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A PURELY INFINITE CUNTZ-LIKE BANACH «~ALGEBRA WITH
NO PURELY INFINITE ULTRAPOWERS

MATTHEW DAWS AND BENCE HORVATH

ABSTRACT. We continue our investigation, from [I0], of the ring-theoretic infiniteness
properties of ultrapowers of Banach algebras, studying in this paper the notion of being
purely infinite. It is well known that a C*-algebra is purely infinite if and only if any
of its ultrapowers are. We find examples of Banach algebras, as algebras of operators
on Banach spaces, which do have purely infinite ultrapowers. Our main contribution
is the construction of a “Cuntz-like” Banach *-algebra which is purely infinite, but
whose ultrapowers are not even simple, and hence not purely infinite. This algebra is a
naturally occurring analogue of the Cuntz algebra, and of the L”-analogues introduced
by Phillips. However, our proof of being purely infinite is combinatorial, but direct,
and so differs from existing proofs. We show that there are non-zero traces on our
algebra, which in particular implies that our algebra is not isomorphic to any of the
LP-analogues of the Cuntz algebra.

2020 Mathematics Subject Classification. 46MO07, 46H10, 46H15 (primary); 43A20
(secondary)

1. INTRODUCTION AND PRELIMINARIES

1.1. Introduction. We continue our study of infiniteness properties of Banach algebras,
and how these interact with reduced products, in the continuous model theory sense,
which we initiated in [10]. Recall that an idempotent p in an algebra A is infinite
if it is (algebraically Murray—von Neumann) equivalent to a proper sub-idempotent of
itself. One prominent property which we did not study in [10] is that of being purely
infinite, which for simple rings could be defined by saying that every left ideal contains
an infinite idempotent. We discuss this notion, and the literature surrounding it, in
Section below. This definition is equivalent, for a unital Banach algebra, to A not
being C, and that for a € A non-zero there are b,c € A with bac = 1. This generalises
the definition for C'*-algebras.

As a purely infinite Banach algebra must be simple, the asymptotic sequence algebra
of A is never purely infinite, see Remark 27 below. We thus focus on ultrapowers in
this paper. As in [10], and perhaps not surprisingly from the perspective of continuous
model theory, we find that an ultrapower (A); is purely infinite if and only if it satisfies
a “metric” form of the definition, where we have some sort of norm control. That purely
infinite C*-algebras have purely infinite ultrapowers follows from such norm control
always being available.

Key words and phrases. Asymptotic sequence algebra, Banach *-algebra, Cuntz semigroup, Leavitt
algebra, purely infinite, semigroup algebra, ultrapower
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In [10] we found examples of Banach algebras which did, and did not, have suitable
forms of norm control. Our major tool was to look at weighted semigroup algebras,
where the weight allowed us to vary the norm control which we obtained. Surprisingly,
in this paper we have no need to consider weights. Thus our examples are somewhat
more “natural”’, and indeed, in showing that our principal example does not have simple
(hence purely infinite) ultrapowers, we proceed in a somewhat indirect way, and avoid
directly computing norms in the ultrapower.

The structure of the paper is as follows. In the remainder of the introduction, we
provide a more detailed introduction to purely infinite algebras, and recall the ultrapower
construction. In Section 2] we define a suitable “quantified” definition of being purely
infinite, and show that this does indeed capture when ultrapowers are purely infinite.
We show quickly how this gives that purely infinite C*-algebras have purely infinite
ultrapowers.

In Section 2.2] we provide natural examples of Banach algebras which do have purely
infinite ultrapowers. These are built as algebras of operators on suitable Banach spaces.
Finally, we show that if a Banach algebra A does have simple ultrapowers, then it
behaves a little like a C*-algebra, in the sense that non-zero continuous algebra homo-
morphisms out of A must be bounded below. We use this property to show that our
main example does not have simple ultrapowers. In particular, it cannot have purely
infinite ultrapowers either (c¢f. Lemma [I.2] (1)).

In Section 3] we present our main construction. As in [10], we use the Cuntz semigroup
Cug, which is a semigroup with zero element, modelled on the relations of the Cuntz
algebra Oy. We study the semigroup algebra A = ¢!(Cus \ {0}, #), where we replace
the semigroup zero by the algebra zero. We recall some of the combinatorics of this
semigroup. There are two natural idempotents in this algebra, and we quotient by
the relation that these idempotents sum to 1, say leading to the algebra A/J. By a
delicate combinatorial argument, we show that the resulting Banach algebra is purely
infinite: for any non-zero a € A/J we find f € A which maps to a, and g,h € A with
g# f#h = 1, see Theorem BI8 To show that .4/J does not have simple ultrapowers,
we construct a faithful, but not bounded below, representation on the Banach space P,
for each p € [1,00).

The Banach algebra A has been previously studied in [8], but in relation to being
properly infinite (and further we studied a “weighted” version of this algebra in [10]).
The underlying algebra, given by generators and relations, but without the ¢!'-norm
completion, has a much longer history, as noticed by Phillips in [22]; compare Remark 3.5
below. Indeed, Phillips makes a careful study of (in particular) the algebra OF, which,
in our language, is the closure of the image of A/J in B(¢P). It is worth noting here
that A/J itself is the ¢!-completion of the Leavitt algebra Lo; see Remark 310 As we
consider in Remark B29] given the lack of “permanence” properties for purely infinite
Banach algebras, there appears to be no logical connections between our results and
those of Phillips. In particular, Phillips shows that O} is purely infinite, but we have
been unable to decide if OF has purely infinite ultrapowers, or not.

However, an immediate corollary of the material presented in Section @ is that A/J
and OF are not isomorphic for any p € [1,00) (see Theorem [L.1]). Section [ is devoted to
the study of traces on A4/J and (’)g . Namely, we show that there are non-zero bounded
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traces on A/J (see Theorem [3)) whilst there are no non-zero bounded traces on 0%,
for any p € [1,00) (see Theorem A.T0]).
Unless stated otherwise, we will use the same notation and terminology as in [10].

1.2. Purely infinite algebras. Let A be an algebra. We say that two idempotents
p,q € A are algebraically Murray—von Neumann equivalent or simply equivalent (in
notation, p ~ q) if there exist a,b € A such that p = ab and ¢ = ba. Note that ~ is
an equivalence relation on the set of idempotents of A. We say that the idempotents
p,q € A are orthogonal (in notation, p L ¢q) if pg = 0 = gp. An idempotent p is infinite
if p = g + r for orthogonal idempotents ¢, € A with p ~ ¢ and r # 0.

If A is additionally a *-algebra, then a self-adjoint idempotent is called a projection.
Here one often takes a different notion of equivalence, which for C*-algebras is well-
known to give the same definitions; compare [10, Section 2].

The notion of a C*-algebra being purely infinite is well-known, and has many equiv-
alent definitions, mostly studied for simple algebras, but also in the non-simple case,
[18]. Purely infinite C*-algebras appear prominently in the classification programme for
C*-algebras, [21], in particular in the guise of the Kirchberg algebras. It is common to
take as a definition that a C*-algebra is purely infinite if every hereditary subalgebra
contains an infinite projection.

In a more general direction, the notion of a simple ring being purely infinite was studied
in [2], where it is taken as definition that a simple ring R is purely infinite if every right
(or equivalently, left) ideal of R contains an infinite idempotent. Consideration of what
it means for a non-simple ring to be purely infinite is given in [3].

Common to both definitions (in the simple case) is the following equivalence; for
C*-algebras see for example [9, Theorem V.5.5] while for rings see [2, Theorem 1.6].

Definition 1.1. A complex unital algebra A is purely infinite if it is not a division
algebra and for every a € A non-zero there exist b,c € A such that 14 = bac.

In this paper, we shall work only with this definition. Note that by the Gel’fand—
Mazur Theorem a complex unital normed algebra is a division algebra if and only if it
is isomorphic to the field of complex numbers C. In the rest of the paper all algebras
are assumed to be complex.

We finish the section with the following. We recall that a unital algebra A is properly
infinite if there exist idempotents p,q € A with p ~ 14, ¢~ 14 and p L gq.

Lemma 1.2. Let A be a purely infinite algebra. Then A is
(1) simple; and
(2) properly infinite.

Proof. We first show that A is simple. Let J be a non-zero, two-sided ideal in A and
pick a € J non-zero. There exist b,c¢ € A such that 14 = bac, hence 14 € J. Thus
J =A.

We now show that A is properly infinite. Recall that A is not a division algebra,
hence we can find a non-zero, non-invertible element, say a € A. Let b,c € A be such
that 14 = bac. We define p := cba and r := ach, it is clear that p,r € A are idempotents
with p ~ 14 ~ r. However p and r need not be orthogonal. Nevertheless, either p # 14
or r # 14 (or both), otherwise a were invertible with inverse ¢b which is not possible.
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Without loss of generality we may assume p # 14. Let s := 14 — p, then s € A is a
non-zero idempotent with s L p. We can find some z,y € A such that 14 = xsy. Define
q = syxs, then ¢® = syzssyrs = syxsyrs = syxs = ¢, and clearly ¢ ~ 14. Now p L ¢
asp L s. ]

1.3. Ultrapowers of Banach algebras. Let A be a Banach algebra and let £*°(.A)
be the Banach space of all bounded sequences (a,) in A, turned into a Banach algebra
with pointwise operations. Let U be a non-principal ultrafilter on N and let ¢;(A) be
the closed, two-sided ideal of ¢*°(.A) formed of sequences (a,) with lim,_ [|a,|| = 0.
The quotient

(A = £7(A)/cu(A) (1.1)

is the wltrapower, see [14]. It is well known that (C),, = C.
We shall denote by a capital letter A, and so forth, an element A = (a,) € £>°(A).
Let my a: £°(A) — (A)y be the quotient map; then

72, a(A)] = lim {lay]]. (1.2)
n—U

In particular, given any a € (A)y we can always find A = (a,,) € £*°(A) with my 4(A) = a

and ||A|| = sup,, |lan|| = ||a||. We always assume that our ultrafilters are non-principal,

which on a countable indexing set, is equivalent to being countably-incomplete (see [14l,

Section 1]). When it does not cause any confusion we may drop the subscripts on my, 4.
Given a Banach algebra A and an ultrafilter U, the “diagonal” map

ta: A= (A, a— my((a)) (1.3)
is an isometric embedding. In particular, dim A < dim(.A);, follows.

Let A and B be Banach algebras and let v: A — B be a continuous algebra homomor-
phism. Then for an ultrafilter I/ there is an induced continuous algebra homomorphism

Yy (A)y — (B)y such that
Yu (mu.a ((an))) = mup (($(an))) (1.4)

for each (an) € €°°(A). If ¢ is non-zero then 1y, is non-zero too.

2. NORM CONTROL

2.1. Quantifying pure infiniteness. In [10] we “quantified” Dedekind-finiteness, proper
infiniteness and stable rank one, in order to characterise when an ultrapower (A);; has
these ring-theoretic properties of the underlying Banach algebra A. We follow our pre-
vious approach in the present paper.

Definition 2.1. Let A be a unital Banach algebra. For a € A\ {0} define
A — . —
C,i(a) = inf{{|b][[|c[|: b,c € A, bac = 1}
with C]“j}(a) = oo if there are no b,c € A with bac = 1.

Then a unital Banach algebra A is purely infinite exactly when it is not isomorphic
to C and C';fi‘(a) < oo for each a € A\ {0}. Note that if a € A is such that C{;}(a) < oo

then 1/||al| < Cf)‘}(a).
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By homogeneity, we have
Cii(za) = |2[7'C4(a)  (a € A\ {0}, z € C\ {0}). (2.1)

Thus it is enough to study the unit sphere of A.
Usually, we will drop the superscript on Cf)‘i‘(a) and simply write Cpi(a), whenever it
is clear from the context which Banach algebra the element a is taken from.

Proposition 2.2. Let U be a countably-incomplete ultrafilter. Let A be a unital Banach
algebra not isomorphic to C. Then the following are equivalent.

(1) (A)y is purely infinite;

(2) There is K > 0 such that Cpi(a) < K for each a € A with ||a| = 1.

Proof. As usual, we may suppose that U is a non-principal ultrafilter on N.

((1) = (2)) : We prove the statement by way of a contraposition. Assume (2) does
not hold. Then in particular we can pick a sequence (a,) in A consisting of norm one
elements such that Cpi(a,) > n for each n € N. Let A := (a,) so A € {*°(A). Assume
towards a contradiction that (A)y is purely infinite. Thus we can find B = (b,), C' =
(cn) € £°(A) such that w(1) = 7(B)7(A)w(C), or equivalently, lim,,_/ ||1—bpancy| = 0.
Let N := {n € N: |1 — byanc,|| < 1/2}, then NV € U. By the Carl Neumann series
Tp = bpanc, € inv(A) with ||z 1| < 2 for each n € N. As 1 =z tw, = (2, b,)ancy,
we conclude that

n < Cpi(an) < llzg ballllenll < lzz Hlballlenll < 2IBIICI  (n € N). (2.2)

As N € U and thus N is infinite, this gives a contradiction.

((2) = (1)) : Assume (2) holds. Let A = (a,) € £*°(A) be such that 7w(A) # 0.
This is equivalent to saying that lim,_ ||a,|| # 0, hence there is § > 0 such that
{n € N: |la,|| < 8} ¢ U, that is, M := {n € N: |la,|| = 6} € U. Thus we may set
al, = an/||an|| whenever n € M, and a], := 0 otherwise. Clearly ||a/|| = 1 for each

n € M, hence by the assumption it follows that Cpi(a],) < K for each n € M. Thus for
every n € M we can find b),, ¢}, € A such that b),al,c/, =1 and ||t |||/, || < K. We set

n-n n-n-n
[ licall : 167, :
bl ifneM, o ifneM,
bn = 4\ o5l llan | and ¢ =4\ [l llllan] "
0 otherwise; 0 otherwise.
(2.3)

Hence byancy, = ||an|| = b, anc, = b al ¢, =1 for each n € M. It is also follows from the
definitions that [|by| = \/|[BL1lIcu N/ llanll < /K/6 and similarly ||c,|| < \/K/§, hence
B = (by), C == (cn) € €(A).

Fix € > 0. Then
M={neN:1=bpancn} C{n e N: |1 —byancy,| < e}, (2.4)

hence from M € U we conclude {n € N: |1 — byanc,| < €} € U. Thus lim,_y ||1 —
bnancy|| = 0, which is equivalent to 7(B)w(A)r(C) = m(A). Lastly, (A)y cannot be
isomorphic to C by the assumption and dim A < dim(A)y;. Thus (A) is purely infinite.

U
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Remark 2.3. In view of the comment before Proposition 2.2] we may rewrite condition
(2) as

(2’) There is K > 0 such that Cpi(a) < K/||a|| for each non-zero a € A.
Consequently (A);s is purely infinite if and only if there exists a K > 0 such that

1l < Cpi(a) < K/llall (o € A\{0}). (2.5)
Corollary 2.4. Let U be a countably-incomplete ultrafilter, and let A be a Banach
algebra such that (A)y is purely infinite. Then A is purely infinite.

Proof. Note that A is not isomorphic to C, otherwise (A)y = (C)yy = C which is non-
sense. Hence by the assumption we can take some K > 0 which satisfies the conditions of
Proposition-( ). Let a € A be non-zero. We set a’ := a/||al|, then Cpi(a’) < K. Thus

there exist V', ¢ € A such that v/a’¢ = 1. Now deﬁne b:=1b/+/|a] and ¢ := c//\/Ha
thus bac = 1 as required.

In fact, we can make a quantitative statement in this direction.
Lemma 2.5. Let A be a unital Banach algebra. If U is an ultrafilter, then

o LA = C’ﬁ». (2.6)

pr

Proof. (2): Let a € A, and put A := (a) € {*°(A). Assume B = (by,), C = (¢,,) € £°(A)
are such that 7y (1) = my(B)my(A)my (C), which is equivalent to lim,,_ ||1—bnpacy,|| = 0.
Let us fix € € (0,1). Then

Nz :={n e N: |1 — bpac,|| < e} €U, (2.7)

and by the Carl Neumann series x,, := byac, € inv(A) with ||z, !|| < (1 — &)~ for each
n € N.. Thus 1 = x,, 'z, = (z,,'b,)ac,, and consequently

Cii(@) < llzg ballllenll < llzg lballleall < (1 =€) Hlballlleall  (n€NZ).  (2.8)
Therefore Cf)‘il(a) < limy sy [[ballllenll(1 — &)™t = ||y (B)]|||7u (C)||(1 — &)~1, which
holds for all € € (0,1), hence Cf)‘il(a) < |lmu(B)||||mu(C)||.  Consequently C’B‘i‘(a) <

( u(A)) = A) “(14(a)), as claimed.

(g): Let a € .A Assume b,c¢ € A are such that 1 = bac. Putting A := (a),B :=

(b),C = (c) € £>°(A), we clearly have m(1) = my(B)my(A)my (C). Consequently
A A
Gy (1a(a)) = G (ma(A4)) < ma (B) ()] = [0l (29)
and therefore CI()“;U“ (tala)) < C;fi‘(a), as required. O

One might wonder whether the converse to Corollary [24] could be true. We will show
that this is not the case: there is a purely infinite Banach x-algebra which does not have
purely infinite ultrapowers (see Theorems B.20] and 3271 ).

However, it is well known (see [I3], Section 3.13.7]) that the converse to Corollary [2.4]
remains true for C*-algebras. Here we demonstrate how this can easily be deduced from
Proposition
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Lemma 2.6. Let A be a purely infinite C*-algebra. Then Cpi(a) =1 for each a € A with
llal| = 1, consequently (A)y is purely infinite for every countably-incomplete ultrafilter

Uu.

Proof. Let a € A have norm one. Let us fix ¢ > 0. Clearly a*a € A is positive, hence
by [9, Theorem V.5.5] there is some = € A such that (za*)az* = z(a*a)z* = 1 and
||| < lla*al]|~Y? 4 & =1+e¢. Thus

Cpi(a) < [lza*|[fla*[| < llz]Pllall < (1 + €)%, (2.10)
and therefore Cpi(a) < 1. The “consequently” part follows from Proposition O

We note that [9, Theorem V.5.5] has an elementary (functional calculus) proof, passing
by way of an equivalent definition of what purely infinite means for C*-algebras, compare
our discussion in Section

We briefly consider the asymptotic sequence algebra. Let c¢o(A) be the closed, two-
sided ideal of ¢°°(A) which consists of sequences (a,,) with lim,_, [|a,|| = 0. In fact,
when A is unital, £*°(.A) is the multiplier algebra of co(A) (compare [12] Section 13] for
example). The asymptotic sequence algebra Asy(A) is the quotient algebra £*°(.A)/co(A).

As opposed to the previously studied properties in [I0] such as stable rank one,
Dedekind-finitess and proper infiniteness, the theory for the asymptotic sequence al-
gebra and the ultrapower of a Banach algebra seems to bifurcate here.

Remark 2.7. Let A be a non-zero unital Banach algebra. Then Asy(A) is not simple
and hence not purely infinite.

Proof. Note that Asy(.A) is simple if and only if ¢y(.A) is a maximal two-sided ideal in
>*(A). But this latter is not possible, as for example, the following shows. Let U be
a non-principal ultrafilter on N such that 2N € Y. Let A := (a,) be a sequence in A
defined by ag, := 14 and ag,—1 := 04 for each n € N. Clearly A € (*°(A) and in
fact A € c¢y(A) by definition. On the other hand clearly A ¢ ¢o(A). Consequently
co(A) € cy(A) which shows that ¢o(A) cannot be maximal. The last part follows from
Lemma O

We finish this section with a handy tool for showing when Banach algebras fail to have
simple ultrapowers. Indeed, this is one of the key ideas in the proof of Theorem [3.27]

Proposition 2.8. Let A be a Banach algebra such that (A)y is simple for some countably-
incomplete ultrafilter U. Then for every Banach algebra B, every non-zero continuous
algebra homomorphism ¢ : A — B is bounded below.

Proof. We prove by contraposition. Suppose B is a Banach algebra and ¢: A — B is a
non-zero continuous algebra homomorphism which is not bounded below. Thus we can
pick a sequence (a,) in A consisting of norm one elements with lim,,_, ||(a, )| = 0. In
particular A := (ay,) € £*°(A) and (¢(ay)) € cy(B), where U is a countably-incomplete
ultrafilter. Consider the induced continuous algebra homomorphism ¢y, : (A)y — (B)y.
On the one hand, from (I.4]) and the above we see that ¢1(my, 4(A)) = Ty (¢ (an))) =0,
hence my 4(A) € Ker(¢y). As ||mya(A)| = limy—y [Jan|| = 1, it follows that Ker (i)
is a non-zero ideal in (A)y. On the other hand, 1 and hence 1)y, is non-zero, therefore
Ker(ty) is also a proper ideal in (A)y. So (A)y is not simple. O
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2.2. Examples of Banach algebras with purely infinite ultrapowers. It is a
good point to give an example of a class of non-C*, Banach algebras with purely infinite
ultrapowers. In what follows, B(X) and K(X) denote the algebra of bounded linear
operators on a Banach space X and the set of compact operators on X, respectively.
Clearly B(X) is a unital Banach algebra and IC(X) is a closed, two-sided ideal in B(X).

Proposition 2.9. Let X be ¢y or £, where 1 < p < oco. Then (B(X)/K(X))y is
purely infinite if U is a countably-incomplete ultrafilter. More precisely, for every a €
B(X)/K(X) with ||a|| = 1 there exist b,c € B(X)/K(X) such that 1 = bac and ||b|||c| =
1.

The proof of Proposition 29 relies on the following result of Ware, see [27, Lemma 3.3.6].

Note that it is a strict strengthening of [26] Lemma 2.1]; the proof works by extracting
a suitable block basic sequence equivalent to the standard unit vector basis for X.

Lemma 2.10. Let X be co or £, where 1 < p < oo. Then for each A € B(X) a
non-compact operator, there exist B,C € B(X) such that

Ix = BAC and |[|=(B)[[[=(C)[| = 1/]l=(A)]l, (2.11)
where w: B(X) — B(X)/K(X) the quotient map.
Proof of Proposition [2.9. Let A € B(X) be such that ||7(A)|| = 1. Hence by Lemma 2.10]
there are B,C € B(X) such that Ix = BAC and ||x(B)||||x(C)|| = 1. This obvi-
ously proves the first part of the claim. In particular, Cpi(m(A)) = 1 follows whenever

||m(A)|| = 1. Now Proposition 22 yields that (B(X)/K(X))y is purely infinite, whenever
U is a countably-incomplete ultrafilter. O

Let us introduce some terminology, commonly found in the literature, for the property
we have been studying. For a unital algebra A, and given a € A, we say that 14 factors
through a, or a is a purely infinite element, if there exist b, ¢ € A such that 14 = bac.

In a unital algebra A we define the set

My :={a € A: 14 does not factor through a}. (2.12)
The following result is folklore and easy to see; we omit the proof.

Proposition 2.11. Let A be a unital algebra.
o The set M 4 is closed under scalar multiplication, and under multiplying elements
of it from the left and right by elements from A. Thus it is the largest proper
(and therefore unique mazimal) two-sided ideal in A if and only if M 4 is closed
under addition.
o If M 4 is closed under addition and A/ M 4 is not a division algebra, then A/ M 4
s purely infinite.

Note that in the second item the condition that A/M 4 is not a division algebra
cannot be omitted. Indeed, Kania and Laustsen showed in [I7, Theorem 1.2] that with
X := C[0,w1], the one-codimensional Loy—Willis ideal coincides with M B(x) and hence
B(X)/Mpx) =C.

When the unital Banach algebra A is B(X) for some “classical” Banach space X, it
happens very often that Mpx) is the unique maximal ideal in Mp(x). Here we give a
few examples, a more comprehensive list can be found in [I7, p. 4832].
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Example 2.12. If X is any of the Banach spaces below then Mp(xy is closed under
addition and hence it is the unique mazimal ideal in B(X):

X =co or X = (P, where 1 < p < 00, in this case Mpx) = K(X) (see [15]);
= (> (see [19, p. 253]);

X = LP[0,1], where 1 < p < 0o (see [11, Theorem 1.3 and the text after]);

X = CI0,1] (see the explanation in [IT, p. 4832]).

Remark 2.13. Let A be a unital algebra and let J be a two-sided ideal in A such
that A/J is purely infinite. Then M 4 is closed under addition if and only if J = M 4.
Indeed, A/J is simple by Lemmal[l.2] or equivalently, 7 is a maximal ideal. Hence if M 4
is closed under addition then it is the unique maximal ideal in A by Proposition 2.11]
thus J = M 4. The other direction is trivial.

It is certainly not true however that for a unital Banach algebra A4 and a closed,
two-sided ideal J of A the quotient A/J is purely infinite only if M 4 is closed under
addition. We shall show this by way of a counter-example. In order to do this, let
us recall the following piece of terminology. For Banach spaces X and Y the symbol
?y(X ) denotes the closed, two-sided ideal of operators on X which approximately factor
through Y.

Lemma 2.14. Let X := {7 & {7, where 1 < p < q < oo. Then Mp(x) is not closed
under addition while (B(X)/Gy (X ))u is purely infinite, where Y is P or (1 and U

is a countably-incomplete ultrafilter. More precisely, for every a € B(X)/Gy (X) with
llal| = 1 there exist b,c € B(X)/Gy (X) such that 1 = bac and ||b||||c|| = 1.

Proof. The first part of the claim is well known; see e.g. 24, Theorem 5.3.2]. Indeed,
B(X) has exactly two maximal two-sided ideals, namely, G (X) and G (X). We will
work with Y = (P, the other case is entirely analogous.

Let us recall that by Pitt’s Theorem [I, Theorem 2.1.4], we can describe B(X) and

G (X) as

By Bue,ey] [ BUr) K, er)
B(X) = [B(ﬁp () B ]— {B(@p,ﬁq) B((1) }

B K(ry B, ep Kery  K(ed,ep
G (X) = [B(gg)’g)q) 1(5’(6‘1) )] - [B(ﬁg’,ﬁ)q) l(g(gq) )}

Consequently,
B(X)/Ger (X) = B(P)/K(E7),

where the isomorphism is clearly isometric. Hence the result follows from Proposi-
tions 2.9 and 22 O

3. A “BANACH- ANALOGUE” OF THE CUNTZ ALGEBRA

In this section we show that a naturally occurring infinite-dimensional Banach x-
algebra is purely infinite, but it does not have a simple ultrapower.

3.1. Preliminaries.
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3.1.1. Involutive semigroups with zero elements, and the Banach *-algebra £1(S \ {O}).
We recall that a semigroup S is involutive if there is a map s +— s*, S — S with the
property (s*)* = s and (st)* = t*s* for each s,t € S.

We say that S is a monoid with a zero element if S is a monoid with at least two
elements and there exists a ¢ € S such that 0s =0 =sO forallse€ S. If sucha e S
exists then it is necessarily unique. As we assume that S has more than one element, we
have ¢ is different from the multiplicative identity e € S. Note that if S is additionally
involutive, then necessarily ¢* = ¢.

Let us briefly recall that it is possible to endow the Banach space ¢1(S \ {0}) with
a unital Banach algebra structure; see [§] and [10] for details; compare also [16]. This
is accomplished by identifying £1(S \ {0}) with the quotient algebra ¢!(S)/Cds, where
?1(S) is endowed with the convolution product. This allows us to define a product # on
?4(S\ {0}) which satisfies

&#&:{gﬁ gzig (s,t € S\ {0}). (3.1)

In particular it follows from equation (BI) that (¢1(S \ {0}),#) is a unital Banach
algebra with J, being the unit, and such that ||d.| = 1.
If in addition S is involutive, then the formula

Fr(s):=f(s%)  (Fe/(S\{0}), s € S\ {0}) (3.2)
defines an isometric involution on £}(S\ {0}). Hence ¢1(S\ {0}) is a Banach x-algebra.

3.1.2. The Cuntz semigroup Cus. In the following Cuy denotes the second Cuntz semi-
group (see also [25 Definition 2.2, p. 141]; this is also occasionally called the “polycyclic
monoid” in the literature, [6]). (We warn the reader that “Cuntz semigroup” now also
means something unrelated in C*-algebra theory.) That is, Cug is an involutive semi-
group with multiplicative identity e and zero element ¢, and generators si, sz, s], s5
subject to the relations sjs; = e = s3s2 and sjs2 = ¢ = s3s;. In notation, Cug is
(s1,82,87,85: 8181 = € = 8589, §182 = O = $551). (3.3)
We now mostly follow the notation of [8, Section 3.3].
Definition 3.1. We set
L, := {(i1, 02, ... in): i1,02,..., 0y € {1,2}} (n € N), (3.4)

and Ip := {0}. Let I:= ey, In, and L := ], cn{1, 2}
Let n = (n;) € L, we then set

ng = @,
n; = (nl,ng,...nl) el (l EN). (3.5)
Ifi,j € I, then we define ij € I by concatenation
i ifj =0,

iji=4j ifi=0, (3.6)
(il7i27"' aim7j17j27---jn) Zfi - (2‘171.27--- 7Zm) a'ndj = (j17j27"' 7371)
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For each i € T we define s; € Cugy \ {0} by

si=1" gi=o (3.7)
SiySiy i, Af 1= (i1,42,...1,) € I\ {0}.
We clearly have sisj = sij and sj; := (syj)" = (sis;)" = s]s}.

3.2. Basic combinatorics of Cuy. We collect some combinatorial results, which while
known, we state for ease of reference. The following result, as stated below, can be found
in [10, Lemma 3.7], where it is attributed to Cuntz (see [7, Lemmas 1.2 and 1.3]).

Lemma 3.2. (1) For everyi,j € I we have
s ifi=jk for some k €1,
sisj=< sk if j =ik for some k €1, (3.8)
O otherwise.

(2) For everyt € Cuy \ {0} there exist unique i,j € I such that t = s;s].

Remark 3.3. Let t € Cuz \ {O}. By Lemma[3.2] (2) there exist unique i, j € I such that
t= sis;. Let a, 8 € Ny be the unique numbers such that i € I, and j € I;.
Thus we may define the length of t as

length(t) :== o+ S. (3.9)

In fact, Lemma (2) features so frequently in our arguments that we shall mostly
use it implicitly without referring to it.

A very important corollary of the above is the lemma below, which we will use nu-
merous times throughout the rest of the paper.

Lemma 3.4. Leti,j,m,n € I. Then

Sqp if i=mp and n = jq for some p,q € 1,
sy if i=mgqr and j = nq for somer,q €1,
g =i dn=j el
Sl smshs; = SpSq zlfm Tp an n jq for some p,q € 1, (3.10)
Spq if m = ip and j = nq for some p,q € 1,
S if i=mp and j = npr for some p,r €1,
O otherwise.
Consequently, sismsys; = e if and only if i = mk and j = nk for some k € L.
Proof. Applying Lemma to sism and sy sj, we immediately obtain that
( P .
SpSq = Sqp 1 1=mp and n = jq for some p,q € I,
SpSq if i = mp and j = nq for some p,q € I,
Si8mSnSj =  SpSy if m = ip and n = jq for some p,q € I, (3.11)

S5pSq = Spq if m =ip and j = nq for some p,q €I,

O otherwise.

Once more we apply Lemma to s3,5q, which yields the desired formula (B.10).
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The “consequently” part follows from inspecting the cases in the above formula and
from observing that

*

q:eifandonlyifp:@:qifandonlyifi:mand

® Sgp = € OT Spq = € Or Sps
j=mn,

e st =e¢if and only if r = () if and only if i = mq and j = nq,

e s, = ¢ if and only if r = ) if and only if i = mp and j = np.

0

3.3. A purely infinite quotient of (/!(Cuy \ {0}),#). From now on we let A :=
(€Y (Cug \ {O}),#). In this section we study a natural quotient of A, which is related to
the Leavitt algebra Lo (see Remark BI0), and show that the identity of this quotient
factors through every non-zero element of the quotient.

Remark 3.5. Suppose we start instead with the group ring C[Cus], which is just the
algebra of finitely supported elements of £!(Cuy), and similarly quotient by the span of
do. As observed in [22], Section 1], the algebra C[Cus]/Cd was studied, with a different
presentation, by Cohn in [b, Section 5], and is sometimes called the Cohn algebra Cs.

We could hence view A as being a Banach algebra completion of Co. To our knowledge,
this algebra has not been studied from this perspective; for example, it is not mentioned
in [§]. We make remarks about links, or lack thereof, with Phillips’s work in [22] below,
Remark

Let us observe first that in view of Lemma B.2] we may write

f= Y f®&=) f(ss))ss; (€A (3.12)

teCuz\{0} ijel

Our first goal is to find a useful sufficient condition which guarantees that an element
f € A is purely infinite, in other words, that there exist g, h € A with g#f#h = 0.

Definition 3.6.

o Let v e Cuy \ {0}, and let i,j be the unique elements in I with v = 518}
— Suppose n € L. We define

Uln = Sil’llsjjknl = sis(fn,.--,nz)s?nl,...,nl)s_; (l S No) (313)

— Suppose n € 1. There is a unique o« € Ny satisfying n € 1,; hence n =
(n1,n2,...,nq). We define vf* as in (3.13) provided | € Ny is such that | < a.
Otherwise v;* is undefined.

We have in particular vy = Sinos;no = si53k = v, and that ' = S(nl,___,nl)szm’__’m).
e We say that f € A has zero sums at v = sjs] € Cuz \ {0} if

S TF@R) =" f(sinsh) =0  (neL) (3.14)

1ENg leNp

Notice that as f is an ¢! element, the sum in (314 is absolutely convergent.
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Lemma 3.7. Letn € TUL and f € A. Then

l
Osy, #S #05n, = <Z f(e2)> Se + > F(si8])055 sision, (1€ No). (3.15)
k=0 ijel
s;lsis;snli{e,O}

Proof. Let us fix an [ € Ng. We first note that by Lemma [3.4]

{sisj: 1,j € I, sy, si8{sn, = €} = {sis]: 1,j € I, n; = ip, n; = jp for some p € I}
= {s;jsi:1=ny for some 0 < k < [}

={ep: 0< k< I}.

Since
551‘” #f#(SSnl = Z f(sisjjk)(ss;lsis;snla
i,jel
SﬁlSiS}Snl#O
the result follows. O

Proposition 3.8. Let f € A be such that it does not have zero sums at the multiplicative
unit e € Cug. Then there exist g,h € A with g# f#h = 0.
Proof. By the assumption thereis ann = (n1,n2,...,n,...) € Lisuch that 7, - f(e}) #

0. Let us set zy := Zévzof(eg) for each N € No. As f € A, the sequence (zn) con-
verges to some non-zero element in C, therefore there is an € > 0 and N’ € Ny such that
|zn| > 2¢ for each n > N’. From Lemma [3.7] we see that

Oog WS #0s = 20+ Y [(5i5]) 05 ssrsm, (1€ No). (3.16)
i,jel
s;lsis;snlé{e,O}

There is a K € N such that Zi,jEI\U{C”_OIk | f(sis])| < e for all M > K. Let us fix an
M > max{N’, K} and define

fl=> £ (5187 8sy: - (3.17)
ijeuM I,

Clearly, f’ € A is finitely supported such that || f — f’|| < e. Also, f'(t) = 0 whenever t €
Cugy is such that length(t) > 2M. We also note that f'(e}}) = f'(sn;sn,) = f(sn,5n,) =

ng

f(e?) for each k € {1,..., M} by the definition of f’. Consequently,
k

M M
o= feR) =D F(e). (3.18)
k=0 k=0

To ease notation, we put z := zjy.

Claim 3.9. There is a p € I such that
/ /
63;«)#63* H# ' #0sn,, #0s, = 6s;Mp#f H#0sp,,p = e (3.19)

nap
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Proof of Claim[3.9. By Lemmal[3.7and (3.1]]) we have 5s;M #f’#&snM = 20+ hg, where

ho = 3 F'(5183)0s,, sistony, - (3.20)
ijel
S;MSiS‘;FSnJM ¢{67<>}

If hg = 0 then we are done. Otherwise, Hy := supp(hg) # (). We claim that there is an
i € {1,2} such that

{s;itsi: t € Hy, s;ts; # O} < |Hol- (3.21)
To show this, observe that as supp(f’), and hence also Hy, is finite, it is enough to
see that sjts; = O or sjtsy = O for some ¢t € Hy. This readily follows however from

{e} # Hy (which clearly holds as e ¢ Hy).
For this choice of 7, applying Lemma [3.7] again we see that

53* .#f,#(ssnMi - 552‘#(256 + hO)#ésl - 256 + 53:‘ #ho#ésl

an
= (Z + ho(e) + hQ(Sisf))ée + hl, (322)
where
hi= D ho(sis])dssstss (3.23)
i,jel
sfsisg‘sié{e,O}

Note that supp(h1) C {sts;: t € Hy, sits; # O}.
On the one hand hg(e) = 0. On the other hand sflMsisjksnM = s;s¢ if and only if
i =nysi and j = nysi by Lemma B4l hence

ho(sis7) = f'(Snpishyi) = 0. (3.24)
The last equality follows because length(sn,isy,,;) = 2(M + 1), and f’ vanishes on
elements of Cugy of length at least 2M + 1. Consequently,
5S:;Mi#f/#55nMi = 20, + h1, (3.25)
where Hj := supp(hq) is such that |Hy| < |Hp|.
Let us fix some ky > [supp(f’)|. Continuing recursively, we obtain i1,4s,...,ig, €
{1,2} and finitely supported functions (hk)llzozl in A with Hy := supp(hg) such that
Ost o ik)#f/#(SS“M (i1ymin) = 20e + e (1 <k < ko), (3.26)
|H0| >|H1| >...>|Hk0|. (3.27)

As supp(f’) is finite, we must have that Hy, = () or equivalently hy, = 0. Thus setting
p = (i1,...,1k,) € I yields the claim. O

We now finish the main proof. From the claim we obtain

10 — = by #S#00 ol = 12 00 # = )b

nprP

<A7HIF - Il < 1/2, (3.28)

thus the Carl Neumann series implies u := ziléngp# f #5SnMp € inv(A). Hence setting

g .= u_l#z_15s;Mp and h:=¢ concludes the proof. O

Snprp
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In the following, let J denote the closed, two-sided ideal in A generated by the element
Jo =0 — 5818’{ - 5323’2‘- (3.29)

Clearly fy is an projection in A, in other words, f§ = fo and f§ = fo. We immediately
see from the formula (3.12]) and Lemma (2) that

T = span{g#foth: g.h € A} = Span{dg A fottdye LGk 1T (3.30)
Since f§ = fo, it follows from (B.30) that J is a *-ideal in A, and therefore A/J is a

Banach x-algebra.

Remark 3.10. Continuing Remark 3.5 in the Cohn Algebra Cy = C[Cus]/Cd¢, we could
also consider the ideal, say Jo, generated by fy. Then Cs/J5 is seen to be isomorphic to
the Leavitt algebra Lo, see [22] Section 1], which was first considered (over the field with
2 elements) in [20].

A/J is a Banach algebraic completion of Ls, which again seems not to have been
considered in the literature before. Compare with Remark below.

Let us introduce some new terminology which will render the technical proofs in this
section significantly more transparent.

Definition 3.11.

(i) An element t = sisi € Cup \ {Q} is symmetric if i = j.

(ii) We say that t € Cuy \ {0} is a symmetric expansion of r = sysh € Cug \ {0}
if there exists a symmetric w € Cug \ {0} with t = smus}. If in addition u # e
then we say that t is a proper symmetric expansion of .

(i) For some t € Cug \ {0} the set of symmetric expansions of t is denoted by S.

(iv) An element of Cug \ {0} is without symmetric core if it is not the proper sym-
metric expansion of any element in Cug \ {0}.

The following are immediate from the definition.

Remark 3.12.

e An element t € Cug \ {O} is a symmetric expansion of r = sps), € Cug \ {0} if
and only if there exists i € I with ¢ = sy;sy;. Also, t is a proper expansion of r
if and only if i # ().

e An element ¢t € Cug \ {0} is without symmetric core if and only if whenever
m, n,i € I are such that ¢ = sy;s?; then i= 0.

Lemma 3.13. The set
{Sy: v € Cug \ {0} is without symmetric core} (3.31)
forms a partition of Cug \ {O}.

Proof. Let t € Cug \ {0} be arbitrary. There exist unique p,q € I such that ¢ = SpSq-
Let a € Ny be maximal with respect to the property that there is an i € I, with p = mi
and q = ni for some m,n € I. Then ¢ = spsy = smisy; = sm(sis])sy, shows that t is
the symmetric expansion of v := sy, s),. Observe that v is without symmetric core. For

assume towards a contradiction that there exists k € I'\Ij such that v = sak sy, for some
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a,b € I. Therefore m = ak and n = bk must hold, consequently ¢ = sy;5;; = SakiSpy-
This contradicts the maximality of a.

Let v,w € Cugy \ {0} be without symmetric core. Assume there is some ¢t € S, N Sy,.
Let i,j € I be unique with v = s sJ ,thent = slksJ for some k € I. Similarly, let p,q € 1
be unique with w = sps then t = spls for some 1 € I. As sjgst k= =t = 5p15q1, it
follows that ik = pl and jk = ql. We want to show that v = w, equlvalently i=p and
j=4q. Let o, 8 € Ny be the unique numbers such that k € I, and 1 € Ig. Note that it
is enough to show that o = 5. Assume towards a contradiction that, say, o < 8. Then
there are m € Ig_, and n € I, with 1 = mn. Thus ik = pmn, hence from k,n € I,

we obtain i = pm. Similarly, we get j = qm. But then v = s SJ = SpmSqm, Which by

B — a > 0 contradicts that v is without symmetric core. O

Proposition 3.14. Suppose f € A is such that it has zero sums at some v € Cuy \ {O}.
Define h :=3 s f(t)or € A. Then h € J.

Proof. Let i,j € I be such that v = s; SJ* Then S, = {siksj‘k: k € I} and hence
h=3 xer f(siksii)0s ik . From fy € J we immediately get

Osimstn ~ Osimistmy — Osimzslin, = Osim#S0#0sx €T (mel). (3.32)
In particular, setting m := () in (3:32) yields
Oy — 65i15;1 — 5125 eJ. (3.33)
Hence from

h = f(v)dy, + f(511531)58118 + f(512532)5 51257 + Z f(siksjkk)‘SSikS}k (3.34)
kel\(Ipul;)

and ([333]) we see that
(f(v) + f(si1571)) dsiysp, + (f(0) + f(Slszz))5 51253
+ ) f(siksh)Osysy —h €T

kel\(IoUI;)

<:>Z —i—fsels ))58618J

kel

+ Z f(siksii)Ospesy, —h € T (3.35)

keI\(IoUI;)
Continuing inductively, we obtain
Z < )+ Zf sieXs ) sieksy T Z f(siks;k)ésiks;k —heJ (n € N).

kel, kel\Ur_,1
(3.36)
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That f has zero sums at v is to say f(v) = — > oy f(sie}‘s;) for each k € L. Therefore
([B.36) is equivalent to

— Z (Z f(sm%‘s})) 5sie55; + Z f(SikS}k)ésiksj‘k —heJg (n € N).

kel, \i>n kel\U;_, I»
(3.37)
Now 3 ccum\ fo3 1/ (1) < oo implies

Z Z f(sief'sy)

kel, [I>n

— 0 and Z | f(siksji)| — 0 (n — o0). (3.38)
ke\U;—, Ir

As J is closed, we conclude from (B38]) and ([B.37) that h € J. O

3.4. Representing A/J in B(/P). To make further progress on understanding A/7,
we will consider certain representations of this algebra, thus proving in particular that
it is non-trivial. From now on we let 77: A — A/J denote the quotient map.

We will represent .A4/7 inside B(¢?(N)), the unital Banach algebra of bounded linear
operators on ¢P(N), for any p € [1,00). Let p € [1,00) be fixed. We first define operators
A17A27Bl,B2 on /P = ep(N) by

(A12)(n) = xon, (A2x)(n) = x2p—1 (x € P), (3.39)
and
T if n € 2N T ifne2N-1
B _ n/2 ) B _ (n+1)/2 ) c /P).
(Biz)(n) {0 otherwise, (Bz)(n) {O otherwise. (= )
(3.40)

It is immediate that A;, B;, € B(¢?) with || A4;|| = 1 = ||B;]| for i € {1,2}. Moreover,
the following relations hold:

AlBl = Igp = A2B2, AlBQ =0= AgBl, BlAl + B2A2 = Igp, (341)
where Ipp denotes the identity operator on £P.

Remark 3.15. Let us note that the set {B]: n € N} is linearly independent in B(¢P).
Indeed, suppose (a;,))_; is a finite family of scalars such that ZnN:1 an BT = 0. Let (ey)
be the standard unit vector basis of /. We see that

N N
0= Z anpBlep = Z Qpéaon, (3.42)
n=1 n=1

hence a,, = 0 must hold whenever 1 <n < N.

Proposition 3.16. For each p € [1,00) there is a continuous, unital algebra homomor-

phism O,: A/T — B((P) with
@p(ﬂj(és;ﬂ)) = A, and @p(ﬂ'j((ssi)) = B; (Z S {1,2}). (3.43)

In particular A/ J is infinite-dimensional and non-commutative.
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Proof. Fix a p € [1,00). The operators Ay, Ay, By, By € B(¢P) are subject to the rela-
tions A1B1 = Ipp = AsBs and AsB; = 0 = A1 Bs, hence there is a unique semigroup
homomorphism

¢p: Cug — B(LP) (3.44)

which satisfies ¢,(s7) = A1, ¢p(s1) = Bi, ¢p(s3) = Az and ¢,(s2) = Bz. Notice that
in particular ¢,(e) = @p(s7s1) = dp(s7)dp(s1) = A1B1 = Ip and ¢,(0) = Pp(s7s2) =
op(s7)dp(s2) = A1 By = 0. By Lemmal[3.2](2), and because the operators A;, Az, By, By €
B(¢P) have norm one, we see that ||¢,(t)|| < 1 for every t € Cus.

It follows that there is a unique continuous algebra homomorphism

0,: A= (£*(Cuz \ {0}),#) — B(P) (3.45)

such that ||6,] < 1 and 6,(0;) = ¢p(t) for all t € Cuy \ {0}
In particular 6, is unital as 6,(d.) = ¢p(€e) = Ipp. Moreover, from the relation By A; +
B2A2 = Igp we see

Op(fo) = 0p(0c) = 0p(95,)0p(0s;) = Op(95,)0p(0s) = v — B1Ar — BaAa =0, (3.46)
consequently J C Ker(f,). Therefore there is a unique continuous algebra homomor-
phism

©,: A/T — B(¢P) (3.47)
with ||©,|| < 1 such that ©, o 7y = 6,, where 77: A — A/J is the quotient map.
Clearly ©,(m7(6)) = 0,(5¢) = ¢p(t) for each t € Cuy \ {O}. Consequently the required

relations hold.
Let us show that A/J is infinite-dimensional. We observe that

{Bl':n € N} ={0,(r7(ds)): n € N} C Ran(0,), (3.48)

and hence Ran(©,) is infinite-dimensional by Remark B.I5l From this it readily follows
that A/J is infinite-dimensional too.
Finally, it is clear that A/J is non-commutative. O

Remark 3.17. It is obvious that the continuous homomorphism 6,: A — B(¢P) in the
proof above is not injective for any p € [1,00). We remark in passing however, that it is
possible to find (even explicitly construct) a continuous, unital, faithful +-homomorphism
A — B(¢?); see [8, Remark 3.16].

The following is our main result for showing that A/7 is purely infinite.

Theorem 3.18. Let f € A. Then the following are equivalent:
(1) fed;

(2) f has zero sums at every v € Cup \ {0} without symmetric core;

(3) There are no g,h € A with g# f#h = d..

In particular J = M4 and hence J is the unique maximal ideal in A.

Proof. We first show the contrapositive of ([B) = (2])). So assume the opposite of ({2,
that is, there exists v = s;s] € Cup \ {0} without symmetric core such that f does not
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have zero sums at v. We claim that f := Os:# [#0s; € A does not have zero sums at e.
To see this, let us fix an n € L. Using Lemma [3.4] we see that

STHE) =3 Flomsi) = 3 (G #7505 (5m50,)

IS\ leNg 1eNg
= Z Z f(SpSZ)ésfspsgsJ- (Sn,Sn,) = Z f(Sinzsjknl) = Z S,
leNg \p,q€l IS\ leNg

(3.49)

hence the claim follows because f does not have zero sums at v. We can thus ap-
ply Proposition B8 there exist g,h € A with 6, = g#f#h. Consequently 6, =
(#0652 )# [ #(05,#h), verifying the negation of ().

We now show (([2) = (d)). Assume that f has zero sums at every v € Cug \ {0}
without symmetric core. We set f, 1= > ,cq f(t)d; for every v € Cuz \ {0} without
symmetric core. As Cug \ {O} is countable, the set of elements without symmetric core
may be enumerated as (v,). In view of Lemma B3] the set {S,, : n € N} consists of
mutually disjoint sets, consequently

N
F= full= D IfOI=0 (N = co). (3.50)
n=1 teCux\ {0}
téugzlsvn

The convergence of the right-hand side of (3.50) follows from Lemma [BI3} namely, that
{Sy, : n € N} covers Cug \ {O}. This shows f € span{f,,: n € N}. Proposition B.14]
yields however f,, € J for each n € N. Thus f € J.

Finally, we show that ((I) = (Bl)). Suppose f € J. Assume towards a contradiction
that there are g,h € A with g#f#h = 6., then §. € J. This is impossible as A/J is
non-trivial (in fact infinite-dimensional) by Proposition

The equivalence (([I) < @) shows J = M4, hence the last part of the theorem
follows from Proposition 2111 O

Corollary 3.19. Let a € A/J be non-zero. Then there exist b,c € A/J such that
bac = 1.A/j'

Proof. Let f € A be such that a = 77(f). That a is non-zero is equivalent to f ¢ J.
Hence by Theorem B.I§ there are g, h € A such that g# f#h = d.. Setting b := 7w 7(g)
and ¢ := w7 (h) finishes the proof. O

Theorem 3.20. A/J is an infinite-dimensional, purely infinite Banach *-algebra.
Proof. This is immediate from Corollary 319 and Proposition [3.10] O

3.4.1. A description of the annihilator J. Let us start by pushing the characterisation
of J given by [B.30) a bit further:

Lemma 3.21. The following holds:
J = Span{d, # fottds; 1, € 1. (3.51)
Proof. Let us fix k € I'\ Iy. In view of Lemma (1) we have either
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° 5k51 ¢ and 5k52 = sp, where p € I is such that k = 2p; or
e spso = O and sys1 = sg, where q € I is such that k = 1q.

We may assume without loss of generality that the first item holds. Consequently
531"(#.](.0 = 531"( - 551’;#5513’1‘ - 53;‘(#53232 - 5 T 0— 55*3* =0. (352)

With an entirely analogous argument we can show fy#0ds, = 0 for any 1 € I'\ I.
Hence from (B30) and the above we conclude

J = span{0s,s; # fo#t0s,sr : 1,3, k, 1 € I} = Span{ds, # fo#ds: - 1,j € I}, (3.53)

as required. n

Let us define the maps
71 Cug \ {O} — Cuy \ {O}, Sisjik — siks;k (k € {1, 2}) (3.54)

Lemma[3.2] (2) ensures that 7 is in fact well-defined. By the very same result we actually
find that 7, is injective.
For both k € {1,2}, we can find “induced” bounded linear operators

Tp: A— A with Tk(dt) = 5Tk(t) (t € Cuy \ {O}) (3.55)

From injectivity of 73 it easily follows that T} is an isometry. Let T :=T; +T5. Then T
is a bounded linear operator on A.

In the following, A* denotes the (continuous) dual of A, which we identify with
¢>®(Cuz \ {0}) as a Banach space. Let T%: A* — A* denote the adjoint of T. We
observe that

(T*:U')(sisj) < Si s 7 > <T53-sf‘7lu'> = <T153isj‘aﬂ> + <T25sisj‘7:u'>
< T1(si8})> M> + <5 ACT sJ*)aﬂ> = <581183‘17:u'> + <5Si23}27M>
— ulsush) +ulsnsy)  GIET). (3.56)

We recall that the annihilator of J is J+ := {u € A*: (f,u) = 0forall f € J}. In
what follows, I 4 denotes the identity operator on A.

Lemma 3.22. The following hold:
(1) J=Ran(Iq —T), and
2) Tt ={ne A T u=p}.

Proof. That J = Ran(I4 — T) is immediate from Lemma [3.21] and (3.55).

We now prove (2). Let us fix 4 € A*. Suppose first 7% = p. Then (f, u) = (f, T*u) =
(T'f, ) or equivalently (f —T'f, u) = 0 for every f € A. Hence by continuity, (g, u) =0
for every g € Ran(l4 — T). By (1) this is equivalent to u € J+.

In the other direction suppose p € J+. By (1) we clearly have f—T'f € Ran(I4—T) =
J, and hence (f —Tf, ) = 0 or equivalently (f, u) = (T'f, u) = (f, T*u) for each f € A.
Thus T*p = p. 0
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3.4.2. A/J does not have purely infinite ultrapowers.
Proposition 3.23. Let ' C I be finite with 0 ¢ F, and set f := > 5 pdsr. Then
g (NIl = 1F].
Proof. Clearly [|f|l = > icp 6s:] = [F| and hence |77 (f)|| < [F]. Thus it suffices
to show ||[r7(f)|| = |F|. This in turn follows if we can find £ € (A/J)* satisfying
€]l = 1 and [{77(f),&)| = |F|. Recall, by Hahn-Banach, that 7%: (A/J)* — A" is a
linear isometry with range equal to J+. Hence it is sufficient to find p € J= satisfying
lull =1 and [(f, w)] = |F|.

We shall now define such a u. To this end, let us consider the following property.
Given a € Ny we say that ¢ € Cug \ {O} has property (o — ) if

t = sisyy for some i,j € I, and k € F. (v — %)
Now define p: Cug \ {0} — C by setting

(t € Cup \{0}). (3.57)

27 if t has property (o —*H) for some a € Ny
pu(t) = :
0 otherwise

We need to check that p is well-defined. Assume o, 3 € Ny, i,j € I, p,q € Iz and
k,1 € F are such that sisi; = spsj,. Then it follows from LemmaB.2] (2) that i = p and
hence o« = 5.

It is clear that p is bounded with ||| = 1, hence p € A*. We want to show that in
fact u € J+, which in view of Lemma (2) is equivalent to the following claim.

Claim 3.24. p=T"pu.

Proof of Claim. Assume firstt € Cug\{Q} has property (o —"H) for some a € Ny. Then
t = sisf(j for some i,j € I, and k € F. Notice that 5i151*(j1 and sigsl*(ﬂ have property
((aw+ 1) — ), hence by (B.56)
p(t) =270 = 27071 4 9707 (i) + plsiasi)
— (T* ) (sisig) = (T")(). (3.58)
Assume now t € Cug\{Q} does not have property (a—"H) for any o € Ny. By definition,
p(t) = 0. By Lemma (2) we can find unique «, 5 € Ng and i € I, j € Iz such that
t= sis;.
We observe that 5i153‘1 does not have property (v — ") for any v € Ny. For assume
towards a contradiction that there exist v € No, p,q € I, and 1 € F' such that 3i18;1 =
spsfq. Then il = p and jl = lq. In particular o +1 =« and 1q € Ig4;.
e Suppose o > 3. By the above 1 € Ig,1_, = Ig_,. Consequently 1 € Iy must
hold, which is equivalent to saying 1= (). This contradicts () ¢ F'.
e Suppose a < 3. Then j = wu for some u € I, and w € Ig_, and therefore
t = siS%y- As t does not have property (o — ") it follows that w ¢ F. However
ul € I, and q € I,4q, thus from wul = jl = lq we conclude w =1 € F, a
contradiction.

An analogous argument shows that sigs;Q does not have property (v — ) either for any

7 € No. From @B.56) we obtain (T™"u)(t) = (T"u)(sis]) = u(sish) + pn(si2sj) = 0, as
required. O
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Lastly, from the definition of u we see
()] = - | 2ot

Hence the proposition is proved. O

Proposition 3.25. Fiz p € [1,00). Let ©: A/J — B({P) be a continuous algebra
homomorphism such that ©(rz(ds:)) = A; for all i € {1,2}. Then © is injective but it
s not bounded below.

Proof. Let us consider the operator S := (A; + As)/2 € B(¢?). We claim that ||S| =
271/P. To see this, we first observe that (Sz)(k) = (zox + zox_1)/2 for all x € 7 and
k € N. Thus for each x € (P,

|zok—1] + |z ] [ |zon 1\p+ |22k [P 1 & 1
S < Z (N < ) =352 leal = 52l
k=1 n=1
(3.60)

The second inequality in (B.60) follows from convexity of the function = — aP; [0,00) —
[0,00). (Specifically, we use that (a + b)?/2P < (aP + bP)/2 whenever a,b > 0.) Thus
S]] < 27'/P. The upper bound is sharp, as ||Sz| = 2-'/?||z|| holds by choosing for
example x := e; + es.

suu

=> 2°=|F| (3.59)
ieF

We set h := (ds: + ds3)/2. For any N € N we see that N = 2- NZIGIN s, Where
clearly |Iy| =2V and 0 §§ Iy. Therefore by Proposition B.23] we obtain
Ing (W) =2V er (32 0) [ =2 Vil =1 vem. oy
iEIN

From ©(m7(h)) = S and that © and 77 are homomorphisms we obtain
6 (rz (B <10 (g I = S|V =27 (NeN).  (3.62)

It follows from (B.61) and (3.62]) that © cannot be bounded below.

Lastly, .A/J is purely infinite by Theorem [3.20] hence in particular it is simple by
Lemma (1). As O is a non-zero continuous algebra homomorphism, Ker(0) = {0}
must hold.

Remark 3.26. We stated this result for an arbitrary homomorphism © with ©(77(ds:)) =
A; for i € {1,2}, as this is all the argument needed. In fact, such a © is already equal
to ©,, as defined above. Indeed, let C; = O(n7(ds,)) for i € {1,2}. Then we have
that A1C1 = Ipp = A3Cy and A1Cy = 0 = AsCy and C1 A1 + CoAs = Ipw. Thus
Bl == B1A101 = (Igp - BQAQ)Cl == Cl - BQAQCl == Cl and symmetrically BQ == CQ.
From this, (8.12) and Proposition the claim readily follows.

Theorem 3.27. The Banach x-algebra (A/J )y is not simple hence not purely infinite
for any countably-incomplete ultrafilter U.

Proof. Taking for example p = 1, it follows from Proposition that there is a con-
tinuous, unital algebra homomorphism ©: A/J — B(¢!') with ©(n7(ds:)) = A; for each
i € {1,2}. Thus © is not bounded below by Proposition Hence (A/J )y cannot
be simple for any countably-incomplete ultrafilter ¢ by Proposition 2.8 In particular,
(A/JT )i is not purely infinite by Lemma [T2] (1). O
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Remark 3.28. Even though (A/J )y is not purely infinite for any countably-incomplete
ultrafilter U, it is always properly infinite. Indeed, A/J is purely infinite by Theo-
rem hence it is properly infinite by Lemma (2). Now it follows from [10, Corol-
lary 4.19] that an ultrapower of a properly infinite Banach algebra is properly infinite,
hence (A/J )y is properly infinite for any ultrafilter I.

Remark 3.29. In [22] Phillips considers certain representations of the Leavitt algebra Lo
(see Remark B10) on L? spaces. Indeed, [22] Example 3.1] constructs a representation of
Lo on /P which is essentially the same as the restriction of our ©, to L. Phillips explores
generalisations of these representations, which are called spatial, see [22], Definition 7.4,
Lemma 7.5]. It is shown in [22] Theorem 8.7] that all spatial representations give rise
to isometrically isomorphic closures. This gives rise to the p-analogues of the Cuntz
algebras, [22, Definition 8.8]; see also [4] for more recent study of these algebras. Thus
the closure of the image of ©,, inside B(¢?), is isometric to O}, in the language of [22].
Our result of course shows that @p,@’;: A/J — OF is not an isomorphism, because it is
not bounded below. In fact, as we shall see in Section [, the Banach algebras .4/7 and
OF are not isomorphic for any p € [1,00).

Phillips shows in [23] that, in particular, O} is purely infinite (with the same definition
as we use). The proof, however, is different to our proof that A/7 is purely infinite, and
much more closely parallels the C*-algebraic proof that s is purely infinite. A close
examination of the proof shows that it does not work for A/7, as various necessary
norm estimates are different (in the sense of not even being equivalent up to a constant)

for A/J.
P
It is not obvious to us that the proof in [23] provides an estimate for how Cl?f behaves,
and hence if OF has purely infinite ultrapowers. Furthermore, given a lack of nice
“permanence” properties for purely infinite Banach algebras, it seems that knowing OF
is purely infinite is no direct help in showing that .4/7 is purely infinite, or vice versa.

We remark that similar questions around “permanence properties” are raised at the end
of [3].

Remark 3.30. As a final remark, while we have chosen to work with Cus in this paper
(or, equivalently, with an ¢!-completion of the Leavitt algebra Lo, see Remark B.I0) one
could also follow Phillips, and consider the general Cuy and Lg, for d > 2. We have
chosen not to do this for notational simplicity, but let us quickly indicate what changes
would be needed.

Cuy has generators (s;)%_, (s7)L, with s}s; = e and sis; = O for i # j. The com-
binatorics of Cuy are essentially the same, just with I now being all finite sequences in
{1,2,--- ,d}. We can then form Ay := ¢*(Cuy\ {0}, #) and consider the ideal [, gener-
ated by the element 6, — 2?21 ds;sr- All of the results continue to hold, with essentially
identical proofs, excepting that various statements in the proof of Proposition B.14] now

need to sum over 1,2,--- ,d instead of just 1,2.
To represent A,/ Jy on P, we simply replace “2n” by “dn”, for example, defining
(Agz)(n) = Tans1—k (xell, ke{l,2,...,d}). (3.63)

The obvious modifications can be made to Proposition B.16l Similarly, d cases, instead
of just two, need to be considered in the proof of Lemma [3.2T] and in the definitions of
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71, after this (now k € {1,2,--- ,d}), and 2 replaced by d in (3.50), B.57) and B.58).
Finally, we perform similar alterations to Proposition

4. BOUNDED TRACES ON A/J AND THE LACK THEREOF ON O

The main aim of this section is to prove that there exist non-zero bounded traces on
A/J (Theorem [43), while there are no non-zero bounded traces on O (Theorem [.10]).
These two results immediately imply the following in particular:

Theorem 4.1. The Banach algebras A/ J and O are not isomorphic for any p € [1,00).

4.1. Some background on traces. Let us first recall some basic properties of traces.
A trace on a Banach algebra B is a linear functional 7 on B with (ab,7) = (ba, T) for
each a,b € B. We say that a trace 7 on B is bounded if 7 € B*. The trace space of B is
the set of all bounded traces on B. A trace 7 on a unital Banach algebra B is normalised
if (1g,7) =1.

Let B be a unital Banach algebra and let Z be a closed, two-sided ideal in B. If 7
is a bounded trace on B with Z C Ker(7), then there is a unique bounded linear map
7' B/T — C with 7" omz = 7, and 7’ is readily seen to be a trace, non-zero if and
only if 7 is non-zero. We say that 7 drops to a trace on B/Z. Any bounded trace 7" on
B/ arises from such a 7. Hence the trace space of B/Z is in bijection with the set of
bounded traces 7 on B for which Z C Ker(7) holds.

4.2. There are non-zero bounded traces on .A/J. Recall that ¢! (Cus)* is isometri-
cally isomorphic to £>°(Cug) and that A := (£}(Cuz\{0}), #) is isometrically isomorphic
to £1(Cug)/Cdy. Hence by the previous section we may identify the trace space of A
with the set

{T|Cu2\{<>}2 T €L%°(Cuy), 7(0) =0, 7(uwv) = 7(vu) (u,v € CUQ)} . (4.1)

Recall that (A/J)* and J L are isometrically isomorphic, and that J 1 embeds iso-
metrically into ¢>°(Cug \ {0}). Henceforth we identify traces on A/J with a subset of

€>°(Cuz \ {0}).
Lemma 4.2. Let 7 be a bounded trace on A. Then J C Ker(7) if and only if T(e) = 0.
Consequently, T drops to a bounded trace on A/J if and only if T(e) = 0.
Proof. Let us first note that by the definition of fj it follows that
<f0,7—> = <66,T> - <681SIaT> - (58283a7—> = 7’(6) - 7—(518?) - 7—(528;)
=71(e) — 7(s]s1) — 7(s582) = 7(e) — 27(e) = —7(e). (4.2)
Suppose T(e) = 0 holds. We show that J C Ker(7). By Lemma[3.21]it is enough to show

that (0s,# fo#és;,ﬂ = 0 for i,j € I. We consider a number of possibilities. Suppose

there is a k € I such that j = ik, then by Lemma we have s7's; = sj. Thus

(0s; 7 fo#tbsy, ) = (051 #05,# fo, T) = (Osy #f0, 7). (4.3)
If k # (), then from (B.52) we see that ds; # fo = 0, and so (ds; #fo, 7) = 0. If k = ) then
sy = e and thus dg: #fo = fo. Hence (3s: # fo, ) = (fo,7) = —7(e) = 0 by (2) and the

assumption 7(e) = 0.
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Suppose there is a k € I such that i = jk, then by Lemma we have s}‘si = Sg.
Thus <55i#f0#5s;,7'> = <f0#5s; #0s,,7) = (fo#Is., 7). An analogous reasoning to the
above shows that (fy#ds,,7) = 0.

Finally, if there is no k € I such that i = jk or j = ik, then sjs; = ¢ by Lemma
and hence 53; #0ds, = 0. Thus (58i#f0#53;,7'> = (53;#55i#f0,7'> =0.

Suppose J C Ker(7) holds. Then 0 = (fo,7) = —7(e) by (£2), hence 7(e) = 0 as
claimed. ]

There is a complete characterisation of traces on A given in [8 Corollary 3.13], which
could presumably be extended to a complete characterisation of traces on A/J. We
restrict our study here to the bare minimum needed for our purposes.

Theorem 4.3. Consider the map 7: Cuy — C defined as

(4.4)

(w) 1 ifw = sy18) for someiel,
T(w) =
0 otherwise.

The restriction of T onto Cug \ {0} gives a non-zero bounded trace on A with T(e) = 0.
Consequently, T drops to a non-zero bounded trace on A/J .

Proof. That 7 is non-zero follows from e.g. 7(s;) = 1. Also, 7(e) = 0 is immediate.
Rather than using the characterisation given by [8 Corollary 3.13], which itself requires
checking many conditions, we shall show directly that our example 7 is indeed a trace.

Take arbitrary v, u € Cug \ {0} and write v = sis] and u = sysj for some i, j k,1 € L.
From Lemma we see that

sisy, if j = kp for some p € 1, (a)
vu = 8i8;5kS] = { sips;  if k = jp for some p €1, (b) (4.5)
O otherwise (c)
and
sks}, if 1=iq for some q €1, (I
uv = S8 8iS; = skqsj if i=lq for some q €1, (I1) (4.6)
O otherwise. (I11)

Suppose vu = sp1 5y, for some n € I. Then 7(vu) = 1. Clearly (c) cannot hold.
e If (a) holds then sjsj, = sn1s}, and hence Ip =n and i = nl = Ipl. This yields
that we are in case (II) with q = pl. Hence uv = skquk = skplsl*(p and thus

T(uv) = 1.
e If (b) holds then sjps] = sp1s;, and hence 1 = n and ip = nl = 11. Note that
either:

— p = (0 soi=11. This yields that we are in case (II) with q = 1. Hence
wuY = 51(0153k = skls} = Sjpls; = Sjls; and thus 7(uv) = 1; or

— p =rl for some r € I then irl = 11 and thus ir = 1. Note that this yields
that we are in case (I) with q = r. Hence uv = sks;q = Sjij]fq = SJrls;r and

thus 7(uv) = 1.
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Alternatively, vu # sm155, for any m € I. Then 7(vu) = 0. If 7(uv) = 1 then uv = sp15}
for some n € I, so by the above argument with u, v swapped, also vu is of this form, a
contradiction. Hence 7(uv) = 0.

In either case, 7(uv) = 7(vu) follows, and so 7 is a trace. The “consequently” part of
the theorem is a corollary of the first part and Lemma O

4.3. There are no non-zero bounded traces on O). For the rest of the section we
fix some p € [1,00). Recall the definitions of the operators A, Ay and By, By on (. If
(en) denotes the standard unit vector basis on P then we easily conclude that

enti-1  if n+4+1—11is even, )
Aje, = 2 (neN,ie{1,2}). (4.7
0 otherwise
Similarly
Bien, = ean—it1 (’I’L eN, i€ {1, 2}) (48)

Given 1 € I we define

Ao AilAiQ"'Aia lfi:(ll,’LQ,Za)GI\{@}, (49)
V) I if i = 0. '
Analogously, define B;.
Let us introduce a piece of notation. For a fixed i € I we define
- (ia7ia—1,---i1) lflz (il,ig,...ia) GI\{Q}, (4.10)
0 ifi =0.
Clearly Ay« Bj = Ipp for any i € L.
Given i € I, we define the map p;: N — R by
(0%
9-a <n—|— S 2l —2a+1> if i = (i, 40, .. .iq) € I\ {0},
pi(n) == =1 “ (n € N).
n ifi=10
(4.11)
An elementary induction argument on « and (A7) shows that
«
e, if n4 > 271 — 2 41 € 29N,
Ao =4 0 l; : (n € N). (4.12)
0 otherwise

Note that the indices of the operators A; and B; are elements of {1,2} instead of {0, 1};
thus —for technical purposes only— we need the following lemma:

Lemma 4.4. Let o € N. The map
«
O : T — {0,1,---,29 —1}; i= (i1, - ,ia).—>1—2a+221712’1
=1

is a well-defined bijection.
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Proof. Leti= (i1, - ,iq) € Ly. Set j; :=¢y—1foreachl € {1,...,a}, so that 5; € {0, 1}.
Then

«

[e% (0%
o) =1-204) 271G +1)=1-224+ (22 1)+ > 2715 => 2",
=1

=1 =1
This sum is indeed a member of {0, 1,--- ,2%—1}. The result now follows by considering
the binary decomposition of an arbitrary element of {0,1,...,2% — 1}. U

Lemma 4.5. Letn € N and let o € Ny be fized. There exists a unique i = (i1,12,...,14) €
[0

I, such that n+ > 2=Vi; — 2% + 1 is divisible by 2°.
=1

Proof. Working modulo 2%, we wish to show that there is a unique i with n 4 6,(i1) =0
mod 2%, or equivalently, 6,(i) = —n mod 2¢. This follows directly from Lemmald4 [

Proposition 4.6. Let o € Nyg. We have that
S AkealP = [z|P (z € ). (4.13)
kel

Proof. If & = 0 then the claim is trivial, so assume « > 1. By (4.12), and as clearly
px: N — R is injective for each k € I, we see that

Z | A=z ||P = Z H Z z(n)e,, (n) - Z Z lz(n)P. (4.14)

kel, kelo  {n:pk(n)eN} kely {n:px(n)eN}

By Lemma we see that for each n € N there is a unique k € I, with px(n) € N.
Hence

lz? =Y lem)P =" > fa(m)P. (4.15)
n=1 k€ely {n:pk(n)eN}

The result follows. O

We require one more piece of notation. Given i € I we define the map o;: N — N by

(6%
20 — S 2 420 — 1 if i = (i1, 49, ...74) € I\ {0},
oi(n) :== l; : (61,72 ) 0 (neN). (4.16)
n ifi=0
An elementary induction argument on « and ([.8]) show that
Bie,, = €oi(n) (n S N) (4.17)
Proposition 4.7. Let o € Ng. Then for any family of vectors (vk)ker, in 7,
P
| 3 B = 3l (1.18)
kel kel

In particular, Bj is an isometry for each j € 1.
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Proof. The o = 0 case is trivial, so let o > 1. We claim that the ranges of oj and oy
are disjoint for distinct j,k € I,. Indeed, suppose gj(n) = ok (m) for some n,m € N and
J, k € I,. In the notation of Lemma[£.4], this is equivalent to 2%n —0,(j) = 2*m — 0,(k);
thus [n —m| =27%0,(j) — 0a(k)| < (2 —1)27* < 1. Therefore n = m and hence j =k
as 0, is bijective. From the claim and (4.I7) we obtain

H Z kakH - H Z ka €oi(n) = > i!mk(n)\p = fal?, (4.19)

I, n=1 kel n=1 kelan
as requ1red. To see the “in particular part”, let j € I, and 2 € ¢?. Set zj := z and
xk := 0 for each k € I, \ {j}, then ||Bjz| = ||z|| follows from the first part. O

Lemma 4.8. Let a € Ng and let j € I. The operator 3y .y ByxjAx~ is an isometry on
28

Proof. We combine Propositions [£6] and 7] to see that

p
H 3 Bijk*xH - H S Bk(BjAk*x)H Z IBjAeal? = 3 [|Awe|P = ||z|
kel kel kel
(4.20)
for any x € fP. O

Lemma 4.9. Let o € Ng and let j € 1. The operator Zkela By Ay« has mnorm less
than or equal to 1.

Proof. We combine Propositions [4.6l and [.7] to see that for any x € ¢P,

| > Brdagra] = 32 lggealr = 3 145 Areall? < 3 Al = 2|,

kel, kel kel, kel,
(4.21)

as [|Aj]| < 1. O
Theorem 4.10. There are no non-zero bounded traces on Og.

Proof. Assume towards a contradiction that 7/ is a non-zero bounded trace on OF. As
O,: A/J — B(fP) is a continuous algebra homomorphism with Ran(©,) = O} by
Proposition [3.16], it follows that 7 := 7’0 @p|0127 is a non-zero bounded trace on A/J. By
an abuse of notation, we identify 7 with a member of £>°(Cug \ {0}), see the discussion
before Lemma

As 7 is non-zero, after possibly rescaling, we obtain that there is a w € Cuy \ {0}
such that 7(w) = 1. Note that there is no u € Cup \ {Q} such that w = s;us}, where
i,j € {1,2} are distinct. Indeed, otherwise 7(w) = 7(s;us}) = 7(sjs;u) = 0. Also note
that if w = s;us} for some ¢ € {1,2}, then 7(w) = 7(sjus}) = 7(sfsju) = 7(u). Hence
we may assume without loss of generality that w = s; or w = 53‘ for some j € I\ {0}.

First suppose that w = s;. For every k € I,

<Bijk*,’7'/> = <BkBjAk*,7"> = <Ak*BkBj,7"> = <Bj,7">
= <®(7Tj(55j))77/> = <ﬂj(55j),7> =7(s;) = 1. (4.22)
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Using (£.22)) and Lemma [£.8 we obtain for every a € N,
2¢ — ‘ Z <Bijk*7T,> ‘ = ‘< Z Bijk*,T/>‘ < HT/H
kel kel

which is nonsense.

Now suppose that w = 53‘, so that

<BkA(kj)* s T/> = <BkAj*Ak* s T/> = <Aj*Ak* Bk, T/> = <AJ* s TI> = T(Sjik) = 1, (424)

‘ Z By A || = I7']l,  (4.23)
kel,

analogously to the calculation in (£22]). Using Lemma .9 and an estimate completely
similar to (£.23)) this again leads to a contradiction.
Hence there are no non-zero bounded traces on O5. O

Remark 4.11. It is much easier to prove however the weaker statement that there are
no normalised traces on O5. Indeed, let 7/ be a trace on OF. As Ipp = Ipp + Ipp — Ipp =
A1By + A3By — (B1A1 4+ B2 As), the equality (Ipp,7') = 0 follows; whence 7/ cannot be
normalised.

We end the paper with a question of interest to Banach algebraists. Motivated by [23],
we ask if A/J is an amenable Banach algebra? Phillips shows that O} is amenable, but
his techniques do not appear applicable to A/J due to differing (again, incomparable)
norm estimates. However, if A/J were amenable, this would immediately give a new
proof that OF is amenable.
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