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Abstract

The rate of mass transfer between the fractures and matrix in gas invaded zone can significantly
influence on the oil recovery during the forced gravity drainage process. However, in this study,
a new approach was suggested to improve the gravity drainage process in gas invaded zone.
Poly(fluoroacrylate) (PFA), as a CO2-philic thickener, was injected into the gas invaded zone to
illustrate the impact of interfacial mechanisms such as gas diffusion coefficient and interfacial
tension (IFT) on oil recovery. Also, the cloud point pressures were measured to ensure that the
PFA did not come out of the solution due to a phase change during IFT, gas diffusion coefficient,
and gravity drainage experiments. Results showed that the CO2-PFA thickener (20000 ppm)
could decrease the IFT from 56 to 24 dyne/cm compared to the pure CO- scenario, improving the
gravity drainage mechanism in the gas invaded zone. In addition, the CO. diffusion coefficients
were increased approximately more than two times during CO2-PFA injection in comparison

with pure CO: injection in both porous media and bulk oil phase scenarios at reservoir
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conditions. Also, an incremental oil recovery of 16 percent was achieved during PFA/CO:
compared to pure CO; injection in the gas invaded zone. Therefore, gas gravity drainage is the
most important mechanism once gas thickener or CO> enters the fractures in the gas invaded

Zone.

Keywords: Gas invaded zone, Gas thickeners, CO, diffusion coefficients, Gravity drainage,

Matrix-fracture system, Cloud point pressure

Introduction

COz injection in naturally fracture reservoirs is the process of storing and capturing atmospheric
carbon dioxide combined with enhanced oil recovery. It is one method of decreasing the amount
of COz in the atmosphere with the goal of reducing global climate change (Hassanpouryouzband
et al., 2021 and 2018). Naturally fractured carbonate reservoirs (NFRs) hold a significant portion
of the global oil reserves. Gravity is the only conceivable economic driving mechanism in widely
fractured reservoirs because extremely conductive fractures create shortcuts for the injected
fluids. In the production from fractured carbonate reservoirs, three zones can be recognised: (1) a
gas invaded zone with oil-filled matrix and gas-filled fractures, (2) an oil rim with oil-filled
matrix and fractures, and (3) a water invaded zone with water-filled fractures and oil-filled
matrix (Li et al., 2018; Kharrat et al., 2021; Farrokhrouz et al., 2022). The oil flow in the gas
invaded zone will be largely through the matrix due to the gravity drainage mechanism. When
gas from gas-saturated fractures moves oil in the matrix, gas gravity drainage occurs. The gas
gravity drainage is derived from the difference in density of the oil and gas phases. By injecting
gas or gas thickeners into the fracture-matrix system, these contact with insitu fluid through

diffusion. This makes the oil to swell, and consequently lessens the oil viscosity, absorbs the
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light component, and drops the IFT. Therefore, the gas diffusion coefficient and IFT can affect
the gravity drainage mechanism in the gas invaded zone. Therefore, it is significantly important
to fully understand these mechanisms under actual reservoir conditions (Guo et al., 2022;
Aghabarari et al., 2022). The diffusion coefficient is a key parameter in controlling the mixing
rate of the injected gas and insitu fluids. Gas dissolution will change the insitu fluid properties
significantly including the reduction in oil viscosity and oil swelling which consequently result
in the improvement of oil mobility and enhancing the oil recovery (Gao et al., 2019). In Berea
cores saturated with n-hexadecane, Li et al. (2006 and 2009) estimated the effective CO-
diffusion coefficient. They came to the conclusion that the readings were slightly affected by
pressure changes ranging from 2.3 to 6.3 MPa. Li et al. (2016) investigated the impacts of oil
saturation and tortuosity on CO: diffusivity in porous media with poor permeability. The
diffusion coefficients were found to be highly influenced by the oil saturation and permeability
of the porous medium. Gao et al. (2019) used tortuosity to link the CO, mass transfer coefficient
to the permeability of porous media. They discovered that the high tortuosity can slow down the
CO: diffusivity by restricting gas solubility. The prior measurements of diffusion coefficients, on
the other hand, still need to be extended by using gas thickeners. In addition, several field
performance analyses (Al-Shibli et al., 2022; Zobeidi et al., 2021; King et al., 1970; Carlson,
1988) and laboratory experiments (Saidi et al., 1993; Clemens et al., 2001; Sajjadian et al., 1999,
Zobeidi et al., 2018) showed that the oil recovery factor could be significantly enhanced if
gravity drainage process is the leading production mechanism. Carlson (1988) also came to the
conclusion that high oil recovery after a gas drive operation is attributable to gravity forces
reflected by considerable differences in density between the oil and gas. However, the obtained

conclusion ignores the process's numerous side consequences. Laboratory studies of gravity
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drainage in fractured rock were conducted by Sajjadian et al. (1999). They reported that capillary
continuity and re-infiltration could improve oil recovery factor. Clemens et al. (2001)
demonstrated that when there are no fractures in the horizontal plane and the oil must flow
sideways into the fracture system, the drainage rate is further lowered, resulting in lower
drainage rates. Ameri et al. (2013) investigated the effect of miscibility on the gas-
oil gravity drainage in naturally fractured reservoirs. The findings show that injecting a non-
equilibrium gas with a larger scale of solubility into the oil phase causes a zone of reduced oil
viscosity, leading to enhanced gravity-mediated recovery. Zobeidi et al. (2018) investigated the
impact of gravity drainage on the block to block interactions in NFRs. Their findings showed
that oil penetration into lower blocks occurs rapidly. Hasanzadeh et al. (2021) investigated the
forced and free-fall gravity drainage mechanism in a fractured physical model. Results reveal
that the forced gravity drainage performs better under controlled process conditions than the
free-fall gravity drainage. Karimaie et al. (2010) investigated gas-oil gravity drainage process in
fractured carbonate rock with low IFT and gas injection. They showed that even after water
injection, low IFT gravity drainage may recover a large amount of oil in NFRs. Ameri et al.
(2015) evaluated the rate of mass-transfer between the fractures and the matrix while a gas
solvent is injected into a fracture system. Their findings revealed that matrix wettability has no
effect on solvent injection performance, and that the remaining oil in the matrix may be
recovered using an increased gravity drainage procedure. Kahrobaei et al. (2012) illustrated that
transfer rates of solvent between fracture and matrix is a function of the rock permeability, oil
viscosity and the density of both oil and solvent. Consequently, based on the previous works, the
data of CO. diffusion coefficients and gravity drainage mechanism in hydrocarbon fluids and

crude oil is still undersupplied at the actual reservoir conditions. Also, a large portion of the
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recorded data are within a limited temperature range (<60 °C) and pressures (<2500 psi), and the
effect of gas thickeners on gas diffusivity coefficient and gravity drainage mechanism is not
reported. Moreover, several experimental and theoretical studies are conveyed in the literature to
study the efficacy of a gas or solvent injection in NFRs under static conditions. Still, few pieces
of work have focused on the mas transfer mechanisms between matrix and fracture under
dynamic conditions. In addition, the gas diffusion coefficient is still a controversial challenge
during gas-based EOR for improving the gravity drainage mechanism in the gas invaded zone.
However, the gas thickener scenario can be one of the new approaches for improving the mass
transfer processes under flow conditions between fracture and matrix. Recently, several pieces of
research have been done to improve the oil recovery by polymer thickeners for gas-based EOR
in the conventional reservoir (Gandomkar et al., 2021; Gandomkar et al., 2020a; Dai et al., 2018;
Alhinai et al., 2017; Lee et al., 2016; Zhang et al., 2011). The dissolution of polymer thickeners
in gases can cause a series of gas properties changes such as IFT reduction, gas diffusivity
coefficient improvement, and viscosity enhancement, which can promote the gravity drainage
mechanism in the gas invaded zone. Therefore, in this study, this new approach was considered
to investigate the effect of gas thickener on gravity drainage mechanism in the gas invaded zone.
Furthermore, polymer thickeners can improve gas characteristics in two ways: 1) by dissolving
heavy polymers (high molecular weight) in gases, and 2) by dissolving the small molecules as
direct thickeners. The substantial amount of co-solvent (toluene) in the case of heavy gas
thickeners, on the other hand, is troublesome and makes field application of this mixture
unfeasible. Furthermore, fluorous-based thickeners with high molecular weights are still the only
agents shown to dissolve in CO without the need of a co-solvent. Therefore, except for the

fluorous based thickeners, it is adequate to utilise low molecular weight thickeners (without
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adding co-solvents), as these are more economically agents during gas-based enhanced oil
recovery (Enick et al., 2012 and 2018; Dhuwe et al., 2016). Though, according to previous
studies, it was indicated that several gas thickeners such as poly(ethylene
oxide) (PEO), poly(vinyl alcohol) (PVOH), poly(styrene) (PS), poly(phenylene oxide) (PPO),
poly(acrylic acid) (PAA), poly(hydroxy alkanoates) (PHAA), poly(vinyl acetate) (PVAC), and
poly(isobutylene) (PIB), are seriously CO»-phobic agents. On the contrary, poly(dimethyl
siloxane) (PDMS) and poly(fluoroacrylate) (PFA) are significantly CO2-philic candidates (Xu et
al., 2001; Kikic et al., 2009; Mohamed et al., 2011; Enick et al., 2012 and 2018; Zaberi et al,
2020; Mao et al., 2013; Talebian et al., 2014; Gandomkar et al., 2021). Therefore, in this study,
PFA was used as a CO-philic gas thickener to improve the gravity drainage mechanism during
gas injection in the gas invaded zone. PFA is an amorphous, viscous, clear homopolymer that
dissolves in CO> at temperatures and pressures that are appropriate for CO»-assisted oil recovery.
Furthermore, there is no extensive investigation of the mass transfer process in the literature for
CO2-PFA thickener injection. Therefore, the goal of this paper is to recognize the governing oil-
recovery mechanisms during COz thickener injection in the gas invaded zone such as CO>

diffusion coefficient, IFT, and gravity drainage.

Materials and methods

e Rock and fluid properties

All laboratory experiments employed reservoir crude oil with an API of 32 from one of the
Middle Eastern oil fields. The oil filtration was performed to separate particles and impurities
from the oil to reduce any experimental complications. In addition, original formation water

(172000 ppm) was considered for gravity drainage tests. The properties of both formation water
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and reservoir crude oil are reported in Table 1. Also, the carbonate reservoir rock was used for
gravity drainage and CO: diffusion coefficients tests. The chemical composition of carbonate
rock was determined using the XRD (X-Ray Diffraction) technique. According to the
observations, the crushed material contains roughly 80 % calcite (CaCOz), 11 % dolomite
(CaMg(CO3)2), 5 % anhydrate (CaSO4) and 4% clay. The corresponding error values for the
XRD results were lower than £ 0.5 %. In addition, during the gravity drainage and gas diffusion
coefficient processes, the connate water saturation and the wettability of the core is set to those

of their reservoir conditions.

Table 1
e Cloud point measurement
In this study, the poly(fluoroacrylate) gas thickener was synthesized by our team following the
synthesis that has been previously described in detail elsewhere (Zaberi et al., 2020); the average
molecular weight of the polymer was 550000 g/mol. PFA is a CO.-philic agent which is
monomer based and has six fluorinated carbons (not eight), thus eradicating the environmental
concerns that are associated with possible degradation products. The gas thickeners solubility in
CO2 was measured by the HPHT visual cell described in our previous works (Gandomkar et al.,
2020a, 2020b; Azizkhani and Gandomkar, 2019). However, a specific amount of PFA must be
weighed and injected into the window cell first. The sample was then given a certain amount of
carbon dioxide to achieve the appropriate composition. A magnetic stirrer was utilised to create a
revolving magnetic field from a pressurised mixture with a constant overall composition (2000
rpm). It was repeated until the window cell produced transparent, single-phase solutions at a
suitable temperature and pressure. Finally, all samples were subjected to pressure reductions at

intervals of 20 psi. The equilibrium condition took roughly two hours to identify any visual
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changes, and the poor solubility thickeners may take more time. Generally, the cloud point
pressures of gas/thickeners in the fog form were determined in the bulk sample by visual
monitoring. The measurements were taken at least three times, with a £5 psi repeatability. This
process was implemented for different PFA concentrations such as 5000, 10000, 20000, and
30000 ppm. Next, the mixtures were used for all experiments, such as IFT measurements, CO>

diffusion coefficient calculations, and gravity drainage tests.

e |FT measurement

The interfacial tension of 0il/CO2 and 0il/CO,-PFA were measured using the HPHT IFT 700
equipment. The pendant drop technigue is state of the art and precise method for determining the
IFT. During IFT measurements, a drop of oil is formed from the capillary needle's tip, which
CO2 or CO2-PFA bounds at the reservoir conditions (Prs=3000 psi and Trs = 100 °C).
Furthermore, the IFT error was computed using the standard deviation of four repeat
measurements of each mixture and was around 0.1 (Gandomkar et al., 2020b; Azizkhani and

Gandomkar, 2019).

e COq2 diffusion coefficients measurement in the matrix-fracture system

Figure 1 shows a schematic design of the experimental setup for determining CO2 diffusion
coefficients. Diffusion cell, gas/oil supply system, HPLC pump, data gathering system, and
temperature maintenance system were the primary components. The fluids and porous media
were held in a diffusion cell with an ID of 5 cm and a depth of 10 cm. The diffusion cell was
built to withstand pressures of up to 8000 psi and temperatures of up to 150°C. In this study, the

gas thickener or CO. diffusivity coefficients in bulk oil and porous media are measured in the
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same diffusion cell. Therefore, for the diffusivity of the gas in the oil, the diffusion cell is filled
with gas thickeners (or CO2) and oil with a suitable contact interface between the oil and gas
thickeners. This scenario was created to test diffusivity without the use of porous media. In
addition, a core that was initially saturated was inserted into the diffusion cell in the instance of
gas diffusivity in porous media. As a result, the annulus space provided a larger region for gas
diffusion into the core. It simulating the situation in which CO2/gas thickeners are injected into
gas invaded zone. In the case of the bulk oil phase, all the containers were cleaned, and then all
cylinders were vacuumed for two hrs. After that, a required volume of oil was pumped into the
diffusion cell. Gas thickeners or CO. were transferred to a cylinder, and then the HPLC pump
pressurised it to the desired pressure. The system was maintained at a desirable temperature for 2
hrs. At the beginning of the diffusion test, the pressurised gas thickeners or CO was transferred
to the diffusion cell. The pressure was logged by the pressure transducer connected to data
acquisition in the cell. When the diffusion process achieved a steady-state condition, it came to
an end. Furthermore, the approach for the gas diffusion experiment on porous media was
identical to scenario 1. Rather than injecting the oil straight into the cell, the diffusion cell was
filled with a core saturated with formation fluids. The core saturation was carried out in a
separate coreflooding setup, described in our previous works in detail (Gandomkar and
Rahimpour 2015, 2017). The core is prepared during the gas diffusion coefficient process based
on the idea that the core's saturation state (connate water saturation) and wettability (aging
process) are restored to their original state. The core sample C5 from Table 2 was used for the
gas diffusion coefficient process. The gas diffusion coefficient tests were repeated for pure CO-
and CO2/PFA in different PFA concentrations such as 5000, 10000, 20000, and 30000 ppm. The

pressure decay method is widely used to measure the COz/gas thickeners diffusion coefficient
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and thus was applied in this work (Gao et al., 2019; Li et al., 2006). The CO> or gas thickener
diffusion coefficient will be estimated by mathematical model based on the measured
instantaneous pressure data. The mathematical description of CO> or gas thickener diffusion in

the porous medium could be defined as follows based on the Fick's law (Li et al., 2016; 2009):

ac(rt) 9%C(r,t)
at Desy arz (1)

The boundary and initial conditions are:
Crt)=0at0<r<ro (2
C(rt)=0att>0andr=ro (3)
Where C(r.t) are the gas thickener or CO, concentration during the diffusion process, mol.m?; t is
the diffusing time, s; Def is the effective diffusion coefficient, m2.s; ro is the core radii, m; and r

is the CO. diffusion radius, 0 <r <ro, m. The analytical solution to diffusion equation is:

_ 2
€ = Cy1 - Ly, LlramerpCeryan t)] @)
0

n=1 anJi1(roaq)

Changing equation (4) in the form of mass and integrating it with r, and then replacing the real
gas equation of state (APV = ZAnRT) into equation 4, could be presented in the form of the

instant pressure change among the square root of time:

_ AMoZRT\[Defy = _
AP = — = Vt =kt (5)

Where K can be calculated through the simple linear regression, the gas thickener or CO-

diffusion coefficient is determined by equation (6) (Chai et al., 2019; Li et al., 2006):

_ l rokV 2
Derr =15 (MOOZRT) (6)

Where:
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* o : porous media’s radii, m;

L)

*

k : the gradient of the pressure change v.s the square root of time;

0

X/
°

V: gas thickener or CO, volume in the annulus area between the core and the cell, m®;

%

*

M, : COzor gas thickener dissolved in the porous medium, mole;

X/
°

Z : Gas thickener or CO2 deviation factor, dimensionless;

A X4

R: gas constant,

X4

T : temperature in Kelvin.

L)

Also, in the bulk oil phase, the molar flux of gas thickener or CO2 diffusing into an oil column
can be presented based on Fick's law (Hoteit et al., 2009; Zhang et al., 2000). The procedure is
similar to the mathematical model described for porous media. Therefore, based on the Fick's
law, the relationship between the pressure and time is:

P(t) = P,q + a, exp(—b;t) + ayexp(—b,t) @)
Where all the constants ai, b1, a2, b2 and Peq can be calculated through the non-linear regression
of the experimental data. After that, the gas thickener or CO. diffusion coefficient in the bulk oil

phase can be calculated as follows:

Dy = 2 (8)

where the liquid height in the cell is shown as H, m; and Dag is the gas thickener or CO>

diffusion coefficient, m2.s™.

Figure 1

e Gravity drainage process in gas invaded zone

The experimental setup, shown in Figure 2, simulated the vertical gravity drainage mechanism in
a matrix block-fractured system in gas invaded zone. The main parts of the experimental setup

are a vertically-mounted core holder, BPR, oven, data acquisition, HPLC pump, transfer vessel,
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and separator. The core holder has several pressure gauges to display the critical parameters
linked with oil recovery from the cores. A total length of 72.9 cm carbonate cores (4 carbonate
cores) with 4 inches (10.16 cm) in diameter was centered in the middle of a core holder with an
internal diameter of 11 cm; 0.84 cm larger than the carbonate core. The annular space of 0.42 cm
can simulate the experimental model's vertical fracture. It should be noted that oil recovery by
gravity drainage in gas invaded zone is a function of capillary continuity between matrix blocks.
Several authors have addressed this phenomenon reporting different results (Firoozabadi et al.,
1990, 1994, Saidi, 1991). Therefore, the horizontal fracture opening was considered 30 pm to
provide the capillary continuity between blocks in fractured reservoirs. Moreover, the carbonate
core samples were initially saturated by formation water (Table 2). Reservoir crude oil was then
injected to create connate water saturation. The core saturation procedure was made in a self-
governing coreflooding setup, described in our previous works in detail (Gandomkar and
Rahimpour, 2015 and 2017; Gandomkar et al., 2013; Nematzadeh et al., 2012). During gravity
drainage tests, the cores are also prepared with the intention of restoring the connate water
saturation and the wettability of the core (aging process) to their reservoir conditions
(Zendehboudi et al., 2011). After that, the saturated oil-wet cores were centered vertically in the
middle of a core holder. The system was obtained to the desired temperature, and then gas
thickener or CO2 was inserted into the 0.42 cm wide annulus, to simulate the fractures between
the core samples and core holder. The system was pressurised by gas thickener or CO> injection
to the desired pressure, and finally, oil recovery versus time was documented. Other researchers
have already used the described model to simulate the oil recovery from gas invaded zone
experimentally (Schechter et al., 1996; Pooladi-Darvish et al., 2000; Babadagli et al., 2003). It

should be highlighted that oil recovery by gravity drainage in gas invaded zone significantly
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depends on capillary and gravity forces. Therefore, to experimentally simulate the gravity
drainage process in the gas invaded zone, gas thickener or CO2 was injected from the top of the
column at a constant frontal advance rate. At the same time, the capillary number was controlled
to be lower than its critical value (less than 10°) to establish the capillary force dominating the
flow process (Babadagli et al., 2003; Firoozabadi et al., 1990, 1994; Saidi 1991). Two different
scenarios, including CO2/PFA and pure CO- injection, were considered to study the impact of
gas thickener on oil recovery in the gas invaded zone. In addition, the oil recovery factors were
measured based on the original oil in place.

Figure 2

Table 2

Results and discussion

This study investigates the effect of COz-philic polymeric thickener (PFA) on the gravity
drainage mechanism in the gas invaded zone during CO: injection through the synergy of the
interfacial mechanisms. First, the dissolution of PFA in CO2 was conducted for different PFA
concentrations, 5000, 10000, 20000, and 30000 ppm, via cloud point pressure measurements.
After that, these new resolutions were used for all other tests. Therefore, the effect of PFA-
thickened carbon dioxide on IFT measurements was estimated at various temperatures. After
that, the CO. diffusion coefficients in porous and non-porous media were calculated during pure
CO2 and PFA-CO:> scenarios. Finally, the oil recovery was illustrated through a gravity drainage
mechanism during CO: thickener injection in the gas invaded zone under reservoir conditions

(i.e. Tres = 100 °C and Pres = 3000 psi). These results have been presented as follows.
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e The dissolution of gas thickener in CO2

The dissolution of PFA in CO, was examined by calculating cloud point pressures. The cloud
point appears as the pressure at which the single-phase solutions were achieved at favourable
temperature and pressure. After that, the resulting single-phase mixtures were used for all other
tests in the gas invaded zone. The cloud point pressures of CO2/PFA solutions with four different
PFA concentrations, 5000, 10000, 20000, and 30000 ppm, for temperatures of 40, 70, and 100 °C
were reported in Figure 3. The cloud point pressure measurements were 2250 to nearly 3100 psi.
These results show that increasing temperature and PFA concentration generally raise the cloud
point pressures. These were 2260, 2420, and 2680 psi at different temperatures of 40, 70, and
100 °C, respectively, for 5000 ppm PFA concentration. Also, these were 2680, 2810, 2950, and
3100 psi for different concentrations of 5000, 10000, 20000, and 30000 ppm, respectively, at 100
°C. The results highlighted that the lower temperatures provided higher thickeners solubility in
CO.. Moreover, the high concentrations of PFA (30000 ppm) increased the cloud point pressures
to 3100 psi at 100 °C. In addition, Figure 4 illustrates the effect of PFA concentrations on the
cloud point pressure at 40, 70, and 100 °C. From this result, it increases approximately linearly
with increasing in PFA concentrations. Also, it showed that the cloud point pressure was higher
than it by increasing the temperature at the same PFA concentration. It is known as the entropy
of mixing, and it has the ability to control this condition. The density of PFA is almost
unchanged with temperature, whilst the density of gas rises as temperature decreases. As a result,
the density difference widens and the entropy of mixing decreases, causing the temperature to
behave inversely during the thickened gas phase (Azizkhani and Gandomkar 2019). Enick et al.

(2018) showed that the PFA is remarkably soluble in CO3, requiring only about 1450 psi to
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dissolve 30000 ppm of PFA in CO; at 24°C. The main difference between their results and our
measurements is referred to as PFA molecular weight and temperature conditions. However, our
cloud point measurements have a good consistency with their results. PFA solubility in CO2 was
determined, and single-phase solutions were employed for all subsequent studies in the gas
invaded zone. As a result, in the remaining trials in this work, the pressure was always kept
above the cloud point pressure to guarantee that the PFA did not come out of the solution

because of phase change.

Figure 3

Figure 4

e The effect of gas thickener on IFT

Karimaie et al. (2010) investigated the gravity drainage mechanism in fractured carbonate rock
during gas injection in low IFT. They reported that the gas-oil gravity drainage at low IFT is an
efficient oil recovery technique at secondary and tertiary injection in the gas invaded zone.
Therefore, in this study, the CO2/PFA solutions were considered to examine the performance of
gas thickeners on gravity drainage by IFT reduction. The impact of PFA thickener on oil and
CO: interfacial tension was measured at reservoir pressure (3000 psi). Also, the cloud point
pressure for 30000 ppm PFA at 100 °C was higher than reservoir pressure (3100 psi). Therefore,
only at this point, the IFT was conducted at a pressure higher than reservoir pressure (3200 psi)
to guarantee that the PFA did not come out of the solution due to a phase change. The results
(Table 3) displays that the high molecular weight of PFA can meaningfully decrease the IFT. For
example, the IFT between the pure CO> and reservoir fluid was 56 dyne/cm, and it was lowered

to 24 dyne/cm for 20000 ppm CO/PFA scenario at reservoir conditions. Also, the IFTs were
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increased by increasing temperature, but while PFA dissolved to the COy, it was increased lower
than that compared to pure CO scenarios. Moreover, Figure 5 illustrates the effect of PFA
concentrations on IFTs between CO./PFA and reservoir crude oil at the reservoir conditions. The
findings indicated that the IFTs were reduced by increasing PFA concentrations. It could be
considered as a rise in gas density in the attendance of thickeners (Harrison et al., 1996). Figure 6
shows the MMPs of crude oil and COo/thickener estimated using the vanishing interfacial
tension (VIT) approach using interfacial tension data (Ghorbani et al. 2019 and 2020;
Gandomkar et al., 2020b). The MMPs were 3510 and 3320 psi for pure CO, and 20000 ppm
PFA, respectively, at reservoir temperature. The results show that the CO thickener could
meaningfully decrease the minimum miscibility pressure. Consequently, the MMP for pure
carbon dioxide and PFA-thickened CO2 (20000 ppm) were more than the reservoir pressure
(Pres=3000 psi). So the immiscible injection will happen under reservoir conditions during the
gravity drainage and gas diffusion coefficient experiments.
Table 3

Figure 5

Figure 6

e Gas diffusion in matrix block during COz/thickener injection
The gas diffusion coefficient is a key parameter to control the mixing rate of the injected gas and
crude oil. By injecting gas into the gas invaded zone, gas associates with the oil through
diffusion, that result in change in different properties such as drop in IFT and viscosity, and oil
swelling, which can improve the oil recovery in the gas invaded zone. Thus, it is vital to explore
the gas diffusivity under real reservoir conditions during CO2/PFA scenarios. Table 4 shows the

gas diffusion coefficients for the CO2—oil and CO./PFA—oil systems in porous media and bulk oil
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phase scenarios. At reservoir conditions, the pure CO: diffusion coefficients in the bulk oil phase
and porous media were 11.8 and 0.24 * 10° m2.s™, respectively. Results showed that the pure
CO. diffusion coefficient in the bulk oil phase was higher than that in porous media. In other
words, the CO2 pressure drop in the bulk oil phase system was more significant than that in
porous media, demonstrating a higher volume of CO> was dissolved. The enlargement of the
contact area between oil and CO: in bulk oil phase system compared to porous media system
significantly improved the gas diffusivity coefficient. Therefore, mass transfer between fracture-
matrix decreases, resulting in low CO> reaching inside the porous media compared to the oil
phase system. In the porous media case, the mass transfer was decreased due to heterogeneity
compared to the bulk oil phase. CO2 penetrates the thin oil film first and then disperses the oil in
the porous media. Furthermore, the pores of varied diameters are twisted and interlinked in
carbonate reservoirs due to the complex geological sedimentation processes. The path for a gas
molecule to diffuse via the pores is complex and tortuous. As a result, reaching the inside porous
media would take the longest, corresponding to the pressure decrease in the system (Zhang et al.,
2000; Chai et al., 2019). Based on Figure 7, the CO. diffusion coefficients were increased during
PFA/CO; injection in both scenarios. For example, these were 33.8 and 0.56 * 10° m2.s? for
20000 ppm polymer thickener in the bulk oil phase and porous media systems, respectively, at
reservoir conditions. Renner (1988) illustrated that the diffusion coefficient is extremely reliant
on both solvent and solute viscosity (oil and CO> respectively), that highlights the impact of
temperature, pressure and fluid composition. Therefore, it can be rationalised by bearing in mind
two distinctive phenomena from the aspect of the gas thickener enhanced oil recovery technique;
1) a reduction in oil viscosity due to CO2 diffusion, and 2) increasing gas viscosity due to

polymer thickener dissolution in CO2. Additionally, these two phenomena may improve the CO>
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diffusion coefficient during CO2/PFA injection. During the gas-based enhanced oil recovery, the
porous media’s properties are of great importance in analysing the gas diffusion process in a
fractured-matrix system. Therefore, the relationship of CO> diffusion between the bulk oil phase
and porous media can be described as the effective diffusion coefficient (Li et al., 2006; Hoteit et

al., 2009):

_ 9Dpuik (9)

Where:

¢ Det : gas diffusion coefficient in porous media;

X/
o

Douik : gas diffusion coefficient in the bulk oil phase;
s (@ . porosity;

¢+ T touristy of the porous media;

L)

Table 4

Figure 7

e Enhanced oil recovery in gas invaded zone during COz/thickener injection
Gravity drainage is one of the most critical mechanisms in gas invaded zone, and it plays a
significant impact on oil recovery during gas-based methods. Moreover, the synergy of the
aforementioned mechanisms on oil recovery was investigated by two different sets of gravity
drainage scenarios: pure CO2 and PFA/CO2 (20000 ppm) injection. Figure 8 illustrates the
ultimate oil recovery factor based on the gravity drainage process in the gas-vented zone at
reservoir conditions. The pure CO. and PFA/CO; scenarios indicated that about 36 and 52
percent oil recovery factor was produced in the gas invaded zone during the gravity drainage
process. Therefore, an incremental oil recovery of 16 percent was achieved during PFA/CO>

compared to pure CO> injection in the gas invaded zone. The lower oil recovery achieved in the
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pure CO2 scenario is due to a high capillary hold-up zone. The density difference and low
interfacial tension between the phases also contribute to the substantial oil recovery efficiency
recorded during the gravity drainage test. In this study, the gas and oil density to increase by
dissolution of PFA in CO> and also more gas in solution, respectively which caused a change in
density difference and consequently improving oil recovery. The principal force countered by the
matrix capillary pressure is the density difference between pure CO2 or CO2/PFA in the fracture
and the oil in the matrix. Furthermore, the interfacial tension between oil and CO>/PFA lowers,
resulting in a decrease in capillary hold-up. The remaining oil saturation above the new hold up
zone will also diminish in this instance, especially if the interfacial tension goes below one
dyne/cm (Karimaie et al., 2010). Additionally, it should be highlighted that in cases where high
CO2 solubility in the oil phase increases the oil density, the higher density leads to unavoidable
natural convection and, consequently, higher oil recovery. Accordingly, the high CO2 mass
transfer and IFT reduction during the gas thickener injection compared to pure CO2 scenario can
improve the oil recovery in gas invaded zone. This is consistent with the findings of other

researchers (Pedrera et al., 2002; Shahidzadeh et al., 2003).

Figure 8
Conclusion
e Lower temperatures provided higher PFA solubility in CO,. Also, the high concentration
of PFA (30000 ppm) increased the cloud point pressure to 3100 psi at 100 °C.
e The high molecular weight of PFA thickener could enhance the oil recovery in gas
invaded zone due to a decrease in the IFTs.
e The COz thickener could significantly reduce the minimum miscibility pressure and may

be improved oil recovery during the gravity drainage process.
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The CO2 pressure drop in the bulk oil phase system was more significant than that in
porous media, indicating a higher amount of CO; diffusion coefficient.

The mass transfer was decreased due to heterogeneity compared to the bulk oil phase
during the CO diffusion tests.

The CO: diffusion coefficients were increased during PFA/CO: injection in both
scenarios at reservoir conditions.

An incremental oil recovery of 16 percent was achieved during PFA/CO, compared to

pure CO2 injection in the gas invaded zone.
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Nomenclature

API
EOR
HPHT
HPLC
IFT
MMP
PAA
PDMS
PEO
PFA
PHAA
PIB
PPO
Pres
PS
PVAC
PVOH
rpm
Tres
VIT

XRD

American Petroleum Institute
Enhanced Oil Recovery
High Pressure-High Temperature
High Pressure Liquid Chromatography
Interfacial Tension
Minimum Miscibility Pressure
poly(acrylic acid)
poly(dimethyl siloxane)
poly(ethylene oxide)
poly(fluoroacrylate)
poly(hydroxy alkanoates)
poly(isobutylene)
poly(phenylene oxide)
Reservoir Pressure
poly(styrene)
poly(vinyl acetate)
poly(vinyl alcohol)
Revolutions Per Minute
Reservoir Temperature
Vanishing Interfacial Tension

X-Ray Diffraction
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Table 1
Formation water Crude oil
lons Concentrations (ppm) Hydrocarbon Type mole percent

Na* 57441 N.Paraffins 36.4
Mg?* 1783 Iso.Paraffins 21.5
Ca?* 9704 Naphthenes 24.7
CI 103021 Aromatics 15.2

HCOs 28 Saturates Cis* 1.2

SO4* 6 Aromatics Cis" 1.0
K* 13 Total sum 100.0

Br 4 S.G (60°F), ASTM D40452 0.8
TDS (ppm) 172000 Molecular weight, g/mol, IP-86 106.3
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Table 2

Length| D PV | Porosity | Permeability | Swc

Carbonate cores (crg) (i) | (co) (%) y (md) y (%)
C1 15.7 4 11451 114 5.8 27.5

C2 17.1 4 |188.5 13.6 6.4 28.3

C3 18.7 4 |159.2 10.5 6.8 29.0

C4 21.4 4 |196.1 11.3 75 28.2

C5* 6.3 15| 7.8 10.6 6.2 27.6

*This core was used to CO, diffusion coefficients tests in porous media
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IFT (dyn/cm)
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CO2 0 30.0 | 42.0 | 56.0

5000 23.0 | 31.0 | 41.0
10000 14.0 | 26.0 | 33.0
20000 05.0 | 120 | 24.0
30000 00.5 | 06.0 | 15.0*

Injection Gas | PFA (ppm)

CO2/PFA

747 *IFT was conducted at pressure higher than reservoir pressure (3200 psi) to ensure that the PFA did not come out of
748 the solution due to a phase change. Because of the cloud point pressure of these conditions (30000 ppm and 100 °C)
749 was higher than reservoir pressure (3100 psi).
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Table 4
Scenarios Gas diffusion coefficients (10° m?.st)
Bulk oil phase Porous media
Pure CO> 11.80 0.24
CO2/PFA (5000 ppm) 21.10 0.41
CO/PFA (10000 ppm) 28.40 0.50
CO./PFA (20000 ppm) 33.80 0.56
CO./PFA (30000 ppm) 36.70 0.61
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