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ABSTRACT

Studies investigating the mechanics of human movement are often conducted using
the treadmill. The treadmill is an attractive device for the analysis of human
locomotion. Studies comparing overground and treadmill running have analyzed
discrete variables, however differences in excursion from footstrike to peak angle
and range of motion during stance have yet to be examined. This study aimed to
examine the 3-D kinematics of the lower extremities during overground and treadmill
locomotion to determine the extent to which the two modalities differ. Twelve
participants ran at 4.0m/s in both treadmill and overground conditions. 3-D angular
kinematic parameters during the stance phase were collected using an eight camera
motion analysis system. Hip, knee and ankle joint kinematics were quantified in the
sagittal, coronal and transverse planes, then compared using paired t-tests. Of the
parameters analyzed hip flexion at footstrike 12° hip range of motion 17°, peak hip
flexion 12.7°, hip transverse plane range of motion 8° peak knee flexion 5° and peak
ankle excursion range 6.6°, coronal plane ankle angle at toe-off 6.5° and peak ankle
eversion 6.3° were found to be significantly different. These results lead to the
conclusion that the mechanics of treadmill locomotion cannot be generalized to

overground.

INTRODUCTION
A number of studies investigating the mechanics of human movement have been

conducted using the treadmill. The treadmill presents an environment where
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variables such as velocity and gradient can be standardized and reproduced
consistently (Schache et al., 2001). Furthermore, the treadmill allows a larger
number of steps to be captured and ensures that continuous movement kinematics
are obtained. Thus the treadmill may facilitate a more repeatable pattern of
movement in comparison to the short discontinuous trials associated with
overground analyses (Fellin et al., 2010). Although this is advantageous it must be
demonstrated that the treadmill does not alter the mechanics of the examined
movements in comparison to overground motion (Brand and Crowninshield, 1984).
There remains debate regarding the assumption that treadmill running approximates
overground running. A number of investigations have been conducted examining the
biomechanical differences between the two conditions (Nigg et al., 1995, Schache et
al., 2001, Fellin et al., 2010, Riley et al 2008 Frishberg, (1983), and Gamble et al.,

(1988); the results however are often conflicting.

Using a theoretical literature review Van Ingen Schenau, (1980) proposed that the
mechanics of overground and treadmill locomotion are similar provided that velocity
is maintained. A number of studies have examined the kinematic differences
between overground and treadmill walking. Lee and Hidler, (2007) established that
peak flexion and extension measures of the lower extremities did not differ between
the two conditions. Alton et al., (1998), Matsas et al., (2000) and Riley PO et al.,
(2007) found comparable sagittal plane knee kinematics during overground and
treadmill locomotion. Strathy et al., (1983) found that knee joint angular kinematics in
the coronal and transverse planes did not differ significantly between the two
conditions. Alton et al., (1998) and Riley PO et al., (2007) reported significantly

greater hip range of motion and flexion angles during treadmill locomotion.
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The kinematics of running have also been compared between overground and
treadmill locomotion. Frishberg, (1983), Gamble et al., (1988) and Schache et al.,
(2001) observed that overground running was associated with increased hip flexion
at initial contact, whilst Schache et al., (2001) found no alterations in transverse
plane hip motion between the two conditions. There is currently a paucity of
comprehensive comparisons regarding the 3-D kinematics of the lower extremities
during treadmill and overground running during the stance phase. Riley PO et al.,
(2008) examined the differences in hip, knee and ankle joint kinematics from both
treadmill and overground motion. However they examined only maximum and
minimum angles of the full gait cycle, therefore as the majority of these occurred
during the swing phase; angles during the stance phase were not compared.
Similarly Fellin et al., (2010) investigated lower extremity motion during both treadmill
and overground locomotion; their examination utilized a trend symmetry design
which is an effective method of comparing the similarities between kinematic curves,
but it does not examine the differences in lower extremity angulation between the
two conditions. Furthermore, investigations that have been conducted to date, have
been restricted to discrete kinematic parameters and have thus failed to consider the

range of motion and excursion from footstrike to peak angle during stance.

The aim of the current investigation was to assess the extent to which the stance
phase mechanics of overground and treadmill locomotion are similar during running.
Specifically the 3-D angular kinematics of the lower extremity joints were observed
during overground running and compared to the corresponding data from the

treadmill.
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METHOD
Participants

Eleven males and one female who were free from musculoskeletal injury volunteered
to take part in this study. Participants were active recreational runners engaging in
training at least 3 times per week whilst completing a minimum of 25 km per week
and had previous experience of treadmill running. Participants encompassed a range
of footstrike characteristics. The mean characteristics of the participants were; age
22.5 £ 4.2 years, height 1.71 £ 0.06m and body mass 75.4 + 8.4 kg. An a priori
power analysis was conducted using the Hopkins method based on a moderate
effect size and a power measure of 80%, which suggested that 12 subjects were
adequate for the design. The study was approved by the School of Psychology

ethical committee, and all participants provided written informed consent.
Procedure

All kinematic data were captured at 250 Hz via an eight camera motion analysis
system (Qualisys Medical, Goteburg, Sweden). Two separate camera systems were
used to collect each mode of running. Calibration of the Qualysis™ systems was
performed before each data collection session. Only calibrations which produced
average residuals of less than 0.85 mm for each camera for a 750.5 mm wand
length and points above 4000 in all cameras were accepted prior to data collection.
The order in which participants performed in each condition was counterbalanced.

The marker set used for the study was based on the calibrated anatomical systems
technique (CAST) technique using a 6 degrees of freedom (DOF) model (Cappozzo

et al.,, 1995). A static trial was conducted with the participant in the anatomical
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position (Figure 1) allowing the positions of the anatomical markers to be referenced
in relation to the tracking clusters, following which they were removed. Markers used
for tracking remained in place for the duration of the treadmill and overground

analyses.

Retro-reflective markers were attached to the 1st and 5th metatarsal heads, medial
and lateral malleoli, medial and lateral epicondyle of the femur, greater trochanter of
the right leg, iliac crest, anterior superior iliac spines and posterior superior iliac
spines with tracking clusters positioned on the shank and thigh. All markers were
positioned by the first author. Hip joint centre was determined based on the Bell, et
al., (1989) equations via on the positions of the PSIS and ASIS markers. Each rigid
cluster comprised four 19mm spherical reflective markers mounted to a thin sheath
of lightweight carbon fiber with length to width ratios of 2.05:1 and 1.5:1 for the femur
and tibia respectively, in accordance with Cappozzo et al., (1997) recommendations.
Participants wore the same footwear throughout Saucony pro grid guide 2 in sizes 6-

9.

@@@Figure 1 near here@@@

Given that the treadmill did not feature an integrated force platform, heel strike and
toe-off events during both treadmill and overground running were determined using
kinematic data based on the Dingwell et al., (2001) method. Footstrike was deemed
to be the first occurrence of peak knee extension and toe-off was determined as the

second occurrence of the peak knee extension (Sinclair et al., 2012).
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Overground

In the overground condition participants ran at 4.0 m/s in one direction across a 22 m
long biomechanics laboratory floor (Altrosports 6 mm, Altro Ltd, Letchworth Garden
City, Hertfordshire). Running velocity was monitored using infrared timing gates
Newtest 300 (Newtest, Oulu Finland); a maximum deviation of £ 5% from the set
velocity was allowed. Runners completed a minimum of six successful trials. A
successful trial was defined as one within the specified velocity range, where all
tracking clusters were in view of the cameras and with no evidence of gait

modification due to the experimental conditions.

Treadmill

A Woodway™ (ELG, Steinackerstrasse D-79576 Weil Rhein-Germany) high power
slatted treadmill maintained at a gradient of 0% was used throughout. Participants
were given a five minute habitation period, in which participants ran at the
determined velocity, following which the treadmill was stopped for 30’s, and
participants dismounted the treadmill before mounting the treadmill for data analysis
in accordance with the Alton et al., (1998) recommendation. When participants
indicated that they were ready to begin, the treadmill was started and the velocity of
the belt was gradually increased until the speed matched that of overground

locomotion (4.0m/s). Six trials were recorded.

Data Processing

Trials were processed in Qualisys Track Manager in order to identify anatomical and
tracking markers then exported as C3D files. Kinematic parameters were quantified

using Visual 3-D (C-Motion, Gaithersburg, USA) after marker data was filtered using

7
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a low pass Butterworth 4™ order zero-lag filter at a cut off frequency of 10 Hz which
was selected as being the frequency at which 95% of the signal power was below. 3-
D kinematics of the hip, knee and ankle joints were calculated using an XYZ cardan
sequence of rotations (where X is flexion-extension; Y is ab-adduction and is Z is
internal-external rotation). All data were normalized to 100% of the stance phase
then processed gait trials were averaged. 3-D kinematic measures from the hip,
knee and ankle which were extracted for statistical analysis were 1) angle at
footstrike, 2) angle at toe-off, 3) range of motion from footstrike to toe-off during
stance, 4) peak angle during stance and 5) peak angular excursion from footstrike to
peak angle. These variables were extracted from each of the six trials for each joint
in all three planes of rotation and the data was then averaged across participants for
statistical analysis. Participants kinematic curves for each joint angle were time

normalized to stance were ensemble averaged for visual purposes only.

Statistical analysis

Descriptive statistics (mean + standard deviation) were calculated for the outcome
measures. To compare differences in 3-D kinematic parameters paired t-tests were
utilized with an adjusted alpha level of p=0.01 based on the number of comparisons
made for each joint in each of the three planes of rotation. The Shapiro-Wilk statistic
for each condition confirmed that the data were normally distributed. All statistical

procedures were conducted using SPSS 17.0 (SPSS Inc, Chicago, USA).

RESULTS
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Figure 2 presents mean 3-D angular motions of the hip, knee and ankle during the
stance phase of both treadmill and overground running. Tables’ 1, 2 and 3 show
means, standard deviations and the results of the statistical analysis of the outcome

measures.

Of the 45 observed parameters 8 exhibited significant p<0.01 differences between
overground and treadmill running (tables 1-3). The majority of the kinematic
differences between the two modalities were observed in the sagittal plane. At the
hip joint overground runners exhibited 12°, p=0.001 more hip flexion at footstrike,
17°, p=0.001 more hip range of motion and 12.7°, p=0.001 more peak flexion than in
the treadmill condition and 8°, p=0.01 more transverse plane range of motion. At the
knee overground runners were found to be associated with greater peak knee flexion
5°, p=0.01. At the ankle overground runners exhibited 6.5°, p=0.01 more excursion
from footstrike to peak angle and 5.7°, p=0.007 more inversion, whereas treadmill

runners were associated with 6.3°, p=0.006 more peak eversion.

@@@@@ Figure 2 near here @Q@@Q@@

@Q@@@@@ Table 1 near here @@@@@

QO@@@@ Table 2 near here @@Q@Q@Q@

@Q@Q@@@ Table 3 near here @Q@Q@@

DISCUSSION
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The aim of this study was to provide a 3-D kinematic comparison of treadmill and
overground running. This study represents the first comparative study specifically
concerning the lower extremity 3-D angular range of motion and peak excursion
parameters during the stance phase between the two conditions. The results indicate

that several kinematic differences were observed between the two running modalities.

It has been proposed that the mechanics of treadmill locomotion are similar to
overground provided that velocity remains constant (Van Ingen Schenau, 1980).
However, in this study significant differences between overground and treadmill
running were found for sagittal plane hip rotation. Overground running was associated
with increased peak hip flexion and flexion angle at initial contact. This concurs with
the findings of Schache et al., (2001) who observed similar increases in hip flexion

during overground running.

Overground running in this experiment was also associated with an increased range of
motion in hip flexion-extension, which was a product of increased hip flexion at
footstrike during overground running, as hip flexion at toe-off was found to be similar
for the two conditions. This finding agrees with the findings of Frishberg (1983),
Gamble et al., (1988) and Schache et al., (2001). These findings may be attributable to
the reduced stride lengths that have been observed previously during treadmill running
(Wank et al., 1998). Furthermore, it is hypothesized that the slatted treadmill belt may
have acted as a visual cue which served to further accentuate this adaptation causing

the large difference between the two conditions. Future, research may therefore wish

10
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to investigate the influence of both slatted and smooth treadmill belts of the 3-D

kinematics of running.

Furthermore, Alton et al., (1998) hypothesized that participants utilized these
mechanics as a means of avoiding falling off the back of the treadmill and/or keeping
up with the belt speed. The results of the current investigation appear to oppose this
notion in that participants did not exhibit similar patterns, despite moving at a greater
velocity, as fear of falling and pressure to maintain a stipulated speed would
theoretically be amplified by an increased belt velocity. It is also probable that the
length of the treadmill utilized during this investigation (1.0m longer than that reported
by Alton et al.,, 1998), decreased participants concern that they might fall off the
treadmill. Future investigations may wish to assess subjective feedback from

participants in order to determine the underlying mechanisms behind gait alterations.

The significant increase in transverse plane range of motion contradict the results of
Schache et al., (2001) and Fellin et al., (2010) who found no differences in transverse
plane hip joint angular kinematics between overground and treadmill locomotion.
Furthermore, the transverse plane hip rotation curve appears to contrast previous
research investigating running kinematics, in that participants exhibited external
rotation at footstrike and continued externally rotating throughout stance. It is
hypothesized that this is attributable to the predominantly male sample utilized in the
current investigation, as males have been shown to exhibit greater active hip external

rotation than females (Ferber et al., 2003).

11
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The increase in peak knee flexion during overground running has not been reported
previously. It is proposed that this finding is attributable to the difference in centre of
mass progression during overground running as the centre of mass moves over the
stance limb the proximal end of the tibia must move forwards, facilitating an increase in
knee flexion. Similarly, the significant increase in the angular excursion from footstrike
to peak dorsiflexion has not been reported previously within the literature. It is
proposed that this is also attributable to the increase in centre of mass progression in
the overground condition. Given that the foot is fixed during the majority of the stance
phase, forward motion of the centre of mass forces the tibia to move over the ankle
joint creating the dorsiflexion range of motion. This finding may also relate to
differences in surface hardness between the two conditions. The increase in
dorsiflexion range of motion in conjunction with peak knee flexion may act as a
deceleration mechanism which serves to reduce loading of the lower extremity

structures (Bobbert et al., 1992).

Observation of the statistical data and kinematic curves of the knee joint in the
coronal plane suggests that the knee is biased towards abduction for the entire
stance phase. This is perhaps surprising given the predominantly male sample
(Malinzak et al., 2001), yet this finding does concur with the findings of Ferber et al.,
(2003) who also observed that male runners were biased towards abduction. Given
that knee angular kinematics outside the sagittal plane are sensitive to the method
used to predict the hip joint centre (Stagni et al., 2000); it is possible that inter-study

variations in knee coronal plane mechanics may relate to the different methods of

12
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quantifying the location of the hip joint centre. A number of techniques currently exist
which may include radiographic (Bell et al., (1990), anatomical Bell et al., (1989),
functional (Cappozzo, 1984; Leardini et al., 1999) and projection (Weinhandl and
O’Connor, 2010) based methods, all of which may influence the resultant knee
position (Stagni et al., 2000). Although the efficacy and validity of each method have
been reported to justify their utilization, there is currently a lack of consensus
regarding the most appropriate technique which future research may wish to

address.

During during treadmill running, the ankle was found to be slightly more dorsiflexed at
footstrike. This finding contrasts the findings of Wank et al., (1998), Fellin et al., (2010)
and Nigg et al., (1995), who found decreased ankle dorsiflexion at footstrike. This
change in sagittal plane ankle position at foot contact may relate to a change in strike
pattern as plantar/dorsi flexion of the ankle is one of the mechanisms by which leg
stiffness is regulated (Bishop et al., 2006). It is hypothesized that the reduced stiffness
of the treadmill surface may have led to the increased dorsiflexion at footstrike as
runners have been found to adjust their leg stiffness in response to differences in

surface hardness (Bishop et al., 2006).

The significant increase in eversion magnitude is in contrast to the observations of
Fellin et al (2010) who reported no differences in rearfoot eversion parameters
between treadmill and overground running. This finding may relate to the deformation
characteristics of the surface during the treadmill condition and has potential clinical

significance. These findings suggest that running on this type of treadmill may be

13
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associated with an increased risk from injury as rearfoot eversion is implicated in the
aetiology of a number of overuse injuries (Willems et al., 2004, Lee et al ., 2010,
Taunton et al ., 2002 and Duffey et al., 2000). Therefore treadmill runners may be at a
greater risk from overuse syndromes such as tibial stress syndrome, plantar fasciitis
and anterior knee pain (Willems et al., 2004, Lee et al., 2010, Taunton et al., 2002 and

Duffey et al., 2000).

A number of previous investigations examining the mechanics of treadmill and
overground locomotion attribute the differences between the two conditions to a lack of
familiarization to the treadmill protocol (Wall and Charteris, 1981). Mastas et al., (2000)
proposes studies reporting significant differences between the two conditions
locomotion have generally put little emphasis on subject familiarisation to treadmill
locomotion and concluded that differences may disappear following an appropriate
accommodation period. The results of this study appear to oppose this claim as a
number of significant differences were observed despite the utilization of a five minute
accommodation period. Furthermore, the findings of the current investigation appear to
be representative and as Matsas et al., (2000) found that reliable kinematic

measurements could be obtained following 4 minutes of treadmill habituation.

Limitations

The means by which footstrike and toe-off were determined differed from conventional
methods as the treadmill did not feature an integrated force platform. Given this
limitation the stance and swing phases were separated using kinematic data using the
Dingwell et al., (1998) method. A number of methods have been utilized for the

determination of gait events using kinematic data (Alton et al.,, 1998, Hreljac and

14
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Stergiou., 2001, Zeni et al., 2008, O’Connor et al., 2003 and Schache et al., 2001).
However, although these computational methods are repeatable they are known to be
associated with error when contrasted to the gold-standard method using force

platform data (Fellin et al., 2010 and Sinclair et al., 2011).

A possible limitation is that this study observed right foot contact only. Bilateral studies
are considered to be more appropriate as symmetry between limbs is unlikely
(Cavanagh and Lafortune, 1980). Another prospective restriction of the current
investigation is that the results are specific exclusively to the treadmill and surface
conditions as well as the velocity of motion and variations in these parameters would
likely cause changes in the runners movement strategy, additional work should

therefore be conducted examining the effect of different treadmills on gait mechanics.

Conclusions

The results of this study suggest that treadmill should be utilized with caution within
clinical and research settings in terms of its ability to mimic the mechanics of
overground running. Furthermore, given that injury patterns may to differ between the
two conditions it is also recommended that runners consider their primary method of
training when selecting the most appropriate footwear for their needs as treadmill
runners are likely to require footwear with additional medial stability properties, aimed

at reducing rearfoot eversion.
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