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Abstract:

Background: Machine learning (ML) is a set of models and methods that can automatically detect
patterns in vast amounts of data, extract information and use it to perform decision making under
uncertain conditions. The potential of ML is significant, and breast surgeons must strive to be informed
with the up-to-date knowledge and its applications. Here, we aim to review the current applications

of ML in breast surgery.

Methods: A systematic database search was conducted of original articles that explored the use of ML
and/or Al in breast surgery in EMBASE, MEDLINE, Cochrane database and Google Scholar, from

inception to December 2021.

Results: Our search yielded 477 articles, of which 14 studies were included in this review, featuring
73,847 patients. Four main areas of application were identified: 1) ML for predictive modelling of
breast surgical outcomes; 2) ML in breast image-based context for analysis and detection, including
mammography; 3) ML within screening and triaging of breast surgery patients; 4) ML network utility
for detective purposes. There is evident value to the use of ML in pre-operative planning and provision
of information for breast surgery in a cancer and an aesthetic context. ML outperformed traditional
statistical modelling in all studies for predicting mortality, morbidity, and quality of life outcomes. ML

patterns and associations could support planning, anatomical visualisation, and surgical navigation.

Conclusion: ML demonstrated promising applications for improving breast surgery outcomes and
patient-centred care, nevertheless, there remain important limitations and ethical concerns relating

to implementing Al into everyday surgical practices.
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Background:

Artificial intelligence (Al) refers to computer systems that mimic human cognitive functions and learn
using large data sets. (1) Recent years have shown a dramatic development in these technologies in
healthcare employed in a wide variety of diagnostic and decision-making processes. (2) In an emerging
era of big data, the scope and scale of patient data available and leaps in computational ability has

allowed Al to develop and improve in its efficiency and applicability. (3)

Al technology is progressing rapidly with support from healthcare professionals, industry and
governments. (4) Healthcare has adopted these technologies to improve patient outcomes, especially
in the field of surgery. These technologies demonstrate unique potential in breast surgery: pre-
operative planning, patient outcome predictions, and even overcoming the challenges of the COVID-
19 pandemic as demonstrated by the recent COVIDSurg Collaborative study that addressed the impact

of COVID-19 on patient mortality with a predictive model. (5)

Al encompasses many disciplines of computer learning, and clinically relevant subtypes of Al include
machine learning (ML). (1,6) Machine learning is a subset of this field where a system focuses on using
algorithmic packages and data to mimic the way humans learn. (2) The algorithms use data inputs to
‘learn’, uncovering associations in data sets via pattern recognition, repetition and modification to
make autonomous decisions and predict future outcomes. Common subsets of ML include prediction

models, deep learning and natural language processing. (7-8)

Breast surgery, a sub-speciality within general surgery, is a field that has much to benefit from the
advances in Al to provide the best patient care by surgical interventions in benign and malignant breast
disease. ML in breast surgery may involve these sets of models and methods to detect patterns in vast
amounts of patient data, extract appropriate information and use it to perform decision making under
uncertain conditions. (9) From supporting pre-operative planning to predicting future outcomes of
surgery. The potential applications of ML is significant, and breast surgeons must strive to be informed

with the up-to-date knowledge and applications of this subset of Al within the speciality. (10-11)
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The aim of this review is to study the applications of MLin breast surgery. Past reviews in other surgical
specialities have been written, but none specifically for breast surgery. This review is designed to
closely evaluate the current applications by synthesising current research, and to catalyse future

research efforts into this advancing field.

Methods

Literature Search Strategy

This systematic review was conducted in accordance with the Cochrane Collaboration and Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A literature search
was conducted including EMBASE, MEDLINE, Cochrane, PubMed and Google Scholar from inception
to December 2021 (Figure 1). The search terms used were (Machine Learning OR Artificial Intelligence
OR Deep learning OR Decision Trees OR Neural Networks) AND (Breast Surgery OR Mastectomy OR
Breast-conservative Surgery OR Breast reduction OR Breast reconstruction OR Breast augmentation
OR Breast Cancer Surgery). Further articles were identified through use of the ‘related articles’
function on MEDLINE and a manual search of the references lists of articles found through the original

search. The only limits used were the English language and the aforementioned time frame.

Study inclusion and exclusion criteria

All original articles were included reporting the use of machine learning in breast surgery. Studies were
considered if they presented ML models with the aim of supporting breast surgery or providing a
prognosis for an intervention, either used by itself or with other methods. There were no geographical
restrictions. Studies were excluded from the review if the quality of available data and data
inconsistencies precluded valid extraction or if the study was performed in an animal model. Case
reports, reviews, abstracts from meetings and preclinical studies were excluded. Machine learning is

a highly erratic and dynamic field — this review contains literature published over a 5-year time period
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between 2017 and 2021 inclusive, technology has changed significantly even in the five years
preceding conduction of this review. As a result, there have been many advancements that have
superseded some of the points raised in earlier literature and care was taken to recognise each study
in the unique context of its publication year. It was ensured that any outdated findings did not shape
the review. By following the aforementioned criteria, two reviewers (C.S and V.S.) independently
identified articles for further assessment following title and abstract review. Disagreements between
the two reviewers were resolved by a third independent reviewer (A.AR.). Potentially eligible studies

were then retrieved for full text assessment.

Data extraction and critical appraisal of evidence

All full texts of retrieved articles were read and reviewed by two authors (C.S. and V.S.) and inclusion
or exclusion of studies was decided unanimously. When there was disagreement, a third reviewer
(A.AR.) made the final decision. Using a pre-established protocol, the following data was extracted:
first author, study type and characteristics, number of patients, population demographics, Type of
Procedure, Category of machine learning method utilised, Method of machine learning implemented

and Main reported outcomes.

Risk of Bias

The risk of bias of the selected articles were evaluated by two independent reviewers (C.S. and V.S.)
using an adapted Cochrane Collaboration Risk of Bias tool (Figure 2). The methodological quality of
the studies were assessed based of domains: 1. Study Participation, 2. Study Response, 3. Outcome
Measurement, 4. Statistical Analysis and Reporting, 5. Study Confounding. An overall grading of low,

medium or high risk of bias were then allocated.

Additionally, the limitations of this systematic review have been more expansively outlined in

Supplementary File 1.
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Results:

Study selection

The literature search identified 477 articles, of which 361 were screened following removal of
deduplicates and 24 were full text reviewed and assessed in accordance with the inclusion and
exclusion criteria. Following critical appraisal, a total of 14 studies (13-26) were included in this review,
featuring 73,847 patients. Figure 1 illustrates the entire study selection process. A summary of the
studies collected and their respective designs, type of machine learning mode used and its

implementation as well as the main reported outcomes are found in table 1.

There were 9 studies (16-18,20-23,25,26) (5-7,9—12,14,15) which described examples of machine-
learning based predictive modelling comprising 45792 patients and included a conglomerate of
different modelling methods. Predictive modelling was the use with the most recorded studies and
patient volume. The use of ML in imaging is also described. There were 3 studies (13,15,24) (2,4,13)
which described examples of machine-learning within an image-based context for analysis and
detection comprising 20499 patients — in all cases different modes of machine learning modes were
applied. There was a one study (14) (3) which described a case of machine learning’s role within
screening and triaging — this comprised 7364 patients. There was one study (19) which described a

scenario of machine learning network utility for detective purposes — this comprised 355 patients.

(8)

Challenges and recommendations

Figure 3 summarizes the main challenges and respective recommendations developed from the
literature with regards to future research being conducted in the field of ML and its application in
breast surgery. The recommendations should be taken into the context of each future research study

and be considered with all the information available.
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Discussion:

This systematic review provides a wide-scope summary of the uses of machine learning and artificial
intelligence within breast surgery. Although the review’s results demonstrate successes within
different approaches in the field, these must be considered in the context of their limitations and
recent applications. Most of these applications remain at the ‘proof of concept’ stage. Healthcare
professionals must be prepared to adopt machine learning and artificial intelligence into health
practice, as usability and cost-effectiveness of these technologies increase with new developments in

the field, and to shape the new landscape in which it is used in medicine. (11)

There is evident value to the use of machine learning in pre-operative planning and provision of
information for breast surgery planning in a cancer and an aesthetic context. The diagnosis and
detection of pathology is fundamental in pre-operative planning for breast cancer resection. The use
of image analysis in clinical applications such as breast imaging, digital pathology and surgical planning
has been well-described in the literature. Considering the imaging data available with modern

radiology techniques in screening and diagnosis, many machine learning solutions have been derived.

A retrospective image analysis study from Becker et al (13) (2) describes mammography diagnostics
using neural network image analysis software that demonstrated the equivalent performance of the
neural network with an area under the receiver operating characteristic curve (AUC) of 0.81 and 0.82
respectively in both stages compared to radiologists The results differ between radiologists - however,
the neural network showed an increased sensitivity of 72% when compared to a 66.7% average across
the radiologists overall. Corroborating these findings, the retrospective simulation study from
Dembrower et al (14) (3) and diagnostic study from Buda et al (15)(4) also demonstrate similar levels
of prediction using different means of deep learning models such as a commercial artificial
intelligence-based cancer-detector algorithm. Cancer detection via datasets allows specific
interventions that increase efficiency of operations with the pre-knowledge for surgeons to employ in

planning and treatment decisions. The employment of specific machine learning technologies
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including the Faster-RCNN with Inception-ResNet-v2 deep-learning framework, described in the Yap
et al study for a set of ultrasound breast images, facilitates the accurate detection of objects to allow

surgeons to focus on the relevant area of the breast (24) (13).

The models that exist can promise a future of reducing the numbers of biopsies and bringing efficiency
to radiologist interpretation while reducing workloads. Diagnostic and prognostic applications in
imaging and pathology have been studied greatly, with a wide evidence base of applied research.
Transfer of imaging information to the operating theatre to more accurately localise cancer to support
surgical care can aid the field. Reducing overdiagnosis, morbidity and time efficiency with the efficient

use of breast imaging is an aspiration of the future.

Most applications of machine learning within breast surgery, as ascertained by this review, centre
around the prediction of patient outcomes prognostically —this is coherent with the wider applications
of machine learning within modern surgery (27-29)(16-18). There have been multiple instances,
identified across the course of this review, where machine learning was employed alongside
traditional statistical modelling for predictive purposes. Indicative of the success of machine learning,
the former outperformed the latter in every highlighted example and thus replicates the successes
seen across other surgical subspecialties, mostly prominently neurosurgery (30) (19). This is
particularly evidenced via the longitudinally-designed Huang et al study which demonstrated that 5-
year mortality after breast cancer surgery could be accurately assessed using machine learning
algorithms through a variety of input variables (16) (5). Although machine learning packages have
been substantiated to show marked improvements to pre-existing models including, but not limited
to, least square regression and Cox regression (17,31) (6,20), it must be stated that these still remain

limited and relatively novel.

The studies included in this review demonstrated high heterogeneity in the form of machine learning
applied within individual cases. In this way, some models have been transparently more consistent

and accurate than others. Artificial neural networks, algorithms which have been modelled after the
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human brain and nervous system and with a basis in the concept of a human neurone (32) (21), have
been established as dependable across the scope of this review — exemplified most prominently in the
Lou et al. study where the artificial neural network package demonstrated the highest prediction
performance index - obtaining a sensitivity of 95.9, specificity of 99.5, PPV of 99.0, NPV of 99.1 and
AUC of 97.6 (20) (9). This provides greater support to previous literature which describes the
effectiveness of artificial neural networks in other clinical contexts (33-35) (22-24). Artificial neural
networks are better adapted to deal with more problematic inputs - specifically, cases where an input
may be noisy or incomplete. As a result of these advantages, a 93.75% accuracy rate of identifying a
breast cancer patient’s post-operative lymphedema status was obtained in the Fu et al. Study (19)(8).
Many medical databases, of the scale where a machine learning model can be realistically derived,
contain non-normally distributed data. This poses further issue to many forms of modelling which
assume a normal distribution within a dataset (23) (12) - as artificial neural networks are applicable to
well-correlated data that are not necessarily natively normally distributed, artificial neural networks
are more transferrable and can provide greater potential for use in wider treatment contexts beyond

breast cancer surgery.

Machine learning’s capacity for use in breast surgery can further extend past predicting outcomes and
pivot towards providing more holistic patient assessment via the prediction of postsurgical pain, seen
in both the Juwara et al (17)(6) and Lotsch et al (18) (7) studies. Machine learning creates opportunities
for far more efficient pain assessment that can be undertaken immediately post-operatively, in
comparison to pre-existing tools that require time-heavy questionnaires and extensive clinician-
patient interaction; this serves great utility in the context of a healthcare system where both time and
human resources are often limiting factors. As neuropathic pain can be debilitating for patients, early

prediction can allow clinicians to better optimise post-surgical care.

As an additional factor repeatedly indicated via the machine learning models included in this review,

a greater surgeon volume was the largest predictor of reduced breast cancer recurrence in patients

10
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that had undergone breast cancer surgery (16,20) (5,9). In light of this, there is renewed necessity for
machine learning to be implemented to further review the decision-making of surgeons with higher
operative volumes. Decision analysis and reinforcement learning, modes of machine learning well-
documented within this context (36) (25), would allow this to be paralleled and promote further
improvements in decision-making for surgeons with lower operative volumes. This can further
minimise postoperative burden. In tandem to this, there has been evidence to suggest that some
machine learning packages can outperform even the most experienced surgeons, as determined
above, and therefore it may be possible to provide the framework of a specific machine learning

package itself as a template for replication by surgeons of all grades.

Additional applications of machine learning on the horizon within the field of breast surgical care can
be considered, although most of these remain conceptual. Decision making in modern medicine is
complex due to the increasing availability of data to consider before treatment decisions are made
(37)(26). Advances in medical knowledge including that of well-researched novel therapies and
surgery only dramatically increase the potential treatment choice algorithms. Decision support
systems have been well-described, including the DESIREE project (38)(27), that provides breast unit
physicians with decision support modules. This is further stipulated in other examples (39) (28) where
decision support models regarding recurrence prediction are employed and comprise support systems

that encompass artificial intelligence and information visualisation amongst many other technologies.

Computer vision for object and scene recognition could support surgical techniques. Patterns and
associations can support planning, anatomical visualisation and surgical navigation. The exploration
of machine learning systems that perform or directly complement surgery is rapidly developing, and
may be a possibility in the imminent future. Real-time decision making supported by machine learning

provides exciting opportunities (40) (29).

The new frontier of surgical innovation, concurrently occurring at the time of the review, is unlike any
other observed previously. Despite the benefits and applications in the field as described above,

11
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clinicians must be careful to consider the potential limitations and risks of the technology and avoid
overt optimism surrounding the capabilities of machine learning, instead focusing realistically on the

barriers to its implementation clinically. (41) (30).

Machine learning and artificial intelligence is limited by the lack of accurate and unbiased data
collection and input. If data-input bias is evident, predictions may easily become unreliable. Examples
include systematic biases due to nonrepresentative predictions for patient groups that are not
necessarily represented in research (42) (31). This review does provide evidence in support of
theoretical machine learning applications, however, as outlined in a review by Manlhiot et al. (43),
care must be taken to recognise that these are not wholly clinically representative. The described
machine learning models rely on heavily-curated datasets with relatively few implementation

obstacles, in vast contrast to datasets available in clinical practice.

Machine learning can exhibit ‘black box’ characteristics, with incomprehensibly complex algorithms
for their outputs. The learning mechanisms of some machines have been difficult to reproduce, and it
has been difficult to justify certain decisions. Measures taken in the programming of these machines
to justify decisions and compare with gold standard diagnosis can circumvent this challenge. The
challenges surrounding the complexity of machine learning in its current state render it clinically
unimplementable without expertise and specialist knowledge - hence, the benefits of it are yet to be
properly actioned. Explainable machine learning whereby the system is able to justify how it made its
predictions on a level that is comprehensible to a clinician(44,45) (32,33) has come to light as a
potential solution to this issue - exemplified in the Moncada-Torres et al study (25) (14) where
explainable machine learning consistently outperformed all other methods for predicting outcomes
in patients who had undergone breast-conserving surgery or mastectomy. However, this remains one

of a set of isolated cases.

In addition, considerations of collaboration with other stakeholders in the implementation of the
technology, in order to ensure data is interpreted correctly and applied in the correct manner, should

12
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be of paramount importance. These technologies have been criticised due to a lack of confidence
regarding their perceived privacy and due to the risk of bias with data collection, as aforementioned
Caution and planning to understand the most safe and beneficial method of implementation, via close
collaboration of healthcare professionals with machine learning and artificial intelligence experts in a
multidisciplinary approach, is required to ensure the best outcomes for all. In addition, engagement

of breast surgery patients in decisions where patients can be informed are important.

Economic considerations, job losses and the lack of human element pose additional ethical dilemmas.
Machine learning may be stifled from practical implementation in breast surgery due to infrastructural
shortcomings (with regards to both hardware and software) in the post-deployment management of
models, a phenomenon that has been described within the technology’s application within cardiology
(43). Ethico-legal and social issues including the lack of regulatory structures surrounding the
technology must be addressed and solutions to such issues within breast surgical care must be
explored. Financial considerations and the accessibility of this technology in LMICs and globally,
alongside the opportunity-cost of such applications, must also be considered. The technology should
be widely accessible, and it is important to ensure the maintenance of high standards across different

healthcare systems.

The most favourable studies included in this review included high sample sizes and were multicentre.
Many of the single centre studies cited the idea of applying the relevant algorithm to larger sample
sizes through involving data from other centres. Additionally, many studies circumnavigated the
challenge of a low centre sample size by combinations with registry data to build their respective
algorithms. Potential prospective solutions may also have basis in the concept of federated learning —
a machine learning approach that allows an algorithm to combine data collectively from multiple
centres without physical exchange of the data (46). Hence, it is clear that any future approaches should
ensure that this collaborative approach is undertaken as standard. Many studies encountered

additional issues with data imbalances such that some classes contained significantly larger amounts

13



314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

of data compared to others — to correct this, the Myung et al. study applied the ROSE:sMOTE
oversampling technique which had been seen in previous literature (47) (34) and is a technique future
studies may consider employing to increase the validity and generalisability of packages and

consequentially the probability of success (21)(10).

Machine learning must be recognised as still within its trial phase — it is not perfect and subject to
multiple flaws (26) (15). Although current literature provides fundamental foundations to its
applicability, future approaches must consider clinical relevance at their core. The exact framework
by which machine learning may seek to aid postoperative care must be established, as does the basis
of a clinical decision support system. Such a system would aid the facilitation of greater data-based
shared patient-clinician decision-making within breast surgical care. Hence, there is sufficient
groundwork to construct prospective randomised studies to observe the impact of machine learning

in clinical practice.

Significant and structured research is required to investigate the accuracy and utility of machine
learning for the benefit of patients. It is important for surgeons to collaborate with computer scientists
and related field specialists, so outcomes are directed towards improving patient care and to
understand important limitations and ethical concerns relating to implementing such technology into

everyday surgical practices.
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Figure legend:

Figure 1. PRISMA Flow Chart

Figure 2. Risk of bias diagram

Figure 3: Challenges and recommendation in Machine Learning research within Breast Surgery.

Table legends:

Table 1. studies included assessing the use of machine learning in breast surgery
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Method of machine learning
implemented

Patients experiencing
mammography at the institution
were chosen to form the dataset -
this was used to train the neural
network.

An external dataset from the Breast
Cancer Digital Repository was used
for testing. This was appraised by
three radiologists.

A cohort of mammograms were
made selected in a way that
mimicked frequency in reality. The
Al cancer detector algorithm used
had been pre-trained.

The software generates underlying
image-level prediction scores for
tumour presence. From this, cutoff
points were established to insert
patients into two novel work
streams - on missed and
additionally detected cancer.

16802 digital breast tomosynthesis
examinations that had 1
reconstruction view between
August 26, 2014 and January 29,
2018 were analysed.

These were subdivided into 4
groups and further split into
training and testing sets for the
evaluation of the deep learning
model.

This study compared three models
(MLR, Cox & ANN) for 3632 post-
operative breast cancer patients
between 1996 and 2010.

An estimation dataset trained the
model, and a validation dataset
helped evaluate the performance
of the model. Sensitivity analysis
allowed the comparison of input
variables for the model's
predictions.

6 machine learning algorithms
(least square, ridge, elastic net,
random forest, gradient boosting
and neural net) aided primary
analysis of the identification of
predictors of DN4-interview score
(index for neuropathic pain).
Models were compared. A logistic
classification model was created for
neuropathic pain using the
predictor outcomes of the primary
analysis.

Table 1: studies included assessing the use of machine learning in breast surgery

Main reported outcomes

e One radiologist showed nearly equivalent

performance to the network (0.83, p = 0.17)
and the other two performed significantly
better (0.91 and 0.94 respectively, p <
0.016).

The neural network's performance of 0.82
did not differ significantly between
radiologist performance. The neural
network behaved less specifically and more
sensitively compared to humans
throughout.

For 60%, 70% or 80% of women possessing
the lowest Al scores in the negative
radiologist stream, 0-3% (95% Cl 0-0—4-3) /
2:6% (1-1-5-4) of screen-detected cancers
would be missed respectively. For the 1%
or 5% of women possessing highest Al
scores in the 'enhanced assessment' stream,
12% or 27% of subsequent interval cancers,
respectively, and 14% or 35% of next-round
screen-detected cancers, respectively, may
have also been able to be detected
additionally.

The deep learning model trained reached a
breast-based sensitivity at 65% (39 of 60;
95% Cl, 56%-74%) on the test set. This was
at 2 false positives per DBT volume.

The ANN model overall performed best over
the MLR and Cox models for predicting
5-year breast cancer mortality post-
operatively.

Age, Charlson comorbidity index (CCl),
chemotherapy, radiotherapy, hormone
therapy, breast cancer surgery volumes of
hospital and breast cancer surgery volumes
of surgeon were significant associations
with 5 year breast cancer surgery, the latter
was the most significant.

Anxiety, type of surgery, preoperative
baseline pain and acute pain on movement
predicted DN4-score most pertinently.
Anxiety had the most significant association
with neuropathic pain.

The least square regression model
compared well with the random forest
model and neural network model. The
Gradient boosting model performed better
than all the other models.
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ML helped establish a short
questionnaire to identify pain to
the same predictive level as pre-
existing full-form questionnaires.
The predictors were trained via the
full set of items in Beck's
Depression Inventory (BDI),
Spielberger's State-Trait Anxiety
Inventory (STAI), and the State-
Trait Anger Expression Inventory
(STAXI-2).

ML extracted features of these to
create predictors with a lower item
number.

A mobile health system allowed
data to be collected based on real-
time symptom reporting.

Both statistical and ML processes
were employed for data analysis.
Regarding the latter, 5 classical
algorithms were compared:
Decision Tree of C4.5, Decision
Tree of C5.0, gradient boosting
model (GBM), artificial neural
network (ANN), and support vector
machine (SVM).

The cases in this study were divided
into a training dataset to develop
the ML model, a testing dataset for
internal validation and an
externally validating dataset.

After training, outputs of the model
were taken for each training set.
Accuracy in predicting breast
cancer recurrence within 10 years
was compared.

Neuralnet,, and RSNNS machine
learning packages were applied to
compare prediction accuracy,
sensitivity, specificity, and
predictive power (AUC) for
predicting factors that raise
abdominal flap donor site
complications (against logistic
regression).

13 variables suggested to influence
donor site complication rates were
evaluated.

Various patient data variables were
available.

ML methods (general linear model
regression (GLM), support vector
machines (SVM), single-layer
artificial neural networks (ANN),
and deep learning (DL)) evaluated
presurgical prognostic factors of
age, medical status, tumour
characteristics, and (neo)adjuvant
treatment indications or treatment
characteristics.

This study posed a predictive
model of breast cancer recurrence
based on clinical, nominal and
numeric features.

6 features from an initial dataset
were identified for further
processing and resampling.
AdaBoost and cost-sensitive
learning packages predicted the

A 7-item set produced via ML that
comprised 10% of the original questions
from the STAl and BDI respectively
performed the same as the full
questionnaires in predicting development of
persistent postsurgical pain.

Using ML to compare different algorithms is
a viable concept. Artificial neural network
(ANN) performed best for detecting post-
operative development of lymphedema
(accuracy - 93.75%, sensitivity - 95.65% and
specificity - 91.03%).

The ANN model performed significantly best
of all models based on sensitivity,
specificity, PPV, NPV, accuracy, and AUROC
values.

Surgeon volume followed by hospital
volume and tumour grade were, in that
order, best predictors of recurrence of
breast cancer within 10 years.

Neuralnet performed most optimally of all
the packages.

Fascial defect, history of diabetes, muscle
sparing type, and presence or absence of
adjuvant chemotherapy all significantly
affected complication rate of donor sites.
High-risk group complication rates were
significant compared to the low-risk group
upon statistical analysis.

No relationship was determined between
predictors and outcomes, rendering the
model akin to the outcomes' respective
population prevalence. Combining variables
and, simultaneously, reducing dimensions,
did not yield significant changes.

AdaBoost reaches an accuracy of 0.973 and
sensitivity of 0.675. A combination of
AdaBoost and cost-sensitive learning poses
a model with a reasonable accuracy of
0.468 and very high sensitivity of 0.947.
Hence, the model is can be used to support
early intervention.
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risk of recurrence and evaluated
performance.

The study employs a deep learning
method for breast ultrasound ROI
detection and lesion localisation.
Transfer learning is used to due to
unavailability of datasets and a
novel 3-channel artificial RGB
method is applied for performance
improvement.

This proposed method is evaluated
and compared using an individual
and composite dataset.

Data of patients who underwent
curative breast surgery was used to
compare the performance of Cox
proportional hazards analysis (CPH)
with ML modes (Random Survival
Forests, Survival Support Vector
Machines and Extreme Gradient
Boosting [XGB]) for survival
predictions.

A set of oML algorithms (neural
network, regularized linear model,
support vector machines, and a
classification tree) were trained
and tested for making predictions
of financial toxicity in a dataset.
The data were split into samples for
the training and testing sets, prior
to assessment of predictive
performance.

Faster-RCNN outperformed a computer
vision object detection algorithm indicating
viability for use in BUS lesion localisation.
loU (equivalent to Dice Coefficient Index)
should be used in lesion detection due to its
reliability.

ML models perform to at least the same
standard as classical CPH regression and
even better for some models (XGB).
Furthermore, Shapley Additive Explanation
(SHAP) values were used successfully as a
form of explainable machine learning to
provide detail on how the models’
predictions are made.

ML packages accurately predicted financial
toxicity in this context demonstrating an
AUROC of 0.85, accuracy of 0.82, sensitivity
of 0.85, and specificity of 0.81.
Neoadjuvant therapy and autologous
reconstruction were ascertained as key
indicators of financial toxicity.

Radiation and tumour grade showed no
effect.

M: multicentre; NM: non-multicentre; R: randomized; NR: non-randomized; P: prospective, NP: non-prospective
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Recommendations for the
Adoption of Machine Learning
in Breast Surgery

Challenge: Obtaining large-scale evidence

e Currently many case studies and proof of
concept descriptions

e To overcome sample bias and improve
representation for the best evidence

e Use cohort studies and large randomised
control trials

Challenge: Inviting stakeholders

e Recognise the value of involving all stakeholders
in design of ML processes

e Use focus groups and expert interviews when
designing study protocols

e Improve synergy between ML and surgeons and
promote understanding and leverage expertise

Challenge: Utilising the best dataset

e ML should mirror the target population as best
as possible.

e Utilise readily available data or combining
existing datasets in resource-poor settings.

* Use transformation techniques such as
oversampling to reduce data imbalances
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