € L, we have

n
Lc|JaEEg.
k=1
As E;lEk is the subgroup which Ey is a coset of, this shows that L is contained
in the finite union of cosets of infinite index, and so Ey is contained in some finite
union of cosets of infinite index, a contradiction.

We now proceed by induction. Suppose the claim holds for N > 2, but does not
hold for N + 1. Then, given any ay, ..., ay satisfying the claim, we cannot find
ay +1 satisfying the claim so that, for any b € L, we have that ai_lb € Ek_1 Ej, for
some i, k. That is,

N n
-1
U U a; E{ ' Ex.
Again, it follows from this that Eo is contamed in some finite union of cosets of
infinite index, which is a contradiction. O

Proposition 4.3. Let G, H be locally compact groups, and let

n
L=E\|JEccH
k=1
be of the form (3.2). Let a: L — G be a map which is continuous on L for the
subspace topology and is the restriction of some affine map : Eg — G. Then
is continuous.
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Proof. Choose ay,...,an+1 € L using the lemma. We claim that,

1

forany x,y € Eog, thereis k with xy™ "aj € L.

Indeed, if not, then as xy_lak € Ey, we must have that xy_lak € U?:l E; for
each k. By the pigeonhole principle, thereisi and | <r < s <n + 1 with

1

Xy~ ar,xy_las e E;.

Thus (xy_lar)_lxy_las = ar_las € Ei_lE,-, a contradiction.

Let U be an open neighbourhood of e in G, and choose an open symmetric
neighbourhood V' of e with V'V C U. Then Va(ay) is an open neighbourhood
of @(ag ), and so, by continuity of «, and the definition of the subspace topology,
there is an open Vi in H with

Vi N L =a Y(Va(ay)).

Then a; € V3 N L, and given x,y € Vi N L, we see that o(x) = voa(ay) and
a(y) = via(ay) for some vg, vy € V. Then

a(x)a(y)"! = vOOt(a,rc)Ot(a,r{)_lvl_1 = vovl_1 eVVy CU.

Now set Vo = (= Vka,:1 an open neighbourhood of e in H. Let x,y € Ey
with xy_1 € V. Then there is k with xy_lak € L, as above. Also, we have
xy~lay € Voax C Vi and ai € Voax < V. As also a; € L, we conclude that
a(xy lag)a(ag)™! € U.Choose any z € Eg. Then ay = zz~ 'ay. As  is affine
and agrees with o on L, we see that

YOYO T = v @Yo T Y @)y @) T Y @vE)
_ - -1
=YY Y @) (VY)Y (ar)
=Yy a2 )T = aley T ag)a(ar) T € U

It follows that ¥ is (uniformly) continuous. Indeed, if x € E¢ and (x;) is a net
in E¢ converging to x, then x;” !x — e in H. Given any neighbourhood U of e in
G, pick V) as above, and observe that eventually x; Ix € Vp. Thus

Y(x;tx) = )y (x) e U

This shows that ¥ (x;) "¢ (x) — e in G so that ¥ (x;) — ¥ (x). |
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We are now in a position to complete our argument. We recall the setup from the
start of Section 2, so ®: A(G) — B(H) is a completely bounded homomorphism,
and with G amenable, and there is «: H — G continuous, which implements ®.
With Y = o~ 1(G), we additionally know thata: Y € H — G is piecewise affine.

Proposition 4.4. With «: Y € H — G as above, we have that Y is clopen. Fur-
thermore, Y may be written as the disjoint union of sets L; of the form (3.2), say

Li = EQ\|JEP.
J
with each Ej(i ) Borel, and for each i, there is a continuous affine map o; E(gi ) > G
which restricts to a on L;.

Proof. Write Y as the disjoint union of sets of the form (3.2), say ¥ = | |; L;
and for each i, there is an affine map o; which agrees with o on L;. By Proposi-
tion 4.3, we know that «; is continuous, and as «; is affine, it admits a (unique)
continuous extension to the closure of the coset on which it is defined; compare
[4, Lemma 1.3 ()].

We claim that L; C Y. Indeed, given x € L;, thereis a net (x /) in L; which con-
verges to x, so lim; «; (x;) = @;(x), and as o; extends «, also lim; a(x;) = @; (x).
Aso: H — G« is continuous, we conclude that ¢ (x) = @;(x) € G,andsox € Y
(that is, x is not the point co). Notice that we have also shown that o agrees with
@; on L;. Thus we have that

n n
:ULigUL_gY
i=1 i=1

and so we have equality throughout. Hence Y is closed (and also open).

Now consider the graph I' = () = {(y,a(y)): y € Y} € H x G. That «
is continuous shows that I' is closed, and that « is piecewise affine shows that
I' e Q(H x G). By Theorem 3.2, there are subgroups K1, ..., K, in R ({T"}) so
that I' € R({K1. ..., Kn}). By Lemma 3.3, we can write I' = | |; I';, where each
I'; is of the form (3. 2) say [ = F(’) \ U F(’) with each F(’) a coset of some
K}, and with Fj(’) C Fy @) for each j. From Lemma 3.3, we also know that each
K}, is of the form C N U for some closed set C and some open set U because I is
closed, and so translates of I" are closed. From Lemma 3.3 once more, it follows
that each member of R({K;}) is also a finite union of sets of the form “closed
intersect open’’; in particular, this applies to each Fj(i ).

The proof of [4, Lemma 1.2 (iii)] (Lemma 2.1) shows that each F{) € H x G
is the graph of an affine map, say ¢;: E(gi ) - G, for some coset E(gi ) of H. Then
Fj(n - F()(i) is also a graph of the restriction of ¢; to a coset, say Ej(i). Thus, in
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the start of the proof, we could actually take L; = E(gi ) \U ) EJ(.i )and o = ¢i. In
particular, each ¢; is continuous. Applying Lemma 4.1 to the restriction of ¢; to
EJ(’) shows that Ej(l) is Borel (as F j(l ) is the graph). o

We now suppose that H is o-compact. Under this hypothesis, Steinhaus’s the-
orem (see [9]) shows that if C C H is a coset of non-zero (Haar) measure, then
C is open. In the following proof, we use this to show that a finite family of Borel
cosets, each of which has empty interior, also has union with empty interior. This
is exactly the point which goes wrong in the attempted purely topological proof of
[4, Lemma 1.3].

Proposition 4.5. Let H be o-compact, and continue with the notation of Proposi-
tion 4.4. There are Y1, ..., Yy, in the open coset ring of H so that Y is the disjoint
union of the Y;, and for each i, there is a continuous affine map «;: aff(¥Y;) - G
which agrees with a on Y;.

Proof. If E () is open, then as it is a coset, it must also be closed. Reorder so that
E(’) is open for 1 < j < mandnotopen for j >m.Let Z; = E(’) \ U/—l E(’)
As each E @ is clopen for j < m, it follows that Z; is clopen.

For j > m, as E; () is not open, it has measure zero, and so also | J; ism Ej (@)
has measure zero, and SO U E @) has empty interior. As L; C Z; it follows
that Z; \ Li € UJ;sm E( D so Z, \ L has empty interior. As Z; is open, we have
shown that Z; C L;.

However, Z; is closed, soas L; € Z; also L; € Z;. We conclude that L; = Z;
is clopen, and clearly in the open coset ring of H.

Now reorder so that E(gi) is open for i < m and not for i > m. For i > m,
we again have that E(()i) has measure zero, so also L; has measure zero, so we
again conclude that | J; ., L; has  empty interior. As Y is clopen, and Ul L;is
clopen, it follows that Y \ |7, L; is open. As |72, L; € U/, Li, it follows
that Y \U", Li €Y \U', Li = U;op, Li, and so Y \ U/, L; has empty

interior and hence must be empty. So ¥ C Ul:] L;, but then

so we conclude that Y = (/L L;.

Finally, we use that o; extends continuously to o; a continuous affine map;
restrict this to L;. It seems possible that the (L;) are not disjoint, but if we replace
L, by Ly \ Ly, then we do not leave the open coset ring, and so we can simply
adjust to obtain the disjoint family (Y;) as required. |

We can finally state and prove the main part of [4, Theorem 3.7].
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Definition 4.6. Let G, H be locally compact groups. A map «: Y € H — G is
a continuous piecewise affine map when Y is open, and can be written as a disjoint
union Y = | |; ¥; with each Y; € Q,(H), and for each i, there is an open coset
C; and a continuous affine map «;: C; — G, with ¥; C C; and «; agrees with «
onY;.

Notice that each Y; € Q,(H) is also closed, and so also Y is closed; compare
also Remark 4.8 below.

Theorem 4.7. Let ®: A(G) — B(H) be a completely bounded homomorphism,
with G amenable. There is a continuous piecewise affine map o:Y € H — G
with

u(a(h)), hey,

0 hey (ue A(G), h e H).

S(u)(h) = {

Proof. We have already proved this in the o-compact case. Now let H be an arbi-
trary locally compact group. With L; as in Proposition 4.4, we again wish to prove
that Y = U:'n=1 L_,-, where E(gi) is open for i < m, and not open otherwise.

There is Hyp < H an open (and so closed) o-compact subgroup. Let 8 be the
restriction of & to Y N Hy. We can apply Proposition 4.5 to § and so conclude that
Hy N'Y is the union of the sets Hy N L; for those i with Hy N E(()i) open and non-
empty. However, if E(()i) is open, then also Hg N E(()i) is open, and if it is empty,
there is no harm in considering it in the union. Thus Hy N Y = U;"zl HoNL;.
This argument would also apply to any translate of Y, equivalently, to any coset
of Hy, so we conclude that sHy NY = U;nzl sHy N L; for any s. As each sH
is clopen, it follows that ¥ = Uzm=1 L; as required. |

Remark 4.8. On [4, p.487], «: Y € H — G is defined to be “continuous piece-
wise affine” when « is piecewise affine, and Y is clopen in H. If « is of this form,
then we can extend « to a map o: H — Gy by defining a(y) = oo for y ¢ Y,
and then o will still be continuous because Y is clopen. Then we are in exactly the
situation of Proposition 4.4, and so the results above imply that « is a continuous
piecewise affine map in our sense.

As such, the use of [4, Lemma 1.3 (ii)] in the proof of the converse of the result
above, [4, Proposition 3.1], is also corrected.

The original use of [4, Lemma 1.3 (ii)] was to show thatif «: Y € G — H is
piecewise affine, and continuous, with ¥ open, then also Y is open, and there is
a continuous piecewise affine map &: Y — H extending or. We have been unable
to decide if this result is true or not.
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