

Central Lancashire Online Knowledge (CLoK)

Title	Selective Serotonin Reuptake Inhibitors for Stroke Recovery
Type	Article
URL	https://clok.uclan.ac.uk/id/eprint/43787/
DOI	https://doi.org/10.1161/strokeaha.121.038149
Date	2022
Citation	Hua, Xing, Wu, Simiao, Legg, Lynn A., Rudberg, Ann-Sofie, Hackett, Maree, Tilney, Russel, Lindgren, Linnea, Kutlubaev, Mansur A., Hsieh, Cheng-Fang et al (2022) Selective Serotonin Reuptake Inhibitors for Stroke Recovery. Stroke, 53 (9). e426-e428. ISSN 1524-4628
Creators	Hua, Xing, Wu, Simiao, Legg, Lynn A., Rudberg, Ann-Sofie, Hackett, Maree, Tilney, Russel, Lindgren, Linnea, Kutlubaev, Mansur A., Hsieh, Cheng-Fang, Barugh, Amanda J., Hankey, Graeme J., Lundström, Erik, Dennis, Martin and Mead, Gillian E.

It is advisable to refer to the publisher's version if you intend to cite from the work. https://doi.org/10.1161/strokeaha.121.038149

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the http://clok.uclan.ac.uk/policies/

Selective serotonin reuptake inhibitors (SSRIs) for stroke recovery

Xing Hua¹, Simiao Wu², Lynn A Legg³, Ann-Sofie Rudberg⁴, Maree L Hackett ⁵, Russel Tilney⁶, Linnea Lindgren⁷, Mansur A Kutlubaev⁸, Cheng-Fang Hsieh⁹, Amanda J Barugh¹⁰, Graeme J Hankey¹¹, Erik Lundström¹², Martin Dennis¹³, Gillian E Mead¹⁴

Corresponding author: Gillian E Mead, gillian.e.mead@ed.ac.uk, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK

¹ MBBS, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China. ²PhD, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China. ³ PhD, NHS Greater Glasgow and Clyde Health Board, Paisley, UK. 4 PhD, Division of Neurology, Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital, Stockholm, Sweden. ⁵ PhD, Professor, Program Head, Mental Health, The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia. ⁶ PhD, Department of Medicine, Mater Dei Hospital, Msida, Malta. ⁷ MSc, Department of Medical Sciences, Neurology, Uppsala University, Sweden. 8 PhD, Department of Neurology, Bashkir State Medical University, Ufa, Russian Federation. 9 MD, Division of Geriatrics and Gerontology, Department of Internal Medicine and Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. ¹⁰ PhD, Department of Geriatric Medicine, University of Edinburgh, Edinburgh, UK. 11 MD, Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia. 12 PhD, Department of Medical Sciences, Neurology, Uppsala University, Sweden. 13 MD, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK. 14 PhD, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.

Key Words: SSRIs, stroke, recovery, depression, meta-analysis

Stroke is a major cause of adult disability. Selective serotonin reuptake inhibitors (SSRIs) have been used for many years to manage depression and other mood disorders after stroke. Small studies suggested that SSRIs might also promote motor recovery by direct effects on the brain. In this Cochrane review, we aimed to determine the effects of SSRIs in improving outcomes in people less than 12 months after stroke, and to determine whether treatment with SSRIs is associated with adverse effects.

Methods

We searched the Cochrane Stroke Group Trials Register, Cochrane Controlled Trials Register, MEDLINE, Embase, CINAHL, PsycINFO, and AMED by 7 Jan 2021. PsycBITE had previously been searched (16 July 2018). We included randomised controlled trials (RCTs) recruiting stroke survivors within the first year, which compared effects of SSRIs (any type, any dose and for any period) with placebo or usual care. The co-primary outcomes were independence at the end of treatment and disability score at the end of the treatment, and secondary outcomes included impairments (assessed by neurological deficits scores such as National Institute of Health Stroke Scale), depression, anxiety, quality of life, fatigue, cognition, healthcare cost, death, adverse events, and leaving the study early. Two reviewers independently screened abstracts, extracted data and appraised risk of selection bias, performance and detection bias, attrition bias, reporting bias, and other potential threats to validity. Risk ratio (RR) and standardised mean difference (SMD) were calculated as effect sizes and outcome data were pooled in meta-analysis using a fixed-effect model and methodological quality was assessed using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach.

Results

We included 76 clinical trials involving 13029 participants. Of these, only six studies with 6090 participants were at low risk of bias across all domains, which all used fluoxetine and did not require participants to have depression to enter. These high-quality studies suggested that fluoxetine did not improve disability (SMD -0.00;

95% CI -0.05 to 0.05; 5 studies, 5436 participants) nor independence (RR 0.98; 95%

CI 0.93 to 1.03; 5 studies, 5926 participants) (Figure). In addition, in participants who

did not have depression at baseline, fluoxetine reduced the risk of depression (RR

0.75, 95% CI 0.65 to 0.86; 3 studies, 5907 participants) and the severity of depression

(SMD -0.14, 95% CI -0.19 to -0.08; 4 studies; 5356 participants). For adverse events,

the use of fluoxetine was associated with an increasing risk of bone fractures (RR

2.35, 95% CI 1.62 to 3.41; 6 studies, 6080 participants) and seizures (RR 1.40, 95%

CI 1.00 to 1.98; 6 studies, 6080 participants).

Conclusions

High-quality studies indicated that fluoxetine did not reduce disability or dependency

after stroke. This was consistent with the previous version of this Cochrane Review in

2019. We found new evidence that fluoxetine reduced the risk of future depression

and the severity of depression. However, due to insufficient evidence revealed in this

review, we do not know whether SSRIs might reduce disability in people who do have

depression after stroke and we do not know what effect of SSRIs other than fluoxetine

might have on recovery after stroke, which need further investigation.

Disclosures:

Xing Hua: none known.

Simiao Wu: none known.

Lynn A Legg: none known.

Ann-Sofie Rudberg: none known.

Maree L Hackett: Grants and contracts: Project grant (NHMRC funding for

AFFINITY trial), HTA Program (National Institute for Health

Research funding for FOCUS), Framework grant (Swedish Research Council funding

for EFFECTS); all funding received by the author's

institution. Payment for a fellowship: National Health and Medical Research Council

(NHMRC), received by the author's institution.

Russel Tilney: none known.

Linnea Lindgren: none known.

Mansur A Kutlubaev: none known.

Cheng-Fang Hsieh: none known.

Amanda Barugh: none known.

Graeme J Hankey: Grants and contracts: Chief Investigator for the AFFINITY trial, National Health and Medical Research Council of Australia, received by the author's institution. Payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing, or educational events: Discussion about antithrombotic therapy to prevent stroke, Medscape, received by the author. Consulting fees: Consulting on design of a possible phase III trial of a new anticoagulant in atrial fibrillation, Janssen Research and Development, received by the author. Payment for participation on a Data Safety Monitoring Board, Advisory Board, or Guideline Panel: Chair or Member of Data Safety Monitoring Committees, of ACI trials of an immune therapies for Alzheimer's disease, AC Immune, Lausanne, Switzerland, received by the author; Member of Stroke Prevention Initiative, Bayer, received by the author; Other: Associate Editor of Circulation, American Heart Association, received by the author. Published opinions in medical journals, the public press, broadcast and social media relevant to the interventions in the work: Publication, Lancet Neurology, AFFINITY Trial Collaboration. Safety and efficacy of fluoxetine on functional outcome after acute stroke (AFFINITY): a randomised, double-blind, placebo-controlled trial. Lancet Neurology 2020; 19(8): 651-660. doi:10.1016/S1474-4422(20)30207-6. PMID: 32702334; Publication, Stroke. Declaring involvement in eligible studies: Yes, National Health and Medical Research Council of Australia (for AFFINITY trial). Erik Lundström: Grants and contracts: Funding, STROKE-Riksförbundet, received by author's institution. Leadership or other fiduciary role in other board, society, committee, or advocacy group: Chief Investigator of the EFFECTS trial, received by author. Declaring involvement in eligible studies: The Swedish Research Council, The Swedish Heart-Lung Fund, The Swedish Brain Fund, STROKE-Riksförbundet, The Swedish Medical Society, Konung Gustaf V:s och Drottning Victorias Frimurarstiftelse.

Martin Dennis: Grants and contracts: Grants received to carry out FOCUS trial - and

RCT which is included in the review, NIHR, Stroke Association, received by the author's institution

Gillian E Mead: Grants and contracts: Research grants, HTA NIHR, co-applicant on grants led by Prof Graeme Hankey and Maree Hackett, and Erik Lundstrom; NIHR incentive award for updating this review, both received by the author's institution. Gillian Mead, Martin Dennis, Maree Hackett, Erik Lundstrom and Graeme Hankey are investigators on the FOCUS trial (Fluoxetine or control under supervision) in the UK, the AFFINITY (Assessment of fluoxetine in stroke recovery) trial in Australia, and the EFFECTs trial in Sweden designed to assess the impact of fluoxetine on disability and dependency after stroke. None of these review authors extracted data from these three trials.

Sources of Funding

Internal sources

National Health and Medical Research Council of Australia, Australia
 Maree Hackett: Career Development Fellowship, Population Health (Level 2),
 APP1141328 (1/1/18-31/12/21)

External sources

- Chief Scientist Office, Scotland, UK
 The Chief Scientist Office, Scotland, provides infrastructure support for Cochrane Stroke
- Incentive grant from National Institute of Health Research, UK
 £5000 incentive grant to support an honorarium to Lynn Legg for the previous
 update
- Incentive grant from National Institute of Health Research, UK
 £7000 to backfill some of Gillian Mead's academic time to enable her to work on this review

Acknowledgments

This paper is based on a Cochrane Review published in The Cochrane Library 2021, Issue 11 (see www.thecochranelibrary.com for information). Cochrane Reviews are regularly updated as new evidence emerges and in response to feedback, and The

Cochrane Library should be consulted for the most recent version of the review¹. This updated review was funded by the National Institute for Health Research (NIHR) [NIHR Cochrane Review Incentive Scheme 2020 (NIHR133254)].

Footnotes

1. Legg LA, Rudberg A-S, Hua X, Wu S, Hackett ML, Tilney R, Lindgren L, Kutlubaev MA, Hsieh C-F, Barugh AJ, Hankey GJ, Lundström E, Dennis M, Mead GE. Selective serotonin reuptake inhibitors (SSRIs) for stroke recovery. Cochrane Database of Systematic Reviews 2021, Issue 11. Art. No.: CD009286. DOI: 10.1002/14651858.CD009286.pub4

https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD009286.pub4

Figure. Forrest plot for (**A**) primary outcome: disability and (**B**) primary outcome: independence (modified Rankin score 0-2). Fluoxetine versus control at end of treatment. Studies at low risk of bias only.

	Fluoxetine		Control				Std. Mean Difference	Std. Mean Difference	
Study or Subgroup	Mean	SD Total M		Mean	n SD Total Weight IV, Fixed, 95%		IV, Fixed, 95% CI	IV, Fixed, 95% CI	
AFFINITY 2020	81.3	23.4	569	80.3	23.5	591	21.3%	0.04 [-0.07, 0.16]	 -
Bembenek 2020	78.75	23.42	26	74.07	25.71	27	1.0%	0.19 [-0.35, 0.73]	- ·
EFFECTS 2020	79.3	23.8	697	79.8	23.1	697	25.7%	-0.02 [-0.13, 0.08]	
FOCUS 2019	59.66	31.16	1402	60.15	31.5	1397	51.5%	-0.02 [-0.09, 0.06]	•
Marquez Romero 2013	65	11.85	14	45	66.67	16	0.5%	0.39 [-0.33, 1.12]	
Total (95% CI)			2708			2728	100.0%	-0.00 [-0.05, 0.05]	+
Heterogeneity: Chi ² = 2.4 Test for overall effect: Z		-1 -0.5 0 0.5 1 Favours control Favours fluoxetine							

В

	Fluoxetine		Control		Risk Ratio			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C		M-H, Fixed, 95%	CI	
AFFINITY 2020	432	624	458	632	29.6%	0.96 [0.89, 1.03]		•		
Bembenek 2020	20	27	17	28	1.1%	1.22 [0.84, 1.77]		+		
EFFECTS 2020	466	737	475	742	30.8%	0.99 [0.91, 1.07]		•		
FOCUS 2019	572	1553	588	1553	38.3%	0.97 [0.89, 1.07]		•		
Marquez Romero 2013	8	14	3	16	0.2%	3.05 [1.00, 9.31]			•	
Total (95% CI)	2955			2971	100.0%	0.98 [0.93, 1.03]		•		
Total events	1498		1541							
Heterogeneity: Chi ² = 5.8	4, df = 4 (F)	$P = 0.2^{\circ}$	0.05		<u> </u>					
Test for overall effect: Z =	= 0.89 (P =	0.37)	0.05	0.2 1 Favours control Favour	5 s fluoxetine	20				