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Abstract Recently, order picking routing (OPR) for robots inside modern
warehouses have become one of the most challenging problems. The process of
OPR can be formulated as a Travelling Salesman Problem (TSP). Traditional
techniques used to solve this problem usually require a long execution time
and are problem-specific. Meta-heuristic optimisation techniques have been
applied to solve this problem and have shown outstanding results. In this
study, we solve the OPR problem using a newly proposed discrete variant of the
cuckoo search algorithm. Five modifications were made to the current discrete
cuckoo search algorithm. The proposed variant was applied to a traditional
TSP problem. Then, the proposed algorithm was customised to solve the OPR
problem in a warehouse environment. Finally, the proposed algorithm was
applied to a physical prototype. It was then compared with genetic, particle
swarm optimisation, and ant colony optimisation algorithms. Simulation and
practical results proved the significant performance of the proposed algorithm
over all other algorithms, especially in solving complex problems.

Keywords Discrete Cuckoo Search Algorithm ·Meta-heuristic Optimization ·
Order Picking Routing Problem · Path planning · Travelling Salesman Problem

1 Introduction

Warehouses are responsible for storing goods and picking orders for customers.
Once the customer confirms his/her order, the human pickers prepare the order
by picking the goods from their storage location to the shipment location [64].
To fulfil the needs of large number of customers, the delivery process must be
accurate and rapid [18].

There are two main types of warehouses: traditional warehouses and mod-
ern autonomous warehouses. A traditional warehouse is based on a long con-
veyor belt that moves through the entire warehouse. The ordered items are

Address(es) of author(s) should be given
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picked by humans and placed on the belt. The picking process for serving mil-
lions of customers takes a huge amount of time, money, and labour. However,
the design of this system has several drawbacks [45]. The system is static and
difficult to modify after installation. In addition, the system lacks scalability,
because it is difficult to extend. Furthermore, the items always have the same
storage location, so re-slotting the newly arrived items is quite difficult.

The second type of warehouse is the modern autonomous warehouse. The
growing number of customers has made the need for autonomous warehouses
crucial. In such warehouses, robots, which are autonomous trolleys, are respon-
sible for picking items from their storage locations and bringing them to the
human operators to pick the order. In this system, the human picker remains
at the same location to pick multiple orders. This system reduces the cost to
human operators and increases the speed of the order picking process. The
main principle of an autonomous warehouse is based on artificial intelligence
[44]. The main advantages of the autonomous warehouse are as follows: (i)
the same item can be placed in different locations, so there are no permanent
locations anymore, (ii) the system automatically finds the best shelf based
on the available space, and (iii) the robots find the best path to the items
automatically.

The most challenging problem in modern warehouses is the order picking
routing (OPR) problem. This is the most time-consuming process inside a
warehouse system because there are a large number of permutations for picking
orders [59]. The routing policy for the order picking process can be formulated
as the well-known travelling salesman problem (TSP). The main objective is
to pick all items in a customer order with minimum travel distance [15], [61].

In the TSP, the salesman must visit several cities during the trip. Each city
should be visited once during the entire trip and then returned to the starting
point. The main objective is to find a route that has the minimum travelling
distance. This is an NP-hard problem, which means that solving it is difficult
because the number of possible solutions increases exponentially with problem
dimensions. The order picking problem is similar to a TSP, where the salesman
is the robot (trolley) and the cities are the items that should be picked to fulfil
the customer’s order.

Recently, several techniques have been presented to solve path planning
and OPR. There are three main methodologies for solving these problems:
exact routing algorithms, heuristic algorithms, and meta-heuristic algorithms
[29]. The first type is the exact algorithms that always find an optimal solution,
such as the RR (Ratliff and Rosenthal) Algorithm [14]. The drawback of exact
algorithms is that they usually take a very long time to reach an optimal
solution, as most of them are based on exhaustive search. Therefore, they are
not feasible for real-time applications.

The second type is the heuristic algorithms, which are problem-specific.
However, in most cases, the results are not optimal [55]. The drawback of
these algorithms is that they are problem-dependant. Therefore, the heuristic
approach for one problem cannot be used for another problem.
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The third type is the meta-heuristic algorithms, which are high-level problem-
independent algorithms that have proven to find approximate solutions to the
problem. Examples of these algorithms include genetic algorithms (GA) [60],
particle swarm optimisation (PSO) [35], and ant colony optimisation (ACO)
[7]. Meta-heuristic algorithms have proven their efficiency in finding near-
optimal solutions, especially for problems with a large number of dimensions.

The most commonly used meta-heuristic optimisation algorithm to solve
the OPR problem as an application of the TSP problem is the genetic al-
gorithm [38]. The genetic algorithm appears to find good solutions for the
travelling salesman problem; however, it depends significantly on the encod-
ing of the problem and the type of mutation, crossover, and selection methods
used. It has multiple parameters to be tuned, such as crossover probability
and mutation probability. These factors make parameter tuning difficult, and
multiple combinations should be tested [17].

The present study considers solving the OPR problem using a cuckoo
search-based meta-heuristic approach. The main reason for choosing this al-
gorithm is that it has only one parameter to be tuned, which is called the
probability of discovery. Additionally, it can balance the global search (explo-
ration) and local search (exploitation), which are the most important factors
that make a meta-heuristic algorithm reach an optimal solution faster and
more accurately [66], [67]. Despite the prominent results of the cuckoo search
algorithm (CSA) in continuous and discrete optimisation problems, it has not
yet been used to solve the OPR problem inside warehouses. The main contri-
butions of this study are summarised as follows:

1. A new discrete variant of CSA is proposed, namely, discrete damped cuckoo
search (DDCS).

2. Modification and improvement of CSA:
(a) Applying different steps of the 2-pt moves on the not-so-bad solutions.
(b) Using random key encoding for the solution to preserve the good con-

tinuous characteristics of the original CSA algorithm.
(c) Adapting the Lévy flight Random Walk on the permutation solutions

rather than the continuous solutions.
(d) Using adaptive parameters instead of fixed parameters for the CSA

algorithm.
(e) Applying the concept of population division on the discovered solutions,

and applying different types of mutation operators on the sub-groups.
3. The proposed DDCS algorithm is designed to solve the OPR problem. To

the best of our knowledge, CSA has not been applied to the OPR problem
in a warehouse environment yet.

4. The superiority of DDCS:
(a) The proposed DDCS algorithm outperforms GA, PSO, and ACO al-

gorithms on the well-known TSP problems benchmark and warehouse
OPR problems.
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(b) Convergence speed of the DDCS algorithm was tested, and it was found
to have a faster convergence than all the other algorithms. Therefore,
it can be applied to real-time problems.

(c) The results of the proposed DDCS algorithm show the best distribution
on box plots and violin plots. These results prove the repeatability and
reliability of the proposed algorithm.

5. A physical prototype robot was designed, and the proposed algorithm man-
aged to find the optimal path practically.

The remainder of this paper is organised as follows: Section 2 covers the
state-of-the-art methods used for solving the TSP problem. Section 3 explains
the problem statement and mathematical formulation of the OPR problem.
Section4 discusses the methodology and proposed solution. Section 5 explores
the model assumptions and algorithm parameters. Section 6 discusses the sim-
ulation results and statistical analysis of the proposed DDCS algorithm. In
Section 8, the paper is concluded, and future work is explored. For the conve-
nience of readers, the abbreviations used are listed in Table 1.

Table 1: List of Abbreviations

Symbol Acronym / Abbreviation
CSA Cuckoo Search Algorithm
TSP Travelling Salesman Problem
OPR Order Picking Routing
DDCS Discrete Damped Cuckoo Search
ACO Ant Colony Optimisation
GA Genetic Algorithm
TS Tabu Search
SA Simulated Annealing
PSO Particle Swarm Optimization
RR Ratliff and Rosenthal
LKH Lin–Kernighan–Helsgaun
PSO-NIC-SA particle swarm optimization with simulated annealing and neighborhood information
GSAACS-PSOT genetic simulated annealing ant colony system with particle swarm optimisation techniques
LFRW Lévy Flight Random Walk
BSRW biased/selective random walk.
KDE kernel density estimation
GUI Graphical user interface

2 Literature Review

Recently, extensive research has been conducted to solve NP-hard problems.
TSP is one of the most well-known NP-hard problems. In this problem, it is
necessary for the salesman to visit several cities once during the whole trip
and then return to the starting point. The main objective is to determine a
route that has the minimum travelling distance [2]. This problem has various
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applications, such as determining the path for a driller to drill a printed cir-
cuit board, X-ray crystallography, vehicle routing, scheduling, and OPR inside
warehouses [34], [49].

The main focus of our study is on the OPR problem inside warehouses as
a TSP problem. Before exploring the algorithms that have been reported in
the literature, the characteristics and complexity of the designed warehouse
should be determined. In this study, we consider a conventional warehouse
with multiple blocks. Conventional warehouses have a rectangular shape with
parallel picking aisles perpendicular to a certain number of straight cross aisles.
Warehouses with more than two cross aisles are often referred to as multi-block
warehouses [38]. The number of blocks in this study will be up to 2500 blocks
(huge warehouse).

The dimensions of the TSP depend on the number of items in the customer
order. The worst-case scenario occurs when the order size equals the number
of blocks, where each block holds only one item. It is necessary to obtain the
final path within a few minutes to make the robot follow the resulting path
and pick the order for the customer as quickly as possible. The final path is not
necessarily the shortest (a good solution is not necessarily the best solution).
Several techniques used to solve this problem are discussed in detail in the
following sections.

2.1 Exact Algorithms

De Koster and van der Poort (1998) used a general form of the RR algorithm
for decentralised deposition in traditional warehouses. It can deal with a situ-
ation where the order picker can deposit the retrieved items at the respective
front ends of each picking aisle without returning to the depot [14].

Roodbergen and de Koster (2001) studied a conventional warehouse with
a middle cross-aisle that divided the warehouse into upper and lower blocks.
The authors applied the concept of RR to iteratively construct a minimum-
length tour subgraph by expanding the subgraphs based on the specific steps
proposed in [50]

Matusiak et al. (2014) solved the OPR and order batching problem in
a multi-block conventional warehouse. They used the (exact) A* algorithm,
which is based on dynamic programming. The authors assumed that multiple
depots were located at the back cross-aisle [39].

Çelik and Süral (2016) proposed another extension of the RR algorithm by
considering turn penalties in addition to the regular travel time of the order
picker. They solved different types of problems (single-objective turn minimi-
sation, bi-objective travel time minimisation, and tri-objective problems with
U-turn minimisation) in polynomial time [5].



6 Mohamed Reda et al.

2.2 Heuristics Algorithms

Goetschalckx and Ratliff (1988) introduced a simple heuristic approach for
wide-aisle warehouses, called the Z-pick heuristic. The heuristic approach de-
termines a route where the robot, which navigates the warehouse, travels in a
zigzag shape through a wide aisle to collect requested items from both sides
of the aisle[26].

Hall (1993) proposed three simple heuristics for the OPR problem. A com-
parative study was conducted among the three methods. The OPR problem
is assumed to exist in a single-block warehouse with narrow aisles and a sin-
gle depot. The three methods are referred to as the traversal, midpoint, and
largest gap heuristics [28].

Theys et al. (2010) applied the Lin–Kernighan–Helsgaun (LKH) TSP heuris-
tic to solve the OPR problem in a conventional warehouse with two blocks.
These heuristics, which were used in their algorithm, improved the initial so-
lutions generated without increasing the run time.[57].

Chabot et al. (2017) [6] modified the heuristics proposed by Hall (1993)
[28]. This modified heuristic is the same as the original procedure, with the
additional condition that a requested item is retrieved only if it respects all
constraints of the problem. Otherwise, it is skipped and picked on the next
tour.

Chen et al. (2019) proposed heuristics for warehouses with ultra-narrow
aisles. In this configuration, the picker cannot enter sub-aisles using a picking
device. However, the device must remain at the aisle entrance. Moreover, the
picker can enter and leave from only one side of the aisle because the other
side is blocked by a warehouse wall [8].

2.3 Metaheuristic Optimization Techniques

As previously discussed, exact algorithms require a long execution time to find
an optimal solution, whereas the heuristic algorithms are problem-specific.
Therefore, the need to find good (not necessarily the best) solutions to this
problem has led to an increase in the use of metaheuristic optimisation algo-
rithms. Metaheuristic optimisation algorithms have advantages over the exact
traditional algorithms. These algorithms are easy to implement and can solve
the most complex optimisation problems [23],[24]. Additionally, metaheuristic
optimisation algorithms are very flexible; they can deal with discrete, contin-
uous, or even mixed optimisation problems with any number of dimensions
[25],[68].

Various metaheuristic algorithms have attempted to solve the TSP, such
as ACO [16], GA [33], TS [36], SA [4], and discrete PSO (DPSO) [53]. More-
over, some hybrid algorithms are also used to solve this problem, such as fuzzy
particle swarm optimization with simulated annealing and neighborhood infor-
mation (PSO-NIC-SA) [1] and genetic simulated annealing ant colony system
with particle swarm optimisation techniques (GSAACS- PSOT) [10]. The fol-
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lowing sections discuss in detail some of these metaheuristic algorithms for
solving the TSP.

2.3.1 Genetic Algorithm

Grefenstette et al. proposed a version of the GA to solve the TSP[27]. The
algorithm begins with a random population consisting of candidate solutions
(tours). Next, a percentage of this population is selected for the crossover
operation to produce new offspring (children). Then, a small percentage of the
new generation is mutated to improve individuals in the new population.

Crossover and mutation operators are the most important operators in GA.
The former includes various methods, such as cyclic crossover, order crossover,
and partially-mapped crossover. The latter uses different methods, such as
swap mutation and scramble mutation. The selection of the crossover and
mutation methods depends greatly on the application and encoding type [42].

Mutation is one of the most effective operations in GA. This can improve
the exploration of search space. Fogel [22] claimed that everything can be
performed using the mutation operator [21], which is the most important op-
erator in optimisation [19]. There are three types of mutation operators: inver-
sion operator, displacement operator, and pairwise swap operator [20]. These
operators have been explained in detail in [11].

2.3.2 Particle Swarm Optimization (PSO)

PSO generates an initial population consisting of particles that are considered
candidate solutions. Each particle in the population moves with a variable ve-
locity to reach the global best solution obtained thus far and the best solution
of the previous generation. PSO has proved its efficiency in many applications
and complex optimisation problems. However, it could not prove its efficiency
in the TSP because of the difficulty in introducing velocity in the combinato-
rial space [42]. Shi et al. introduced the permutation concept into PSO and
proposed a DPSO algorithm. They focused on interpreting the velocity via a
mutation operator that is inspired by the swap operator developed by Wang
et al. [62].

2.3.3 Ant Colony Optimization (ACO)

ACO emulates the behaviour of ants when searching for food. An ant starts by
visiting a random place and then moves from one place to another, leaving a
mark in each city visited. Other ants passing these cities can follow the marks
of the previous ants or choose another path randomly. A basic version of the
ACO algorithm was designed to solve the TSP [16].

A hybrid algorithm, named GSAACS- PSOT, was developed by Chen and
Chien to solve the TSP. This algorithm combines the ACO, GA, PSO, and
SA algorithms. This algorithm generates an initial population using the ACO
algorithm. Next, the population is improved by applying the GA and SA
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mutation operators. After a specific number of cycles, PSO is used to exchange
information between subgroups of the population [10].

2.4 Cuckoo Search Algorithm (CSA)

The (CSA is a meta-heuristic optimisation algorithm that is also used to solve
the TSP. This separate section discusses it in detail because the proposed
algorithm is based on it. The CSA algorithm was developed by Yang and Deb
in 2009 to imitate the brood parasitism behaviour of cuckoos. This bird lays its
eggs in another nest, called the host nest. Cuckoo birds imitate the pattern and
colour of the eggs owned by the host to prevent them from being discovered
by the host. If the host recognises the cuckoo eggs, it can throw them out of
its nest or leave its nest and build a new one.

The CSA has three main components [67], [63]. The first one is Exploitation
using Lévy Flight Random Walk (LFRW), which is used to generate new
solutions near to the best-obtained solution so far. The LFRW is expressed
in Eq. (1), where Xi,G is the current solution, Xi,G+1 is the newly generated
solution, andXbest is the best obtained solution. Furthermore, α0 is the scaling
factor that is equal to 0.01 [69], β is a constant that is equal to 1.5 [66], and µ
and ν are randomly generated numbers. The parameter ϕ is calculated as in
(2), where Γ is the gamma function.

Xi,G+1 = Xi,G + α0
ϕ× µ

|υ|
1
β

(Xi,G −Xbest), (1)

ϕ =

(
Γ (1 + β)× sin(π×β

2 )

Γ
(

1+β
2 × β × 2

β−1
2

) ) 1
β

. (2)

The second component is exploration using biased/selective random walk
(BSRW), which is used to generate new solutions in locations far from the best-
obtained solution, thereby preventing the search from being trapped in a local
optimum. Moreover, it provides an acceptable diversity because it explores
various areas of the entire search space. The third component is represented
by the elitism scheme. In this operation, the CSA selects the best solutions
that have the best fitness values and passes them directly to the next gener-
ation. This prevents the best solutions from being lost. A good compromise
between the above three components can ensure an efficient algorithm. A bal-
ance among these components exists in the CSA; therefore, it is considered an
effective optimisation algorithm.

2.4.1 Adaptive Variants of CSA

One of the most important parameters in the CSA is Lévy Flight step size.
Various modifications were made to this parameter to make it adaptive to
the number of generations. Making it adaptive improves the performance and
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convergence rate of this algorithm [47]. In 2019, Reda et al. [46] proposed
a damped CSA. This algorithm was based on making the step size of Lévy
Flight adaptive using the concept of damped oscillations as shown in Eq. (3),
where αmin and αmax denote the lower and upper bounds of α0, respectively.
Furthermore, τ and ω are constants, g is the current generation, and gmax

is the maximum number of generations. This variant outperformed all the
adaptive variants of CSA. Therefore, this method is used in the proposed
DDCS algorithm to make the step size of Lévy Flight adaptive, but this time
for a discrete version of the CSA.

α0 = αmin + (αmax − αmin)e
−
(

τ g
gmax

)[
cos

(
ω g

gmax

)
+ αmin sin

(
ω g

gmax

)] . (3)

2.4.2 Discrete Variants of CSA

Ouaarab et al. [41],[42] proposed a new discrete version of the CSA. The main
objective of this discrete version is to solve the TSP. This algorithm proved to
be effective on a set of benchmark TSPs.

The main idea of this algorithm is to represent the small steps of Lévy
Flight using 2-opt moves [12]. The 2-opt moves are shown in Fig.1. Edges
(a,b) and (c,d) are replaced by edges (a,c) and (b,d). This move is used for
small step sizes in the Lévy Flight random walk. Large Lévy Flight step sizes
are represented by the Double-bridge move [37].

This algorithm proved its efficiency in solving the TSP. However, it did
not consider the discovery probability Pa, which is an important parameter. It
also replaced the entire LFRW equation 1 with 2-opt and double bridge moves.
This is acceptable for converting an algorithm that solves continuous optimisa-
tion problems into algorithms that solve permutation problems, such as TSP.
Therefore, our motivation in this study is to maintain the main characteristics
of the original CSA and adapt it to solve the TSP.

Ouaarab et al. proposed another discrete variant of the CSA in 2015[43].
This variant is based on a simplified random-key encoding scheme that con-
verts the population from a continuous representation (real numbers) into a
combinatorial space. Displacement of a solution in both spaces use Lévy flights.
Random key encoding was used to solve the TSP in [9] and [54]. In this variant,
a random key encoding scheme was used with CSA. The random key encoding
is explained in detail in [3].

This random key cuckoo search variant overcomes the problems faced by
the DCSA proposed in 2014 [41]. It can preserve some of the continuous char-
acteristics of the standard CSA. Furthermore, it uses the Lévy Flight to cause
perturbation to the real indices, then reorders the solution. However, it used
static values for Lévy Flight step size. In the proposed algorithm, we use this
scheme to represent the TSP solution. Therefore, the main continuous char-
acteristics of the standard CSA can be preserved. In addition, the step size
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Fig. 1: The 2-opt move [41]

Table 2: The Advantages and disadvantages of the aforementioned algorithms

Category Advantages Disadvantages

Exact algorithms
They can always find the optimal solution They take too long execution time.

They are not suitable for real-time applications.
Heuristic algorithms They are faster than the exact algorithms They are problem-specific

Meta-heuristic optimization algorithms
They are problem independent These algorithms can find near-optimal
They are easy to implement solutions, not necessarily the optimal one.
They have fast execution time

of Lévy Flight is adaptive to the generation number. This adaptive scheme
provides a balance between exploration and exploitation[46].

Table 2 summarises the advantages and disadvantages of the three main
categories of algorithms. The first is the exact algorithms. They can always find
the optimal solution. However, they are based on exhaustive search; therefore,
they are not suitable for real-time applications because they are too time-
consuming. The second type is heuristic algorithms, which are faster than exact
algorithms but are problem-specific. The third type comprises meta-heuristic
optimisation algorithms, such as GA, PSO, ACO, and CSA. These algorithms
can find near-optimal solutions, but not necessarily the optimal one. They are
problem-independent, easy to implement, and have fast execution times. The
most promising meta-heuristic algorithm is the CSA. The advantage of this
approach over the others is that it has only one tuning parameter. In addition,
it has a good balance between exploration and exploitation and has not been
applied before in a warehouse OPR problem. Some CSA variants attempted to
solve the TSP, but their main disadvantage was that they could not preserve
the main characteristics that distinguished the CSA.

3 Problem Statement: Order Picking Routing (OPR) Problem vs
TSP

As previously stated, the most time-consuming process inside a warehouse
system is the OPR problem. The OPR problem can be formulated as the
traditional TSP. In TSP, the salesman wants to visit multiple cities with the
shortest distance. Similarly, in the OPR problem, the robot wants to pick items
from the shelves with shortest possible distance. Therefore, the salesman is
mapped to the robot, and the cities are mapped to the items to be picked, as
shown in Fig. 2.
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Fig. 2: Mapping Concept between TSP and OPR problem.

The difficulty in this problem is the large number of possible permuta-
tions required to pick the orders [59]. This is an NP-hard problem, where the
number of possible solutions increases exponentially with the problem dimen-
sions. In this section, the relationship between the OPR problem and TSP is
discussed in detail. First, the warehouse configuration is explained. Second,
some assumptions are made to reduce the dimensions of the OPR problem to
improve the performance. Third, a mathematical representation of the fitness
function for the OPR problem is presented.

3.1 Warehouse Configurations and Assumptions

The model of the warehouse that we plan to apply to the proposed DDCS
algorithm is shown in Fig. 3. This warehouse consists of four blocks: A, B, C,
and D. Each block consists of eight sections; for example, block A has eight
sections from A1 to A8. Each section can store a specific type of product/item.
The aisles consist of vertical and horizontal lines that intersect at specific
points. The intersection points are shown in Fig. 3 as red circles and each are
named P1, P2, ..., P9. Each aisle contains a set of points called item points.
Each item on the shelf of a specific section can be obtained from the item
points. For example, the items on section A1 can be reached when the robot
is located at point PA1. Similarly, the items on section B4 can be obtained
when the robot is located at point PB4.

3.2 The concept of using Intersection points of the aisles instead of Item
points

The total number of item positions in the warehouse shown in Fig. 3 is 32.
Therefore, the worst-case scenario is when there is an order containing 32
different items. This is a complex TSP. To simplify this, we added the concept
of dealing with corner points (intersection points) instead of item points. This
reduces the worst case of TSP from 32 locations to nine locations.

For example, to reach the item A1 at point PA1, the robot must first go to
intersection point P1, as shown in Fig.4. Therefore, the main focus should be
on the intersection points of aisles and not on the item points themselves. This
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Fig. 3: Warehouse configuration map (4 blocks).

enables us to determine the exact shortest path. Many items can be obtained
from the same intersection point, as shown in Fig.4.

Algorithm 1 shows the use of intersection points instead of item points. In
the first step, Lines 1 and 2 are used to obtain the coordinates of the required
items. Next, in Line 3, we obtain the intersection points that correspond to the
item points; there may be repeated intersection points because one intersection
point can have multiple item points. Therefore, the repeated points in C are
deleted in Line 4. As a traditional TSP, we find the best permutation of the
intersection points to obtain the shortest path between them. From Lines 9 to
14, the item points must be added after the corresponding intersection points
to construct the final path.

However, this method also has several limitations. We assumed that an
item can be reached from only one end, whereas it can be reached from two
intersection points, but we choose the intersection point nearest to it. For
example, point PB5 can be reached from intersection points P7 or P8, as
shown in Fig.3. However, we chose P7 because it was nearest to it. Thus, this
appears to be the best method. Nevertheless, this can cause a slightly longer
path, as in the case explained in Fig. 5. In this case, it is necessary to move from
point PA5 to item point PD7. The shortest path is indicated by blue arrows.
However, we assumed that point PD7 could be reached through intersection
point P9. Therefore, the algorithm provides a green path, which is slightly
longer. This disadvantage seems to be unsuitable for small-scale problems;
however, it has a significant effect on the performance and computation time
in large-scale problems because the number of possible solutions exponentially
decreases.
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Fig. 4: Reducing TSP points via dealing with intersection points.

Fig. 5: Algorithm limitations that could cause a longer path.
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Algorithm 1: Warehouse path construction using the concept of in-
tersection points

1 Initialise matrix M that contains the item points and their corresponding
intersection points, as shown in Fig.4;

2 Initialise vector O that contains a set of items (item points);
3 Construct vector C that contains the intersection points corresponding to the item

points from M ;
4 Remove duplications from vector C.
5 Find the best permutation in vector C as a traditional TSP;
6 The best solution found in the vector P is stored;
7 Vector P contains the best order for the intersection points;
8 Initialise S that stores the final path;
9 for each point p in P do

10 Add point p to the vector S;
11 Find all item points in O that are related to point p, and add these points in

vector K;
12 Note: All points in the vector K have the same x-coordinate; Sort the vector K

based on the Y-coordinate ;
13 Add the sorted K to vector S

14 end
15 Visualise the final solution stored in S;

3.3 Vertical and Horizontal displacement constraints inside warehouse

As seen in Fig. 3, the aisles inside the warehouse are a set of horizontal lines
and vertical lines that intersect at a set of points. Therefore, the robot is not
allowed to move along a diagonal path between two points. This constraint
should be considered when implementing the movement of the robot inside the
warehouse. Therefore, we have to develop a movement algorithm that allows
the robot to move from one point to another in vertical and horizontal paths.

As explained previously, the results from Algorithm 1 represent only the
order of the points that should be visited. To move from one point to another,
we must find the vertical and horizontal paths to move from one point to
another. Fig. 6 shows the effect of the diagonal movement constraint in the
OPR problem compared to the traditional TSP. The black TSP path moves
diagonally from points P1 to P5, leading to a collision with the block. On the
other hand, the OPR path, the red one, moves only in horizontal and vertical
directions to avoid collisions.

For every two successive points in the path obtained from Algorithm 1,
the displacement difference is calculated on the X- and Y-axes by subtract-
ing the coordinates of the starting point from the endpoint. This calculation
is expressed in Eq. (4), where (Xs, Ys) are the coordinates of the starting
point/current position, and (Xe, Ye) are the coordinates of the target point
(next point).

There are eight possible solutions for this problem. These cases are illus-
trated in Fig. 7. In the first four cases, the link between the starting point and
the next point is diagonal. Therefore, an intermediate point (Xc, Yc), which is
marked in red in Fig. 7, should be calculated to make the displacement from
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Fig. 6: Difference between TSP and OPR paths

the starting point and the next point in vertical and horizontal displacements.
As seen in Fig.7, the intermediate point has the same X-coordinate as that
of the starting point, while the Y-coordinate of the intermediate point can be
obtained by adding the displacement dy to the Y-coordinate of the starting
point. Hence, the intermediate point in the first four cases can be evaluated
using Eq. (5). In the last four cases, there will be no intermediate points be-
cause the starting point and endpoint both lie on the same vertical axis as in
cases 5 and 6, or on the same horizontal line as in cases 7 and 8.

dx = Xe −Xs

dy = Ye − Ys
(4)

Xc = Xs

Yc = Ys + dy
(5)

3.4 Cost Function for the OPR problem vs TSP

In general, the cost of a path consisting of n cities for the TSP is calculated
by measuring the distance disti,i+1 between every two successive points i, i+1
in the tour, as in Eq. (6).

As previously explained, the robot inside the warehouse cannot move along
a diagonal path between two points. Therefore, movement inside the warehouse
should be vertical and horizontal, as shown in Fig.7. Hence, the actual distance
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Fig. 7: The eight cases for avoiding diagonal displacement.

between any two points can be obtained by adding the absolute values of the
vertical and horizontal components,dy and dx, as in Eq. (7). These equations
are shown in Fig. 8 to distinguish between the cost functions in TSP and OPR
problem. The total cost function for the entire path is calculated using Eq.(8),
where n is the number of points on the tour.

disti,i+1 =
√
dx2

i,i+1 + dy2i,i+1 (6)

disti,i+1 =| dxi,i+1 | + | dyi,i+1 | (7)

Cost =

n−1∑
i=1

disti,i+1 (8)

This section can be summarised as follows:

1. Determine the location of the points for required items in the warehouse.
2. Replace the item point with its nearest intersection point.
3. Find the best permutation of the points as a traditional TSP.
4. Evaluate the corner points between the two successive intersection points

to avoid diagonal movement. The only ways to move inside the warehouse
are vertically and horizontally along the aisles.
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Fig. 8: Cost (Fitness Function) for the TSP and OPR problem.

The decisive step in determining the best path inside the warehouse is step
number 3. In this step, we aim to find the best permutation of the intersection
points. This description can be represented as a traditional TSP. Furthermore,
the next section discusses the proposed algorithm for determining the shortest
tour for the designated OPR problem.
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4 Proposed Algorithm: Discrete damped cuckoo search algorithm
DDCS

The main contribution of this study is to solve the OPR problem using the
new proposed variant of the CSA, called the discrete damped cuckoo search
(DDCS) algorithm. The proposed algorithm can be used to solve traditional
TSPs. Additionally, it can solve the OPR problem, which is formulated as TSP
in Section 3.

In the proposed DDCS algorithm, several modifications have been made
to adapt the algorithm to the TSP and warehouse OPR problems. These
modifications can be summarised as follows:

– Using the 2-opt moves for the small Lévy flight step size.
– Representing the TSP solutions via real random key indices as a real-valued

representation.
– Adapting the damped Lévy flight random walk for discrete problems and

using it for large steps.
– Applying the concept of dividing the population into sub-groups to increase

the diversity of solutions.
– Applying different mutation operators for the sub-groups in the case of the

solutions being discovered by a probability Pa.

4.1 Modification 1: The 2-opt Move

At the beginning of every iteration of the proposed DDCS algorithm, the
population is sorted based on the fitness value of each candidate solution. The
best solution is at the top of the population, whereas the worst solution is at
the bottom.

The proposed DDCS algorithm depends on the 2-opt moves in the Lévy
flight step size for the top 50% of the population. This is because the 2-opt
move has a small step size ( Fig.1). Therefore, it is used to slightly perturb the
top best solutions without significantly affecting the quality of the solution.

On moving from top to bottom for the first half of the population, more
2-opt-move steps are applied to the solution. The number of 2-opt-move steps
applied is according to Table 3.

Table 3: The 2-opt Move steps for the first half of the population.

Percentage of Population % No. of 2-opt-move steps
Top 5 % Elitism (Keep the solutions with no change
From 5% to 15% Apply one step by 2-opt move
From 15% to 25% Apply two steps by 2-opt move
From 25% to 35% Apply three steps by 2-opt move
From 35% to 40% Apply four steps by 2-opt move
From 40% to 45% Apply five steps by 2-opt move
From 45% to 50% Apply six steps by 2-opt move
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Fig. 9: Random Key Encoding Process

The other half of the population had lower fitness than the first half. There-
fore, the 2-opt moves will not change the solution significantly, and it is re-
quired to perform a larger move. These large moves are represented in the
proposed DDCS algorithm using the damped Lévy flight step size via random
keys.

4.2 Modifications 2 to 4: Adaptive Lévy flight random walk with random key

As previously explained, the first half of the population is updated via the
2-opt move steps. However, the second half of the population contains worse
solutions, which require large step modifications. Therefore, the Lévy flight
random walk is a suitable choice because of the tremendous size of the step,
which enables the algorithm to explore more search spaces and enhance ex-
ploration.

The problem with Lévy flight random walk is that it is applied on continu-
ous optimisation problems. However, TSP and OPR problems are permutation
problems. Therefore, a new method for encoding solutions inside the popula-
tion is required. Random index encoding is the best choice in this case.

4.2.1 Random Key Encoding

The random index encoding process is illustrated in Fig.9. Assume that the
TSP solution contains five cities in the following order (1, 2, 3, 4, and 5).
Random real numbers will be generated and assigned to these cities, for ex-
ample (0.7, 0.6, 0.9, 0.3, and 0.75). These real random numbers will be sorted,
and consequently, the new order of the cities will be (4, 2, 1, 5, 3), and the
corresponding real indices will be (0.3, 0.6, 0.7, 0.75, 0.9).

4.2.2 Update the random key using Lévy flight Random walk

As previously explained, LFRW can be applied only on real solutions, not
the permutation solutions, such as TSP and OPR solutions. This problem is
solved using random key encoding, where each city has a corresponding real
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Fig. 10: Application of Algorithm 2 on Random Keys

random number that varies from 0 to 1. To update the permutation solution,
the LFRW is applied to the real random index that corresponds to the city.
This will lead to a new key that will change the order of the city, as shown in
Fig. 10.

As seen in Fig. 10, if LFRW is applied to city number 4, the real index
of city number 4 will be modified (i.e., from 0.3 to 0.8). The real indices are
sorted as (0.6, 0.7. 0.75, 0.8, 0.9). Hence, the new TSP solution is (2, 1, 5, 4,
3). We refer to this process as the damped Lévy flight on a random key. This
process is explained in detail in Algorithm 2.

As seen in Algorithm 2, the process starts at Line 4 by selecting random
m cities from the solution xi. The value of m will be high (90% of the cities)
because this process is performed on the worst solutions. Therefore, we aimed
to explore different solutions, and many cities should be exchanged. From Lines
7 to 14, it is necessary to generate a new order of cities based on changing the
real index using Eq. (9). Then, xnew

i will be the new solution obtained from
Damped LFRW with random key representation.

crealnew = creal + α0
ϕ× µ

|υ|
1
β

(creal − crealbest) (9)

4.2.3 Adaptive Lévy flight Step Size

The parameter α0 in Eq.(9) is called Lévy flight step size. The adaptive step
size of the Lévy flight is more effective than the fixed value. The best adaptive
Lévy flight step size is defined by Eq. (3). Therefore, it is used in the proposed
algorithm to make the step size adaptive to the generation number[46].

The effect of adaptive step size can be explained as follows. Earlier, the
solutions were not sufficiently good, so we needed a large step size. On moving
to the last generation, the quality of the solutions is increased, so the step size
will be smaller. Therefore, using an adaptive step size is expected to improve
the performance of the proposed algorithm. The adaptive step size together
with the random-key encoding will be used in the large step size of Lévy flight
as shown in Algorithm2.
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Algorithm 2: Damped Lévy flight on a Random Key algorithm.

1 Let the best solution be xbest ;
2 Define permutation solution xi that contains the order of d cities;

3 Define the random-indexed solution xreal
i as having a real number ∈ [0,1]

corresponding to each city;
4 Set m = ceil(0.9 ∗ d), where m is the number of selected cities;
5 Select m cities randomly from xi and store them in L;

6 Get the corresponding real indices of the selected cities from xreal
i and store them

in Lreal;
7 for k ← 1 to m do
8 Get the next city, c = L[k] ;

9 Get the corresponding real index for the city from xreal
i and store it in creal ;

10 Get the corresponding real index for the city from xbest and store it in crealbest ;

11 Update creal via the adapted Lévy flight by using Eq.(9);

12 Ensure that creal is within the bounds [ 0,1] ;

13 end

14 Sort the updated creal ;

15 Find the corresponding order of the cities based on the new order of creal and store
it in xnew

i ;
16 xnew

i is the new solution obtained after applying the damped LFRW;

4.3 Modification 5: Concept of Dividing Population and Mutation Operators

In the original continuous CSA, there are two major steps: the first one is to
update the solutions based on the Lévy flight random walk; the second one is
to mutate the solutions that are discovered with a probability Pa. The method
of mutation in the continuous CSA algorithm is called biased selection random
walk (BSRW). In the proposed DDCS, BSRW is not applicable to permutation
solutions. Therefore, a new modification is required to enable the proposed
solution to mutate the discovered solutions.

Three mutation operators are applied to the discovered solution. This
means that the discovered solutions are divided into subgroups, and each sub-
group contains four solutions. For each sub-group, the solutions are sorted
based on the fitness value. The best solution is maintained without muta-
tion. The other three solutions are mutated by three different mutation opera-
tors: inversion mutation, pairwise swap mutation, and displacement mutation
[51],[11].

The mutation operator is the most important operator in optimisation [22],
[21], [19], [20]. Therefore, using three types of mutation operators adds more
diversity to the population. These steps are illustrated in Algorithm 3.

The flowchart in Fig. 11 shows the complete steps of the proposed DDCS.
First, the initial population is generated and the initial fitness of the popula-
tion is calculated, which represents the total distance of the solution. Second,
random key encoding is applied to the population to generate random keys for
each solution in the population.

The iteration of the algorithms begin by updating the adaptive Lévy Flight
step size using Eq. (3). The population is then sorted based on its fitness values
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Algorithm 3: Mutation operators on sub-groups of the population.

1 Divide the population into k sub-groups, and each group Gk contains four nests;
2 foreach sub-group Gk do
3 Sort the sub-group so that the best nest is at the top;
4 foreach nest xj in the sub-group Gk do
5 if j == 1 then
6 keep the best solution xj

7 else if j == 2 then
8 apply inversion mutation on xj

9 else if j == 3 then
10 apply pairwise swap mutation on xj

11 else
12 apply displacement mutation on xj

13 end

14 end

15 end

from best to the worst. Subsequently, the population is divided into two groups.
The first half uses the 2-opt moves of the Lévy flight small step size, while the
second half will be updated using Lévy Flight discussed in Algorithm 2.

The next phase checks whether the solutions are discovered with the prob-
ability of discovery Pa. If a solution is discovered, the population is divided
into subgroups. Each sup-group encounters a different mutation operator, as
discussed in Algorithm 3. The last step in the iteration is to update the best-
obtained solution, that is, the global minimum. The results are then visualised.
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Fig. 11: Complete Steps of the Proposed DDCS Algorithm

5 Model Assumptions and Parameter Settings

The proposed DDCS algorithm is compared to ACO, PSO, and GA. These
algorithms are tested on two types of problems. The first one is the traditional
TSP benchmark used to test the performance and validity of the algorithm.
The second problem is the customised warehouse OPR problem. In this section,
the parameter settings of the algorithms and problems are discussed.

5.1 Parameter settings of the Algorithms

The proposed DDCS algorithm has been applied to some of the most common
benchmark TSPs[48]. In addition, the algorithm is applied to large-scale ware-
house order picking problems. The performance of the algorithm is compared
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to that of the ACO, PSO, and GA. The population size is set to 30 for both
the algorithms. The algorithms are applied to each problem for 20 independent
runs to overcome randomness and statistically verify the results. In each run,
the algorithms are terminated after 2000 iterations.

The parameter settings for the algorithms were set to the values recom-
mended by the corresponding authors. The ACO algorithm was implemented
to solve TSP in [31]. Similarly, the PSO algorithm was implemented to solve
TSP in [52]. Furthermore, the GA implementation code used in the TSP test is
described in [32]. The parameters of the GA were set based on De Jong’s guide-
lines [13]. The parameters of the proposed DDCS algorithms: αmin, αmax, t,
w, and Pa were set to 0.1, 0.5, 5, 3, and 0.05, respectively, as recommended in
[46]. All the parameter settings are summarised in Table 4.

Table 4: Parameter Settings of the algorithms (ACO, PSO, GA, DDCS).

Algorithm Name Parameter Name Parameter Symbol Value

Shared Parameters
Population size nPop 30
Max. No. of iterations maxIter 2000
No. of independent runs nRuns 20

ACO

Evaporation coefficient e 0.15
Effect of ants’ sight α 1
Trace’s effect beta 4
Primary tracing t 0.0001
Common cost elimination el 0.97

PSO

Inertia Weight w 0.9
Damped Inertia wdamp 0.95
Personal Learning Coefficient α 0.85
Global Learning Coefficient β 0.85

GA
Crossover Probability Pc 0.9
Mutation Probability Pm 0.01

DDCS

Min. Levy step size αmin 0.1
Max. Levy step size αmax 0.5
Damping parameter τ 5
Damping frequency ω 3
Probability of Discovery Pa 0.05

5.2 TSP benchmark problems and Warehouse Test Cases

Before applying the proposed DDCS algorithm, it was tested on a few common
benchmark TSPs. All of these problems were defined in [48]. Ten problems
with different dimensions and real data were selected. These functions are
summarised in Table5 and are labelled F1 to F10. The X-Y coordinates and
distances between each city in each problem represent a real dataset.

The performance of the proposed algorithm will also be verified on a large
set of combinations of large-scale OPR problems inside the warehouse and for
finding the optimal path. The test cases are generated by constructing different
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warehouses with different number of blocks and applying the algorithm to pick
orders with different number of items.

We consider conventional warehouses with multiple blocks. The number
of blocks of the assumed warehouses was 100, 400, 900, and 2500 for large
warehouses. The problem dimension depends on the number of items in the
customer order. The test cases included up to 600 items within one order in the
2500-blocks warehouse. The test cases for different warehouse configurations
are summarised in Table 5, and are labelled from F11 to F28.

Table 5: TSP benchmark functions and warehouse order picking Test cases

Benchmark Fn. Name No. of Cities (nd) Fn. Label
ATT48 48 F1
DANTZIG42 42 F2
HA30 30 F3
KN57 57 F4
LAU15 15 F5
SGB128 128 F6
SP11 11 F7
UK12 12 F8
WG22 22 F9
WG59 59 F10
No. of Blocks in Warehouse No. of Items Fn. Label

100

10 F11
30 F12
50 F13
100 F14

400

10 F15
30 F16
50 F17
100 F18

900

10 F19
30 F20
50 F21
100 F22

2500

100 F23
200 F24
300 F25
400 F26
500 F27
600 F28

6 Simulation Results

In this section, we discuss the simulation results both statistically and graph-
ically. The convergence and performance of the proposed algorithm was com-
pared with those of ACO, PSO, and GA. These algorithms were tested on
complex TSPs and high-dimensional warehouse OPR problems.
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6.1 Simulation results (Best, Worst, Mean, Median, and STD)

The proposed DDCS algorithm was applied to all the test cases explained in
the previous section. The performance of the proposed algorithm was com-
pared with that of ACO, PSO, and GA. To overcome randomness, each algo-
rithm was executed for 20 independent runs for each function. The best solu-
tion for each run, which had the minimum total path distance, was recorded to
obtain the 20 best solutions for 20 independent runs. The best, worst, median,
mean, and standard deviation (STD) of the distance for all these solutions were
then calculated. Table6 shows the results for all test cases from F1 to F28. The
best values among the four algorithms are indicated in bold font. These re-
sults need to be meaningful, and hence, the results of statistical analysis will
be shown in the next section.

6.2 Statistical Analysis of the results

Statistical analysis was performed to determine the best of the four algorithms,
namely, ACO, PSO, GA, and the proposed DDCS. Three different statistical
analysis methods were used in this study. Each method was applied indepen-
dently to all the five metrics listed in Table 6. Initially, the Friedman test was
used to find the best algorithm among the four algorithms. Subsequently, the
Friedman test was followed by the sign test and Wilcoxon signed-rank test to
hold paired comparison between the proposed DDCS and each of the other
algorithms.

6.2.1 The Friedman Test

The most decisive test in this statistical analysis is the Friedman test, which
compares all the algorithms at the same time. The Friedman test not only
determines the best algorithm after comparison but also considers all the other
algorithms and their rank in each comparison. For each function, the algorithm
with the best mean value has a rank of 1. The worst algorithm has a rank
of 4. The summation and average of the ranks are then calculated for each
algorithm, as shown in Table 7.

The threshold decision value is obtained from chi-square distribution using
a degree of freedom equal to three, and a level of significance α of 0.05 to
obtain a threshold equal to 11.34. The null hypothesis is assumed such that
all four algorithms have similar performance. If the null hypothesis is rejected,
this means that the algorithm with the least average rank in the Friedman
test performs significantly better than all other algorithms.

Eq. (10) is applied for the worst solution metric, and the Fr value is 42.45,
which is more than 11.34. Therefore, the null hypothesis is rejected, and the
proposed DDCS algorithm has the best dominant performance over the other
algorithms because it has the minimum average rank far from the other algo-
rithms.
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Table 6: Results of the ACO, PSO, GA, and DDCS algorithms on functions
(F1-F28).

Fn. Alg. Best Worst Median Mean STD

F1

ACO 4.39E+04 4.92E+04 4.69E+04 4.69E+04 1.50E+03
PSO 1.05E+05 1.14E+05 1.11E+05 1.11E+05 2.53E+03
GA 3.39E+04 3.54E+04 3.47E+04 3.46E+04 4.09E+02
DDCS 3.37E+04 3.57E+04 3.43E+04 3.44E+04 5.36E+02

F2

ACO 8.33E+02 1.01E+03 9.44E+02 9.36E+02 4.43E+01
PSO 2.03E+03 2.27E+03 2.18E+03 2.17E+03 7.01E+01
GA 7.05E+02 7.53E+02 7.18E+02 7.25E+02 1.47E+01
DDCS 6.99E+02 7.72E+02 7.31E+02 7.32E+02 1.98E+01

F3

ACO 5.42E+02 6.03E+02 5.66E+02 5.67E+02 1.59E+01
PSO 1.03E+03 1.21E+03 1.15E+03 1.13E+03 5.22E+01
GA 5.03E+02 5.30E+02 5.05E+02 5.09E+02 8.28E+00
DDCS 5.03E+02 5.54E+02 5.05E+02 5.18E+02 1.82E+01

F4

ACO 1.74E+04 2.03E+04 1.89E+04 1.89E+04 7.19E+02
PSO 4.27E+04 4.69E+04 4.50E+04 4.48E+04 1.08E+03
GA 1.33E+04 1.45E+04 1.39E+04 1.39E+04 2.99E+02
DDCS 1.31E+04 1.40E+04 1.35E+04 1.35E+04 2.56E+02

F5

ACO 2.91E+02 3.19E+02 2.99E+02 3.00E+02 9.23E+00
PSO 3.63E+02 4.27E+02 3.96E+02 3.93E+02 1.81E+01
GA 2.91E+02 2.91E+02 2.91E+02 2.91E+02 0.00E+00
DDCS 2.91E+02 3.07E+02 2.91E+02 2.94E+02 6.57E+00

F6

ACO 3.17E+04 3.74E+04 3.50E+04 3.49E+04 1.50E+03
PSO 1.30E+05 1.38E+05 1.34E+05 1.34E+05 2.44E+03
GA 3.64E+04 4.15E+04 3.95E+04 3.95E+04 1.40E+03
DDCS 2.96E+04 3.24E+04 3.08E+04 3.08E+04 7.35E+02

F7

ACO 1.33E+02 1.45E+02 1.38E+02 1.38E+02 3.19E+00
PSO 1.33E+02 1.38E+02 1.34E+02 1.34E+02 1.45E+00
GA 1.33E+02 1.33E+02 1.33E+02 1.33E+02 0.00E+00
DDCS 1.33E+02 1.33E+02 1.33E+02 1.33E+02 0.00E+00

F8

ACO 1.73E+03 2.08E+03 1.73E+03 1.79E+03 1.06E+02
PSO 1.73E+03 1.84E+03 1.80E+03 1.79E+03 3.45E+01
GA 1.73E+03 1.80E+03 1.73E+03 1.74E+03 1.50E+01
DDCS 1.73E+03 1.84E+03 1.73E+03 1.75E+03 3.48E+01

F9

ACO 7.86E+02 9.07E+02 8.47E+02 8.45E+02 3.25E+01
PSO 1.23E+03 1.44E+03 1.37E+03 1.36E+03 6.08E+01
GA 7.81E+02 7.98E+02 7.81E+02 7.84E+02 6.23E+00
DDCS 7.81E+02 8.34E+02 7.81E+02 7.90E+02 1.33E+01

F10

ACO 1.37E+03 1.62E+03 1.53E+03 1.52E+03 6.00E+01
PSO 3.50E+03 3.84E+03 3.75E+03 3.72E+03 9.34E+01
GA 1.03E+03 1.14E+03 1.08E+03 1.08E+03 3.63E+01
DDCS 1.01E+03 1.09E+03 1.06E+03 1.05E+03 2.42E+01

F11

ACO 3.60E+02 4.20E+02 3.60E+02 3.64E+02 1.39E+01
PSO 3.40E+02 3.60E+02 3.40E+02 3.41E+02 4.47E+00
GA 3.60E+02 3.60E+02 3.60E+02 3.60E+02 0.00E+00
DDCS 4.00E+02 4.00E+02 4.00E+02 4.00E+02 0.00E+00

F12

ACO 6.80E+02 1.22E+03 8.10E+02 8.09E+02 1.10E+02
PSO 1.20E+03 1.30E+03 1.26E+03 1.26E+03 3.18E+01
GA 6.00E+02 6.60E+02 6.00E+02 6.16E+02 2.11E+01
DDCS 6.60E+02 7.20E+02 6.80E+02 6.81E+02 1.52E+01

F13

ACO 1.06E+03 1.22E+03 1.16E+03 1.15E+03 3.68E+01
PSO 2.60E+03 2.80E+03 2.71E+03 2.71E+03 4.67E+01
GA 8.40E+02 9.40E+02 8.60E+02 8.64E+02 2.72E+01
DDCS 8.00E+02 8.80E+02 8.40E+02 8.29E+02 2.00E+01

F14

ACO 1.86E+03 2.20E+03 2.08E+03 2.06E+03 9.22E+01
PSO 5.60E+03 5.92E+03 5.78E+03 5.77E+03 8.47E+01
GA 1.44E+03 1.60E+03 1.54E+03 1.53E+03 4.66E+01
DDCS 1.22E+03 1.40E+03 1.28E+03 1.29E+03 4.22E+01

Fr =
12

nk(k + 1)

k∑
j=1

R2
j − 3n(k + 1). (10)

For the best solution metric, the Fr value is 50.96, which is greater than
11.34. Therefore, the null hypothesis is rejected, and the algorithm with the
minimum average rank is deemed the best. As shown in Table 7, the proposed
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Table 6: Best, worst, median, mean. and STD results of the ACO, PSO, GA,
and DDCS algorithms on functions (F1-F28) (continued).

Fn. Alg. Best Worst Median Mean STD

F15

ACO 8.40E+02 9.80E+02 8.60E+02 8.74E+02 3.79E+01
PSO 7.20E+02 7.20E+02 7.20E+02 7.20E+02 0.00E+00
GA 7.80E+02 7.80E+02 7.80E+02 7.80E+02 0.00E+00
DDCS 7.20E+02 7.20E+02 7.20E+02 7.20E+02 0.00E+00

F16

ACO 1.30E+03 1.52E+03 1.42E+03 1.42E+03 5.27E+01
PSO 2.42E+03 2.68E+03 2.60E+03 2.59E+03 7.03E+01
GA 1.38E+03 1.48E+03 1.42E+03 1.42E+03 3.20E+01
DDCS 1.14E+03 1.18E+03 1.14E+03 1.14E+03 9.79E+00

F17

ACO 1.90E+03 2.22E+03 2.06E+03 2.05E+03 8.91E+01
PSO 5.22E+03 5.50E+03 5.32E+03 5.34E+03 8.04E+01
GA 1.54E+03 1.78E+03 1.62E+03 1.62E+03 6.34E+01
DDCS 1.48E+03 1.64E+03 1.54E+03 1.54E+03 4.60E+01

F18

ACO 3.32E+03 3.80E+03 3.54E+03 3.57E+03 1.14E+02
PSO 1.05E+04 1.11E+04 1.09E+04 1.08E+04 1.71E+02
GA 2.64E+03 3.06E+03 2.91E+03 2.90E+03 1.12E+02
DDCS 2.22E+03 2.44E+03 2.31E+03 2.32E+03 6.30E+01

F19

ACO 1.18E+03 1.18E+03 1.18E+03 1.18E+03 0.00E+00
PSO 1.38E+03 1.38E+03 1.38E+03 1.38E+03 0.00E+00
GA 7.80E+02 7.80E+02 7.80E+02 7.80E+02 0.00E+00
DDCS 7.40E+02 7.40E+02 7.40E+02 7.40E+02 0.00E+00

F20

ACO 1.94E+03 2.22E+03 2.01E+03 2.04E+03 8.91E+01
PSO 4.08E+03 4.54E+03 4.36E+03 4.34E+03 1.37E+02
GA 1.74E+03 1.86E+03 1.77E+03 1.78E+03 3.61E+01
DDCS 1.86E+03 2.00E+03 1.94E+03 1.93E+03 4.28E+01

F21

ACO 2.48E+03 3.14E+03 2.93E+03 2.87E+03 1.76E+02
PSO 7.42E+03 8.34E+03 8.02E+03 7.99E+03 2.20E+02
GA 2.20E+03 2.48E+03 2.32E+03 2.34E+03 7.12E+01
DDCS 2.30E+03 2.54E+03 2.38E+03 2.38E+03 6.17E+01

F22

ACO 5.04E+03 5.88E+03 5.59E+03 5.58E+03 2.19E+02
PSO 1.66E+04 1.74E+04 1.70E+04 1.70E+04 1.91E+02
GA 3.70E+03 4.50E+03 4.28E+03 4.22E+03 1.85E+02
DDCS 3.20E+03 3.74E+03 3.47E+03 3.47E+03 1.25E+02

F23

ACO 8.26E+03 9.54E+03 8.99E+03 8.99E+03 3.49E+02
PSO 2.63E+04 2.76E+04 2.71E+04 2.70E+04 3.45E+02
GA 6.46E+03 7.30E+03 6.69E+03 6.78E+03 2.41E+02
DDCS 5.18E+03 6.02E+03 5.48E+03 5.52E+03 2.10E+02

F24

ACO 1.51E+04 1.65E+04 1.58E+04 1.58E+04 4.16E+02
PSO 5.60E+04 5.75E+04 5.69E+04 5.68E+04 4.50E+02
GA 1.45E+04 1.64E+04 1.53E+04 1.54E+04 4.48E+02
DDCS 9.92E+03 1.12E+04 1.04E+04 1.05E+04 3.77E+02

F25

ACO 1.89E+04 2.26E+04 2.11E+04 2.10E+04 8.56E+02
PSO 8.70E+04 8.95E+04 8.83E+04 8.83E+04 7.48E+02
GA 2.43E+04 2.67E+04 2.55E+04 2.55E+04 6.55E+02
DDCS 1.75E+04 1.95E+04 1.84E+04 1.84E+04 6.53E+02

F26

ACO 2.49E+04 2.72E+04 2.61E+04 2.61E+04 6.36E+02
PSO 1.20E+05 1.24E+05 1.23E+05 1.23E+05 1.12E+03
GA 3.72E+04 4.01E+04 3.90E+04 3.87E+04 9.94E+02
DDCS 2.66E+04 2.87E+04 2.80E+04 2.79E+04 5.89E+02

F27

ACO 2.67E+04 3.24E+04 3.01E+04 3.00E+04 1.16E+03
PSO 1.53E+05 1.55E+05 1.54E+05 1.54E+05 6.97E+02
GA 5.03E+04 5.38E+04 5.25E+04 5.23E+04 1.06E+03
DDCS 3.78E+04 4.10E+04 3.95E+04 3.95E+04 7.54E+02

F28

ACO 3.18E+04 3.58E+04 3.38E+04 3.39E+04 1.08E+03
PSO 1.85E+05 1.88E+05 1.87E+05 1.87E+05 9.98E+02
GA 6.42E+04 6.86E+04 6.66E+04 6.67E+04 9.55E+02
DDCS 5.01E+04 5.36E+04 5.17E+04 5.17E+04 8.67E+02

DDCS has the lowest average rank over all other algorithms; therefore, it is the
best algorithm considering the worst solution metric. Concerning the median
metric, the Fr value is 48.80, which is greater than 11.34. Therefore, the null
hypothesis is rejected, and the proposed DDCS is considered to be the best
algorithm because it has the minimum average rank.

Similarly, for the mean and STD result metrics, the Fr values are 48.83 and
48.45, respectively. Both Fr values are greater than 11.34. Therefore, the null
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hypothesis is rejected, and the algorithm with the minimum average rank is the
best. Hence, the proposed DDCS algorithm outperforms all other algorithms
with significant performance for all the metrics: worst, best, median, mean,
and STD.

6.2.2 Paired Comparisons using Sign test and Wilcoxon Signed-rank test

It is advisable to perform paired comparisons between the proposed DDCS
algorithm and each of the other algorithms separately to determine the sig-
nificance level of the results. The sign test and Wilcoxon signed-rank test are
the methods used to hold paired comparisons.

In the sign test, the ”+” sign indicates that the proposed DDCS has won
in the paired comparison, the ”-” sign means that the DDCS has been de-
feated, and the ”=” sign indicates a draw between the two algorithms. In the
Wilcoxon test, R- represents the negative rank summation, which indicates the
advantage of DDCS over other algorithms. On the other hand, R+ is the pos-
itive rank summation that shows the advantage of the other algorithms over
the proposed DDCS algorithm. The P values in the last column, obtained from
the SPSS program, show the significance level of the results. The significance
level was set at p ¡ 0.05. If the p value obtained from the test is less than 0.05,
the results are considered significant.

As shown in Table 7, the proposed DDCS algorithm has the largest number
of wins (”+” signs) in every paired comparison in the sign test. Moreover,
R- was always greater than R+ in all paired comparisons in the Wilcoxon
test. Furthermore, the P values for all the metrics for all paired comparisons
were less than 0.05 level of significance. Hence, it is statistically proved that
the proposed DDCS algorithm has a significant advantage over all the other
algorithms for all the problems.

6.3 Graphic analysis of the results

The graphical analysis is illustrated using three types of plots. The box and vi-
olin plots show the distribution of the results, including the mean and median.
The convergence graphs show the speed at which the algorithm can reach an
optimal solution through iterations.

6.3.1 Box Plots

A box plot is a diagram that shows the variance and distribution of results
for each algorithm over independent runs. The horizontal axis represents the
algorithm names and the vertical axis represents the fitness value on logarith-
mic scale. Fitness value represents the shortest path distance. The length of
the box represents variance. The distribution of the results has a small stan-
dard deviation when the box is short and compact. When the box is in a low
position, the results are close to the optimal fitness value. The median value is
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Table 7: Statistical Analysis for all the algorithms. The reference of paired
comparisons is the proposed DDCS algorithm for all the metrics (Best, Worst,
Median, Mean, and STD). In Friedman Test: the lower the average rank, the
better the algorithm. The best average rank is marked as bold. In Sign Test:
’+’ means the proposed DDCS is better. In Wilcoxon Test: R+ < R- means
the proposed DDCS is the better. Bold P values refer to significant results in
the paired comparison.

Metric Algorithm
Friedman Test Sign Test Wilcoxon Test

Sum Rank Mean Rank +/=/- R+ R- P Val.

Best

ACO 73.5 2.6300 21/3/4 70 255 0.0130
PSO 103.5 3.7000 24/3/1 1 324 0.0000
GA 60.5 2.1600 19/5/4 30 246 0.0010

DDCS 42.5 1.5200 NA NA NA NA

Worst

ACO 80 2.8600 25/0/3 73 333 0.0030
PSO 105 3.7500 26/1/1 3 375 0.0000
GA 52 1.8600 17/1/10 73 305 0.0050

DDCS 43 1.5400 NA NA NA NA

Median

ACO 76 2.71 23/1/4 73 305 0.005
PSO 105.5 3.77 26/1/1 2 376 0.000
GA 57 2.04 18/5/5 30.5 245.5 0.001

DDCS 41.5 1.48 NA NA NA NA

Mean

ACO 77 2.7500 24/0/4 76 330 0.0040
PSO 105.5 3.7700 26/1/1 3 375 0.0000
GA 54.5 1.9500 18/1/9 59.5 318.5 0.0020

DDCS 43 1.5400 NA NA NA NA

STD

ACO 92.5 3.3000 26/1/1 1 377 0.0000
PSO 94.5 3.3800 24/2/2 13 338 0.0000
GA 51.5 1.84 17/4/7 65 235 0.0150

DDCS 41.5 1.4800 NA NA NA NA

represented by the red line inside the box, which matches the results in Table
6. Therefore, the best algorithm among all others is the one with the most
compact and lower box [40].

Box plots for selected high-dimensional TSPs are shown in Fig. 12. The
proposed DDCS algorithm has better distribution than ACO, PSO, and GA,
where it shows a very consistent and compact distribution for most TSP bench-
marks and warehouse path planning problems, especially high-dimensional
problems.

6.3.2 Violin Plots

A violin plot represents and visualises numeric data. Violin plots are similar
to box plots, as they represent the median, mean, and inter-quarter ranges.
However, the violin plot can also display the probability density of the data
at different values using kernel density estimation (KDE).

Wider sections of the violin plot represent a higher probability that mem-
bers of the population will take a given value; the skinnier sections represent a
lower probability [58]. Violin plots were plotted to show the entire distribution
of the results, including mean and median [30]. Fig. 13 shows the violin plots
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Fig. 12: Box plots for the best total distance in 20 independent runs for ACO,
PSO, GA, and DDCS.
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for a few high-dimensional TSP benchmark functions. The violin plots for the
proposed DDCS algorithm showed the most compact distribution among the
other algorithms.

6.3.3 Convergence Graphs

The speed of convergence is one of the most important performance metrics
for judging the effectiveness of an algorithm. As explained previously, each
algorithm was executed for 20 independent iterations. In each run, the best
fitness values obtained were stored after reaching certain percentages of the
maximum number of iterations (maxIter). The best solution in each run for
each algorithm was recorded after reaching specific steps (0.01 maxIter, 0.02
maxIter,. . . , 0.1 maxIter, 0.2 maxIter, . . . , maxIter). Then, the mean value
was calculated for each percentage of the maxIter over 20 runs. These aver-
age values were used to construct the average convergence graphs for each
algorithm.

In each run, each algorithm was executed for 2000 iterations, and the min-
imum distance of the path ” fitness value ” was improved throughout the iter-
ations. The minimum distance was obtained in the final iteration. The conver-
gence graphs show how rapidly these distances decrease with time(iterations).
For all algorithms, the convergence graphs display the average fitness value
(minimum distance) in 20 runs against the iteration number.

Fig.14 shows the convergence graphs for a set of TSPs, which are selected
for high-dimensional problems. It is shown that PSO, depicted by the green
curve, has the worst convergence among all the algorithms. PSO has a very
slow and poor convergence compared with the other three algorithms. The
ACO algorithm, depicted by the red curve, has the best initial fitness value
among all the algorithms. However, it has a very slow convergence compared
with the other algorithms.

Graphically, it is proved that in almost all TSPs, the speed of convergence
for the proposed DDCS algorithm is faster than that of the other algorithms,
especially in high-dimensional problems. It starts with a high fitness value,
but the cost of the path is reduced to reach the minimum among all other
algorithms after performing 2000 iterations.

6.4 Final Path inside Warehouse Plots

The final path obtained from the proposed DDCS algorithm is shown in Fig.
15. The figure shows the final path for the benchmark TSP and is labelled
from F1 to F10. The final path for the function F6 is not clear because of
the complexity of the TSP for F6 compared with other standard TSPs under
the same termination condition (2000 iterations). The TSP for F6 is a high-
dimensional problem (128 dimensions) compared with the other TSPs (varying
from 11 to 59 dimensions). Therefore, the connections are not clear compared
with the nearby figures, as shown in Fig. 15. Additionally, the distribution of
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Fig. 13: Violin plots for the best total distance in 20 independent runs for
ACO, PSO, GA, and DDCS.
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Fig. 14: Convergence graphs for the mean path distance over 20 runs.
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the 128 cities of F6 is scattered in an extremely narrow area, so finding the
optimal route for this problem in just 2000 iterations is not easy. In contrast,
for F9, which has a simpler distribution of cities, finding the optimal route for
this problem in 2000 iterations is easier.

Regarding path planning inside a warehouse, there are different warehouse
configurations based on the number of blocks inside the warehouse. In each
warehouse, it is required to execute a batch of orders. In Fig. 16, the blue star
marks the starting point, while the red square marks the endpoint. Fig.16a
shows the final path for a 100-block warehouse with different number of items
for each order. F13 refers to an OPR problem for a warehouse with 100 blocks,
where the number of items to be picked is 50. Whereas, F14 is an OPR problem
for a warehouse with 100 blocks, where the number of items to be picked is
100.

Fig.16b shows the final path for a 400-block warehouse with different num-
ber of items for each order. The left figure is for F17, which refers to an OPR
problem for a warehouse with 400 blocks, and the number of items to be
picked is 50. The right figure is for F18, which refers to an OPR problem for
a warehouse with 400 blocks, and the number of items to be picked is 100.

The final path for a warehouse with 900 blocks is shown in Fig.16c. The
left figure shows F21, which refers to an OPR problem for a warehouse with
900 blocks, and the number of items to be picked is 50. The right figure shows
F22, which refers to an OPR problem for a warehouse with 900 blocks, and
the number of items to be picked is 100.

Fig. 16d shows the final path inside the largest warehouse with 2500 blocks.
The left figure illustrates F24, which indicates an OPR problem for a ware-
house with 2500 blocks, and the number of items to be picked is 200; while
F26 is an OPR problem for a warehouse with 2500 blocks, and the number of
items to be picked is 400.
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Fig. 15: Final Path for TSPs (F1–F10).
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(a) Final Path for 100-block Warehouse (F13–F14).

(b) Final Path for 400-block Warehouse (F17–F18).

(c) Final Path for 900-block Warehouse (F21–F22).

(d) Final Path for 2500-block Warehouse (F24–F26).

Fig. 16: Final Path Graphs inside Different Warehouse Configurations. Blue
star marks the starting point, while the red square marks the end point



38 Mohamed Reda et al.

7 Warehouse Application

This section presents the software and hardware for prototype implementation.
The first part discusses the warehouse layout design, while the second part
discusses a simple prototype hardware implementation and system structure.
The actual path of the prototype is illustrated at the end of this section.

7.1 Warehouse Layout Design

The implemented warehouse layout consists of nine blocks and a set of aisles
that intersect, as shown in Fig.17. The black lines represent the aisles on which
the trolley will move. The squares inside these black lines contain blocks. How-
ever, the main focus here is path planning; therefore, we do not represent the
blocks. The intersection points can be marked using QR and/or RFID tags to
identify the current position of the trolley by adding information about the
point itself and its neighbours [56][65]. This will be suitable for large ware-
houses such as an Amazon warehouse. In the proposed implementation, we
do not need to add the neighbours’ information for each point because the
robot knows exactly all the points that should pass from the beginning to the
endpoint. Therefore, it is necessary to know only the current position and not
the neighbour information.

There are some limitations and assumptions regarding this prototype. The
order is entered statically using a simple graphical user interface (GUI). It is
assumed that there is only one trolley in the prototype warehouse. Therefore,
collaboration between different trolleys is beyond the objective of this study.
The physical warehouse is assumed to have nine blocks for design simplicity.
The procedure applied to the nine blocks is the same as that to a larger ware-
house. A trolley can take one order at a time. Furthermore, batch organisation
is beyond the scope of this study. The primary focus is on path planning.

Fig. 17: The Physical layout of a 9-block warehouse.
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Fig. 18: The three main components of a warehouse.

7.2 Warehouse System Structure

The warehouse is organised into three main components: a centralised server,
an autonomous trolley, and the communication protocol between the cen-
tralised server and autonomous trolley. The relationship between them is
shown in Fig.18.

The Centralized Server

The first component is a centralised server. This is simply a computer system
where all the processing is performed. The proposed DDCS algorithm is ex-
ecuted on this server because it is iterative and requires a strong processor.
It receives the items ordered by the customer via a GUI, as shown in Fig.20.
Next, the proposed algorithm is executed on the required items to determine
the shortest path between all the items. Finally, it sends points of the path to
the trolley.

The Autonomous Trolley

The second component is an autonomous trolley, as shown in Fig.19. The
trolley is a mobile robot with a single job. The job is to follow the path
received from the centralised server. It then picks the items from the warehouse
shelves. The physical trolley consists of a set of main components: physical
body, sensors, actuators, and controller. The actuators used in this trolley are
DC motors. These motors control the movement in all directions. The sensors
used in this trolley are IR sensors that are used in line following the system.
IR sensors operate by transmitting infrared radiation and measuring reflected
radiation. The black line does not reflect radiation but absorbs it, whereas the
white line reflects the radiation. This is the key concept of line-following. Five
IR sensors are used in the trolley. Based on the alignment of these sensors on
the black line, the deviation of the robot can be determined. Hence, the trolley
can decide in which direction it should move to keep itself on the line.

This robot has a simple algorithm to follow a line and detect only the cur-
rent location. Therefore, a small inexpensive microcontroller, such as Arduino
Uno, can be used. Complex processing is centralised on the server. The sen-
sors and motors are connected to the Arduino pins. The code that manages
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Fig. 19: The physical prototype of the trolley.

Fig. 20: Placing the order using the GUI

the line-following algorithm is written in C language. After gathering all these
components, the final prototype of the trolley is shown in Fig.19.

The Communication Protocol

The third component is the communication protocol. The protocol used in
this prototype is serial communication via a Bluetooth module. This method is
simple and suitable for use in small warehouses. In the case of large warehouses,
a WIFI module can be used instead. This protocol transfers the path points
from the server to the chosen robot.

Advantages of the Proposed Structure

The structure of an autonomous warehouse has several advantages. The most
important advantage is the centralised processing on the server. This is be-
cause the proposed algorithm requires a powerful processor that cannot easily
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Fig. 21: The expected path from the proposed algorithm that should be fol-
lowed by the autonomous trolley.

be executed on any microcontroller. Therefore, fast execution of the algorithm
on the server saves considerable time. In addition, the trolley has a simple code
on its controller, which includes line-following code and detection of its loca-
tion. This simplifies the manufacturing process of this robot, and inexpensive
microcontrollers can be used for these robots. This will lead to ease of exten-
sion because the order distribution process is centralised and does not depend
on robots. Therefore, many trolleys can be added to the system, all of which
can be connected to the same central unit. The maintenance of the system is
easier because all the robots have the same code on their controllers, and the
main code responsible for executing the proposed algorithm is centralised on
the server.

7.3 Physical warehouse results

An order of three items is placed. This order contains items 2, 7, and 10. The
order is placed using GUI on the server, as shown in Fig.20. The proposed
algorithm is executed, and it generates the expected path, as shown in Fig.21.
The trolley receives this path via serial communication, and it begins to move
on this path on the actual warehouse prototype. After the order is received by
the autonomous trolley, it follows the expected path. The steps of the trolley
are shown in Fig.22.
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(a) Move 1 (b) Move 2 (c) Move 3

(d) Move 6 (e) Move 5 (f) Move 4

(g) Move 7 (h) Move 8 (i) Move 9

Fig. 22: The actual movement of the trolley inside the warehouse prototype.

8 Conclusion

This study aimed to solve the OPR problem for an autonomous trolley in-
side a warehouse. This problem is defined as a TSP. A new algorithm, named
DDCS, is proposed to solve the OPR problem for autonomous trolleys inside
a warehouse. Various modifications were made to the standard CSA. Random
key encoding was used to represent TSP solutions. The 2-opt moves and adap-
tive LFRW were used to update the solutions. Moreover, different mutation
techniques were used for different population subgroups. The proposed DDCS
algorithm was customised to solve the OPR problem with diagonal movement
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constraints, which was solved using the concepts of intersection and corner
points.

The proposed DDCS was compared with the GA, ACO, and PSO algo-
rithms on a set of common benchmark TSPs, in addition to different warehouse
OPR problems. The simulation and practical results show that the proposed
DDCS algorithm outperforms all other algorithms, especially in large dimen-
sions. A physical centralised architecture was assumed, which saves time and
cost because bulky processing is performed on a centralised server. Further-
more, trolleys can use inexpensive controllers because they do not have a high
processing load. Therefore, this system is suitable for large warehouses, such
as Amazon and royal mail warehouses.

In the future, a parametric study can be conducted on the parameters
of the DDCS algorithm, such as discovery probability, to test their impact
on performance. The proposed algorithm can be extended to more real-time
applications, such as PCB drilling process and other permutation applications.
This algorithm can be hybridised with other algorithms, and its performance
can be tested on various types of applications.
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57. Theys C, Bräysy O, Dullaert W, Raa B (2010) Using a tsp heuristic for
routing order pickers in warehouses. European Journal of Operational Re-
search 200(3):755–763

58. Thrun MC, Gehlert T, Ultsch A (2020) Analyzing the fine structure of
distributions. PloS one 15(10):e0238835

59. Tompkins JA, White JA, Bozer YA, Tanchoco JMA (2010) Facilities plan-
ning. John Wiley & Sons

60. Tsai CY, Liou JJ, Huang TM (2008) Using a multiple-ga method to solve
the batch picking problem: considering travel distance and order due time.
International Journal of Production Research 46(22):6533–6555

61. Van Gils T, Ramaekers K, Caris A, de Koster RB (2018) Designing effi-
cient order picking systems by combining planning problems: State-of-the-
art classification and review. European Journal of Operational Research
267(1):1–15

62. Wang KP, Huang L, Zhou CG, Pang W (2003) Particle swarm optimiza-
tion for traveling salesman problem. In: Proceedings of the 2003 inter-
national conference on machine learning and cybernetics (IEEE cat. no.
03ex693), IEEE, vol 3, pp 1583–1585

63. Wang L, Yin Y, Zhong Y (2015) Cuckoo search with varied scaling factor.
Frontiers of Computer Science 9(4):623–635

64. Wurman PR, D’Andrea R, Mountz M (2008) Coordinating hundreds of
cooperative, autonomous vehicles in warehouses. AI magazine 29(1):9–9

65. Xiao-Long W, Chun-Fu W, Guo-Dong L, Qing-Xie C (2017) A robot navi-
gation method based on rfid and qr code in the warehouse. In: 2017 Chinese
Automation Congress (CAC), IEEE, pp 7837–7840

66. Yang XS, Deb S (2009) Cuckoo search via lévy flights. In: 2009 World
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