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Abstract: 43 

Background: Machine learning (ML) is a set of models and methods that can automatically detect 44 

patterns in vast amounts of data, extract information and use it to perform decision making under 45 

uncertain conditions. The potential of ML is significant, and breast surgeons must strive to be informed 46 

with the up-to-date knowledge and its applications. Here, we aim to review the current applications 47 

of ML in breast surgery. 48 

Methods: A systematic database search was conducted of original articles that explored the use of ML 49 

and/or AI in breast surgery in EMBASE, MEDLINE, Cochrane database and Google Scholar, from 50 

inception to December 2021. 51 

Results: Our search yielded 477 articles, of which 14 studies were included in this review, featuring 52 

73,847 patients. Four main areas of application were identified: 1) ML for predictive modelling of 53 

breast surgical outcomes; 2) ML in breast image-based context for analysis and detection, including 54 

mammography; 3) ML within screening and triaging of breast surgery patients; 4) ML network utility 55 

for detective purposes. There is evident value to the use of ML in pre-operative planning and provision 56 

of information for breast surgery in a cancer and an aesthetic context. ML outperformed traditional 57 

statistical modelling in all studies for predicting mortality, morbidity, and quality of life outcomes. ML 58 

patterns and associations could support planning, anatomical visualisation, and surgical navigation. 59 

Conclusion: ML demonstrated promising applications for improving breast surgery outcomes and 60 

patient-centred care, nevertheless, there remain important limitations and ethical concerns relating 61 

to implementing AI into everyday surgical practices. 62 

 63 

 64 

 65 

 66 
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Background: 67 

Artificial intelligence (AI) refers to computer systems that mimic human cognitive functions and learn 68 

using large data sets. (1) Recent years have shown a dramatic development in these technologies in 69 

healthcare employed in a wide variety of diagnostic and decision-making processes. (2) In an emerging 70 

era of big data, the scope and scale of patient data available and leaps in computational ability has 71 

allowed AI to develop and improve in its efficiency and applicability. (3) 72 

AI technology is progressing rapidly with support from healthcare professionals, industry and 73 

governments. (4) Healthcare has adopted these technologies to improve patient outcomes, especially 74 

in the field of surgery. These technologies demonstrate unique potential in breast surgery: pre-75 

operative planning, patient outcome predictions, and even overcoming the challenges of the COVID-76 

19 pandemic as demonstrated by the recent COVIDSurg Collaborative study that addressed the impact 77 

of COVID-19 on patient mortality with a predictive model. (5) 78 

AI encompasses many disciplines of computer learning, and clinically relevant subtypes of AI include 79 

machine learning (ML). (1,6) Machine learning is a subset of this field where a system focuses on using 80 

algorithmic packages and data to mimic the way humans learn. (2) The algorithms use data inputs to 81 

‘learn’, uncovering associations in data sets via pattern recognition, repetition and modification to 82 

make autonomous decisions and predict future outcomes. Common subsets of ML include prediction 83 

models, deep learning and natural language processing. (7-8) 84 

Breast surgery, a sub-speciality within general surgery, is a field that has much to benefit from the 85 

advances in AI to provide the best patient care by surgical interventions in benign and malignant breast 86 

disease. ML in breast surgery may involve these sets of models and methods to detect patterns in vast 87 

amounts of patient data, extract appropriate information and use it to perform decision making under 88 

uncertain conditions. (9) From supporting pre-operative planning to predicting future outcomes of 89 

surgery. The potential applications of ML is significant, and breast surgeons must strive to be informed 90 

with the up-to-date knowledge and applications of this subset of AI within the speciality. (10-11) 91 



5 
 

The aim of this review is to study the applications of ML in breast surgery. Past reviews in other surgical 92 

specialities have been written, but none specifically for breast surgery. This review is designed to 93 

closely evaluate the current applications by synthesising current research, and to catalyse future 94 

research efforts into this advancing field. 95 

 96 

Methods 97 

Literature Search Strategy  98 

This systematic review was conducted in accordance with the Cochrane Collaboration and Preferred 99 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A literature search 100 

was conducted including EMBASE, MEDLINE, Cochrane, PubMed and Google Scholar from inception 101 

to December 2021 (Figure 1). The search terms used were (Machine Learning OR Artificial Intelligence 102 

OR Deep learning OR Decision Trees OR Neural Networks) AND (Breast Surgery OR Mastectomy OR 103 

Breast-conservative Surgery OR Breast reduction OR Breast reconstruction OR Breast augmentation 104 

OR Breast Cancer Surgery). Further articles were identified through use of the ‘related articles’ 105 

function on MEDLINE and a manual search of the references lists of articles found through the original 106 

search. The only limits used were the English language and the aforementioned time frame. 107 

Study inclusion and exclusion criteria 108 

All original articles were included reporting the use of machine learning in breast surgery. Studies were 109 

considered if they presented ML models with the aim of supporting breast surgery or providing a 110 

prognosis for an intervention, either used by itself or with other methods. There were no geographical 111 

restrictions. Studies were excluded from the review if the quality of available data and data 112 

inconsistencies precluded valid extraction or if the study was performed in an animal model. Case 113 

reports, reviews, abstracts from meetings and preclinical studies were excluded. Machine learning is 114 

a highly erratic and dynamic field – this review contains literature published over a 5-year time period 115 
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between 2017 and 2021 inclusive, technology has changed significantly even in the five years 116 

preceding conduction of this review. As a result, there have been many advancements that have 117 

superseded some of the points raised in earlier literature and care was taken to recognise each study 118 

in the unique context of its publication year. It was ensured that any outdated findings did not shape 119 

the review. By following the aforementioned criteria, two reviewers (C.S and V.S.) independently 120 

identified articles for further assessment following title and abstract review. Disagreements between 121 

the two reviewers were resolved by a third independent reviewer (A.AR.). Potentially eligible studies 122 

were then retrieved for full text assessment. 123 

Data extraction and critical appraisal of evidence 124 

All full texts of retrieved articles were read and reviewed by two authors (C.S. and V.S.) and inclusion 125 

or exclusion of studies was decided unanimously. When there was disagreement, a third reviewer 126 

(A.AR.) made the final decision. Using a pre-established protocol, the following data was extracted: 127 

first author, study type and characteristics, number of patients, population demographics, Type of 128 

Procedure, Category of machine learning method utilised, Method of machine learning implemented 129 

and Main reported outcomes.  130 

Risk of Bias 131 

The risk of bias of the selected articles were evaluated by two independent reviewers (C.S. and V.S.) 132 

using an adapted Cochrane Collaboration Risk of Bias tool (Figure 2). The methodological quality of 133 

the studies were assessed based of domains: 1. Study Participation, 2. Study Response, 3. Outcome 134 

Measurement, 4. Statistical Analysis and Reporting, 5. Study Confounding. An overall grading of low, 135 

medium or high risk of bias were then allocated.  136 

Additionally, the limitations of this systematic review have been more expansively outlined in 137 

Supplementary File 1. 138 

 139 
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Results:  140 

Study selection 141 

The literature search identified 477 articles, of which 361 were screened following removal of 142 

deduplicates and 24 were full text reviewed and assessed in accordance with the inclusion and 143 

exclusion criteria. Following critical appraisal, a total of 14 studies (13-26) were included in this review, 144 

featuring 73,847 patients. Figure 1 illustrates the entire study selection process. A summary of the 145 

studies collected and their respective designs, type of machine learning mode used and its 146 

implementation as well as the main reported outcomes are found in table 1. 147 

There were 9 studies (16-18,20-23,25,26) (5–7,9–12,14,15) which described examples of machine-148 

learning based predictive modelling comprising 45792 patients and included a conglomerate of 149 

different modelling methods. Predictive modelling was the use with the most recorded studies and 150 

patient volume. The use of ML in imaging is also described. There were 3 studies (13,15,24) (2,4,13) 151 

which described examples of machine-learning within an image-based context for analysis and 152 

detection comprising 20499 patients – in all cases different modes of machine learning modes were 153 

applied. There was a one study (14) (3) which described a case of machine learning’s role within 154 

screening and triaging – this comprised 7364 patients. There was one study (19) which described a 155 

scenario of machine learning network utility for detective purposes – this comprised 355 patients. 156 

 (8) 157 

Challenges and recommendations 158 

Figure 3 summarizes the main challenges and respective recommendations developed from the 159 

literature with regards to future research being conducted in the field of ML and its application in 160 

breast surgery. The recommendations should be taken into the context of each future research study 161 

and be considered with all the information available. 162 

 163 
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Discussion: 164 

This systematic review provides a wide-scope summary of the uses of machine learning and artificial 165 

intelligence within  breast surgery. Although the review’s results demonstrate successes within 166 

different approaches in the field, these must be considered in the context of their limitations and 167 

recent applications. Most of these applications remain at the ‘proof of concept’ stage. Healthcare 168 

professionals must be prepared to adopt machine learning and artificial intelligence into health 169 

practice, as usability and cost-effectiveness of these technologies increase with new developments in 170 

the field, and to shape the new landscape in which it is used in medicine. (11) 171 

There is evident value to the use of machine learning in pre-operative planning and provision of 172 

information for breast surgery planning in a cancer and an aesthetic context. The diagnosis and 173 

detection of pathology is fundamental in pre-operative planning for breast cancer resection. The use 174 

of image analysis in clinical applications such as breast imaging, digital pathology and surgical planning 175 

has been well-described in the literature. Considering the imaging data available with modern 176 

radiology techniques in screening and diagnosis, many machine learning solutions have been derived.  177 

A retrospective image analysis study from Becker et al (13) (2) describes mammography diagnostics 178 

using neural network image analysis software that demonstrated the equivalent performance of the 179 

neural network with an area under the receiver operating characteristic curve (AUC) of 0.81 and 0.82 180 

respectively in both stages compared to radiologists The results differ between radiologists - however, 181 

the neural network showed an increased sensitivity of 72% when compared to a 66.7% average across 182 

the radiologists overall. Corroborating these findings, the retrospective simulation study from 183 

Dembrower et al (14) (3) and diagnostic study from Buda et al (15)(4)  also demonstrate similar levels 184 

of prediction using different means of deep learning models such as a commercial artificial 185 

intelligence-based cancer-detector algorithm. Cancer detection via datasets allows specific 186 

interventions that increase efficiency of operations with the pre-knowledge for surgeons to employ in 187 

planning and treatment decisions. The  employment of specific machine learning technologies 188 
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including the Faster-RCNN with Inception-ResNet-v2 deep-learning framework, described in the Yap 189 

et al study for a set of ultrasound breast images, facilitates the accurate detection of objects to allow 190 

surgeons to focus on the relevant area of the breast (24) (13). 191 

The models that exist can promise a future of reducing the numbers of biopsies and bringing efficiency 192 

to radiologist interpretation while reducing workloads. Diagnostic and prognostic applications in 193 

imaging and pathology have been studied greatly, with a wide evidence base of applied research. 194 

Transfer of imaging information to the operating theatre to more accurately localise cancer to support 195 

surgical care can aid the field. Reducing overdiagnosis, morbidity and time efficiency with the efficient 196 

use of breast imaging is an aspiration of the future. 197 

Most applications of machine learning within breast surgery, as ascertained by this review, centre 198 

around the prediction of patient outcomes prognostically – this is coherent with the wider applications 199 

of machine learning within modern surgery (27-29)(16–18).  There have been multiple instances, 200 

identified across the course of this review, where machine learning was employed alongside 201 

traditional statistical modelling for predictive purposes. Indicative of the success of machine learning, 202 

the former outperformed the latter in every highlighted example and thus replicates the successes 203 

seen across other surgical subspecialties, mostly prominently neurosurgery (30) (19). This is 204 

particularly evidenced via the longitudinally-designed Huang et al study which demonstrated that 5-205 

year mortality after breast cancer surgery could be accurately assessed using machine learning 206 

algorithms through a variety of input variables (16) (5). Although machine learning packages have 207 

been substantiated to show marked improvements to pre-existing models including, but not limited 208 

to, least square regression and Cox regression (17,31) (6,20), it must be stated that these still remain 209 

limited and relatively novel.  210 

The studies included in this review demonstrated high heterogeneity in the form of machine learning 211 

applied within individual cases. In this way, some models have been transparently more consistent 212 

and accurate than others. Artificial neural networks, algorithms which have been modelled after the 213 
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human brain and nervous system and with a basis in the concept of a human neurone (32) (21), have 214 

been established as dependable across the scope of this review – exemplified most prominently in the 215 

Lou et al. study where the artificial neural network package demonstrated the highest prediction 216 

performance index - obtaining a sensitivity of 95.9, specificity of 99.5, PPV of 99.0, NPV of 99.1 and 217 

AUC of 97.6 (20) (9). This provides greater support to previous literature which describes the 218 

effectiveness of artificial neural networks in other clinical contexts (33-35) (22–24). Artificial neural 219 

networks are better adapted to deal with more problematic inputs - specifically, cases where an input 220 

may be noisy or incomplete. As a result of these advantages, a 93.75% accuracy rate of identifying a 221 

breast cancer patient’s post-operative lymphedema status was obtained in the Fu et al. Study (19)(8). 222 

Many medical databases, of the scale where a machine learning model can be realistically derived, 223 

contain non-normally distributed data. This poses further issue to many forms of modelling which 224 

assume a normal distribution within a dataset (23) (12) - as artificial neural networks are applicable to 225 

well-correlated data that are not necessarily natively normally distributed, artificial neural networks 226 

are more transferrable and can provide greater potential for use in wider treatment contexts beyond 227 

breast cancer surgery. 228 

Machine learning’s capacity for use in breast surgery can further extend past predicting outcomes and 229 

pivot towards providing more holistic patient assessment via the prediction of postsurgical pain, seen 230 

in both the Juwara et al (17)(6) and Lotsch et al (18) (7) studies. Machine learning creates opportunities 231 

for far more efficient pain assessment that can be undertaken immediately post-operatively, in 232 

comparison to pre-existing tools that require time-heavy questionnaires and extensive clinician-233 

patient interaction; this serves great utility in the context of a healthcare system where both time and 234 

human resources are often limiting factors. As neuropathic pain can be debilitating for patients, early 235 

prediction can allow clinicians to better optimise post-surgical care.  236 

As an additional factor repeatedly indicated via the machine learning models included in this review, 237 

a greater surgeon volume was the largest predictor of reduced breast cancer recurrence in patients 238 
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that had undergone breast cancer surgery (16,20) (5,9). In light of this, there is renewed necessity for 239 

machine learning to be implemented to further review the decision-making of surgeons with higher 240 

operative volumes. Decision analysis and reinforcement learning, modes of machine learning well-241 

documented within this context (36) (25), would allow this to be paralleled and promote further 242 

improvements in decision-making for surgeons with lower operative volumes. This can further 243 

minimise postoperative burden. In tandem to this, there has been evidence to suggest that some 244 

machine learning packages can outperform even the most experienced surgeons, as determined 245 

above, and therefore it may be possible to provide the framework of a specific machine learning 246 

package itself as a template for replication by surgeons of all grades. 247 

Additional applications of machine learning on the horizon within the field of breast surgical care can 248 

be considered, although most of these remain conceptual. Decision making in modern medicine is 249 

complex due to the increasing availability of data to consider before treatment decisions are made 250 

(37)(26). Advances in medical knowledge including that of well-researched novel therapies and 251 

surgery only dramatically increase the potential treatment choice algorithms. Decision support 252 

systems have been well-described, including the DESIREE project (38)(27), that provides breast unit 253 

physicians with decision support modules. This is further stipulated in other examples (39) (28) where 254 

decision support models regarding recurrence prediction are employed and comprise support systems 255 

that encompass artificial intelligence and information visualisation amongst many other technologies. 256 

Computer vision for object and scene recognition could support surgical techniques. Patterns and 257 

associations can support planning, anatomical visualisation and surgical navigation. The exploration 258 

of machine learning systems that perform or directly complement surgery is rapidly developing, and 259 

may be a possibility in the imminent future. Real-time decision making supported by machine learning 260 

provides exciting opportunities (40) (29). 261 

The new frontier of surgical innovation, concurrently occurring at the time of the review, is unlike any 262 

other observed previously. Despite the benefits and applications in the field as described above, 263 
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clinicians must be careful to consider the potential limitations and risks of the technology and avoid 264 

overt optimism surrounding the capabilities of machine learning, instead focusing realistically on the 265 

barriers to its implementation clinically. (41) (30). 266 

Machine learning and artificial intelligence is limited by the lack of accurate and unbiased data 267 

collection and input. If data-input bias is evident, predictions may easily become unreliable. Examples 268 

include systematic biases due to nonrepresentative predictions for patient groups that are not 269 

necessarily represented in research (42) (31). This review does provide evidence in support of 270 

theoretical machine learning applications, however, as outlined in a review by Manlhiot et al. (43), 271 

care must be taken to recognise that these are not wholly clinically representative. The described 272 

machine learning models rely on heavily-curated datasets with relatively few implementation 273 

obstacles, in vast contrast to datasets available in clinical practice. 274 

Machine learning can exhibit ‘black box’ characteristics, with incomprehensibly complex algorithms 275 

for their outputs. The learning mechanisms of some machines have been difficult to reproduce, and it 276 

has been difficult to justify certain decisions. Measures taken in the programming of these machines 277 

to justify decisions and compare with gold standard diagnosis can circumvent this challenge. The 278 

challenges surrounding the complexity of machine learning in its current state render it clinically 279 

unimplementable without expertise and specialist knowledge - hence, the benefits of it are yet to be 280 

properly actioned. Explainable machine learning whereby the system is able to justify how it made its 281 

predictions on a level that is comprehensible to a clinician(44,45) (32,33) has come to light as a 282 

potential solution to this issue - exemplified in the Moncada-Torres et al study (25) (14) where 283 

explainable machine learning consistently outperformed all other methods for predicting outcomes 284 

in patients who had undergone breast-conserving surgery or mastectomy.  However, this remains one 285 

of a set of isolated cases. 286 

In addition, considerations of collaboration with other stakeholders in the implementation of the 287 

technology, in order to ensure data is interpreted correctly and applied in the correct manner, should 288 
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be of paramount importance. These technologies have been criticised due to a lack of confidence 289 

regarding their perceived privacy and due to the risk of bias with data collection, as aforementioned 290 

Caution and planning to understand the most safe and beneficial method of implementation, via close 291 

collaboration of healthcare professionals with machine learning and artificial intelligence experts in a 292 

multidisciplinary approach, is required to ensure the best outcomes for all. In addition, engagement 293 

of breast surgery patients in decisions where patients can be informed are important. 294 

Economic considerations, job losses and the lack of human element pose additional ethical dilemmas. 295 

Machine learning may be stifled from practical implementation in breast surgery due to infrastructural 296 

shortcomings (with regards to both hardware and software) in the post-deployment management of 297 

models, a phenomenon that has been described within the technology’s application within cardiology 298 

(43). Ethico-legal and social issues including the lack of regulatory structures surrounding the 299 

technology must be addressed and solutions to such issues within breast surgical care must be 300 

explored. Financial considerations and the accessibility of this technology in LMICs and globally, 301 

alongside the opportunity-cost of such applications, must also be considered. The technology should 302 

be widely accessible, and it is important to ensure the maintenance of high standards across different 303 

healthcare systems. 304 

The most favourable studies included in this review included high sample sizes and were multicentre. 305 

Many of the single centre studies cited the idea of applying the relevant algorithm to larger sample 306 

sizes through involving data from other centres. Additionally, many studies circumnavigated the 307 

challenge of a low centre sample size by combinations with registry data to build their respective 308 

algorithms. Potential prospective solutions may also have basis in the concept of federated learning – 309 

a machine learning approach that allows an algorithm to combine data collectively from multiple 310 

centres without physical exchange of the data (46). Hence, it is clear that any future approaches should 311 

ensure that this collaborative approach is undertaken as standard. Many studies encountered 312 

additional issues with data imbalances such that some classes contained significantly larger amounts 313 
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of data compared to others – to correct this, the Myung et al. study applied the ROSE:sMOTE 314 

oversampling technique which had been seen in previous literature (47) (34) and is a technique future 315 

studies may consider employing to increase the validity and generalisability of packages and 316 

consequentially the probability of success (21)(10).  317 

Machine learning must be recognised as still within its trial phase – it is not perfect and subject to 318 

multiple flaws (26) (15). Although current literature provides fundamental foundations to its 319 

applicability, future approaches must consider clinical relevance at their core. The exact framework 320 

by which machine learning may seek to aid postoperative care must be established, as does the basis 321 

of a clinical decision support system. Such a system would aid the facilitation of greater data-based 322 

shared patient-clinician decision-making within breast surgical care. Hence, there is sufficient 323 

groundwork to construct prospective randomised studies to observe the impact of machine learning 324 

in clinical practice.   325 

Significant and structured research is required to investigate the accuracy and utility of machine 326 

learning for the benefit of patients. It is important for surgeons to collaborate with computer scientists 327 

and related field specialists, so outcomes are directed towards improving patient care and to 328 

understand important limitations and ethical concerns relating to implementing such technology into 329 

everyday surgical practices. 330 

 331 

 332 

 333 

 334 

 335 

 336 
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Figure legend: 525 

Figure 1. PRISMA Flow Chart 526 

Figure 2. Risk of bias diagram 527 

Figure 3: Challenges and recommendation in Machine Learning research within Breast Surgery.  528 

Table legends: 529 

Table 1. studies included assessing the use of machine learning in breast surgery 530 
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Table 1: studies included assessing the use of machine learning in breast surgery 545 

Study Y
e
a
r 

Stud
y 

desi
gn 

Type of 
Procedure 

Category 
of 

machine 
learning 
method 
utilised 

Popul
ation 
Numb

er 

Method of machine learning 
implemented 

Main reported outcomes 

Becker et 
al 

2
0
1
7 

NM, 
NR, 
NP 

Mammography Image 
analysis 

3228 • Patients experiencing 
mammography at the institution 
were chosen to form the dataset - 
this was used to train the neural 
network.  

• An external dataset from the Breast 
Cancer Digital Repository was used 
for testing. This was appraised by 
three radiologists.  

• One radiologist showed nearly equivalent 
performance to the network (0.83, p = 0.17) 
and the other two performed significantly 
better (0.91 and 0.94 respectively, p < 
0.016). 

• The neural network's performance of 0.82 
did not differ significantly between 
radiologist performance. The neural 
network behaved less specifically and more 
sensitively compared to humans 
throughout. 

Dembrow
er et al 

2
0
2
0 

M, 
NR, 
NP 

Mammography Screening 7364 • A cohort of mammograms were 
made selected in a way that 
mimicked frequency in reality. The 
AI cancer detector algorithm used 
had been pre-trained. 

• The software generates underlying 
image-level prediction scores for 
tumour presence. From this, cutoff 
points were established to insert 
patients into two novel work 
streams - on missed and 
additionally detected cancer. 

• For 60%, 70% or 80% of women possessing 
the lowest AI scores in the negative 
radiologist stream, 0·3% (95% CI 0·0–4·3) / 
2·6% (1·1–5·4) of screen-detected cancers 
would be missed respectively.  For the 1% 
or 5% of women possessing highest AI 
scores in the 'enhanced assessment' stream, 
12% or 27% of  subsequent interval cancers, 
respectively, and 14% or 35% of next-round 
screen-detected cancers, respectively, may 
have also been able to be detected 
additionally. 

 
Buda et al 2

0
2
1 

M, 
NR, 
NP 

Digital breast 
tomosynthesis 

Deep 
learning 

algorithm 

16802 • 16802 digital breast tomosynthesis 
examinations that had 1 
reconstruction view between 
August 26, 2014 and January 29, 
2018 were analysed. 

• These were subdivided into 4 
groups and further split into 
training and testing sets for the 
evaluation of the deep learning 
model. 

• The deep learning model trained reached a 
breast-based sensitivity at 65% (39 of 60; 
95% CI, 56%-74%) on the test set. This was 
at 2 false positives per DBT volume. 

Huang et 
al 

2
0
1
7 

M, 
NR, 
NP 

Breast cancer 
surgery 

Predictive 
model 

3632 • This study compared three models 
(MLR, Cox & ANN) for 3632 post-
operative breast cancer patients 
between 1996 and 2010. 

• An estimation dataset trained the 
model, and a validation dataset 
helped evaluate the performance 
of the model. Sensitivity analysis 
allowed the comparison of input 
variables for the model's 
predictions. 

• The ANN model overall performed best over 
the MLR and Cox models for predicting 
5-year breast cancer mortality post-
operatively. 

• Age, Charlson comorbidity index (CCI), 
chemotherapy, radiotherapy, hormone 
therapy, breast cancer surgery volumes of 
hospital and breast cancer surgery volumes 
of surgeon were significant associations 
with 5 year breast cancer surgery, the latter 
was the most significant. 

Juwara et 
al 

2
0
2
0 

NM, 
NR, 
P 

Breast cancer 
surgery 

Predictive 
model 

195 • 6 machine learning algorithms 
(least square, ridge, elastic net, 
random forest, gradient boosting 
and neural net) aided primary 
analysis of the identification of 
predictors of DN4-interview score 
(index for neuropathic pain). 

• Models were compared. A logistic 
classification model was created for 
neuropathic pain using the 
predictor outcomes of the primary 
analysis. 

• Anxiety, type of surgery, preoperative 
baseline pain and acute pain on movement 
predicted DN4-score most pertinently. 
Anxiety had the most significant association 
with neuropathic pain. 

• The least square regression model 
compared well with the random forest 
model and neural network model. The 
Gradient boosting model performed better 
than all the other models.  
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Lotsch et 
al 

2
0
1
8 

NM, 
NR, 
P 

Breast cancer 
surgery 

Supervise
d machine 

learning 
prediction 

1000 • ML helped establish a short 
questionnaire to identify pain to 
the same predictive level as pre-
existing full-form questionnaires. 

• The predictors were trained via the 
full set of items in Beck's 
Depression Inventory (BDI), 
Spielberger's State-Trait Anxiety 
Inventory (STAI), and the State-
Trait Anger Expression Inventory 
(STAXI-2). 

• ML extracted features of these to 
create predictors with a lower item 
number. 

• A 7-item set produced via ML that 
comprised 10% of the original questions 
from the STAI and BDI respectively 
performed the same as the full 
questionnaires in predicting development of 
persistent postsurgical pain. 

Fu et al 2
0
1
8 

M, 
NR, 
NP 

Breast cancer 
surgery 

Detection 355 • A mobile health system allowed 
data to be collected based on real-
time symptom reporting. 

• Both statistical and ML processes 
were employed for data analysis. 
Regarding the latter, 5 classical 
algorithms were compared: 
Decision Tree of C4.5, Decision 
Tree of C5.0, gradient boosting 
model (GBM), artificial neural 
network (ANN), and support vector 
machine (SVM). 

• Using ML to compare different algorithms is 
a viable concept. Artificial neural network 
(ANN) performed best for detecting post-
operative development of lymphedema 
(accuracy - 93.75%, sensitivity - 95.65% and 
specificity - 91.03%). 

Lou et al 2
0
2
0 

M, 
NR, 
NP 

Breast 
conservation 

surgery, 
modified 

reconstructive 
mastectomy, 
mastectomy 

with 
reconstruction 

Predictive 
model 

1140 • The cases in this study were divided 
into a training dataset to develop 
the ML model, a testing dataset for 
internal validation and an 
externally validating dataset. 

• After training, outputs of the model 
were taken for each training set. 
Accuracy in predicting breast 
cancer recurrence within 10 years 
was compared. 

• The ANN model performed significantly best 
of all models based on sensitivity, 
specificity, PPV, NPV, accuracy, and AUROC 
values. 

• Surgeon volume followed by hospital 
volume and tumour grade were, in that 
order, best predictors of recurrence of 
breast cancer within 10 years. 

Myung et 
al 

2
0
2
1 

NM, 
NR, 
NP 

Microsurgical 
unilateral breast 
reconstruction: 
muscle-sparing 
type TRAM and 

DIEP (muscle 
sparing type 3) 
abdominal flaps  

Predictive 
model 

568 • Neuralnet,, and RSNNS machine 
learning packages were applied to 
compare prediction accuracy, 
sensitivity, specificity, and 
predictive power (AUC) for 
predicting factors that raise 
abdominal flap donor site 
complications (against logistic 
regression). 

• 13 variables suggested to influence 
donor site complication rates were 
evaluated. 

• Neuralnet performed most optimally of all 
the packages. 

• Fascial defect, history of diabetes, muscle 
sparing type, and presence or absence of 
adjuvant chemotherapy all significantly 
affected complication rate of donor sites. 

• High-risk group complication rates were 
significant compared to the low-risk group 
upon statistical analysis. 

Van 
Egdom et 

al 

2
0
2
0 

NM, 
NR, 
NP 

Breast cancer 
surgery 

Predictive 
model 

764 • Various patient data variables were 
available. 

• ML methods (general linear model 
regression (GLM), support vector 
machines (SVM), single-layer 
artificial neural networks (ANN), 
and deep learning (DL)) evaluated 
presurgical prognostic factors of 
age, medical status, tumour 
characteristics, and (neo)adjuvant 
treatment indications or treatment 
characteristics. 

• No relationship was determined between 
predictors and outcomes, rendering the 
model akin to the outcomes' respective 
population prevalence. Combining variables 
and, simultaneously, reducing dimensions, 
did not yield significant changes. 

Yang et al 2
0
2
1 

NM, 
NR, 
NP 

Breast cancer 
surgery 

Predictive 
model 

1061 • This study posed a predictive 
model of breast cancer recurrence 
based on clinical, nominal and 
numeric features. 

• 6 features from an initial dataset 
were identified for further 
processing and resampling. 

• AdaBoost and cost-sensitive 
learning packages predicted the 

• AdaBoost reaches an accuracy of 0.973 and 
sensitivity of 0.675. A combination of 
AdaBoost and cost-sensitive learning poses 
a model with a reasonable accuracy of 
0.468 and very high sensitivity of 0.947. 
Hence, the model is can be used to support 
early intervention. 
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risk of recurrence and evaluated 
performance. 

Yap et al 2
0
2
0 

M, 
NR, 
NP 

Breast 
ultrasound 
detection 

Image 
analysis 

469 • The study employs a deep learning 
method for breast ultrasound ROI 
detection and lesion localisation. 
Transfer learning is used to due to 
unavailability of datasets and a 
novel 3-channel artificial RGB 
method is applied for performance 
improvement. 

• This proposed method is evaluated 
and compared using an individual 
and composite dataset. 

• Faster-RCNN outperformed a computer 
vision object detection algorithm indicating 
viability for use in BUS  lesion localisation. 

• IoU (equivalent to Dice Coefficient Index) 
should be used in lesion detection due to its 
reliability. 

Moncada-
Torres et 

al 

2
0
2
1 

M, 
NR, 
P 

Breast-
conserving 

surgery, 
mastectomy 

Predictive 
model 

36658 • Data of patients who underwent 
curative breast surgery was used to 
compare the performance of Cox 
proportional hazards analysis (CPH) 
with ML modes (Random Survival 
Forests, Survival Support Vector 
Machines and Extreme Gradient 
Boosting [XGB]) for survival 
predictions. 

• ML models perform to at least the same 
standard as classical CPH regression and 
even better for some models (XGB). 
Furthermore, Shapley Additive Explanation 
(SHAP) values were used successfully as a 
form of explainable machine learning to 
provide detail on how the models’ 
predictions are made. 

Sidey-
Gibbons 

et al 

2
0
2
1 

NM, 
NR, 
P 

Breast cancer 
surgery 

Predictive 
model 

611 • A set of oML algorithms (neural 
network, regularized linear model, 
support vector machines, and a 
classification tree) were trained 
and tested for making predictions 
of financial toxicity in a dataset. 

• The data were split into samples for 
the training and testing sets, prior 
to assessment of predictive 
performance.  

• ML packages accurately predicted financial 
toxicity in this context demonstrating an 
AUROC of 0.85, accuracy of 0.82, sensitivity 
of 0.85, and specificity of 0.81. 

• Neoadjuvant therapy and autologous 
reconstruction were ascertained as key 
indicators of financial toxicity. 

• Radiation and tumour grade showed no 
effect. 

M: multicentre; NM: non-multicentre; R: randomized; NR: non-randomized; P: prospective, NP: non-prospective 546 
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