

Central Lancashire Online Knowledge (CLoK)

Title	The effect of CO2-philic thickeners on gravity drainage mechanism in gas invaded zone
Type	Article
URL	https://clok.uclan.ac.uk/id/eprint/44481/
DOI	https://doi.org/10.1016/j.fuel.2022.125760.
Date	2023
Citation	Gandomkar, Asghar, Nasriani, Hamid Reza, Enick, Robert M. and Torabi, Farshid (2023) The effect of CO2-philic thickeners on gravity drainage mechanism in gas invaded zone. Fuel, 331 (1). ISSN 0016-2361
Creators	Gandomkar, Asghar, Nasriani, Hamid Reza, Enick, Robert M. and Torabi, Farshid

It is advisable to refer to the publisher's version if you intend to cite from the work. https://doi.org/10.1016/j.fuel.2022.125760.

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the http://clok.uclan.ac.uk/policies/

Fuel

The effect of CO2-philic thickeners on gravity drainage mechanism in gas invaded **zone**--Manuscript Draft--

Manuscript Number:	JFUE-D-22-04805R1		
Article Type:	Research Paper		
Keywords:	Gas invaded zone; Gas thickeners; CO2 diffusion coefficients; Gravity Drainage; Matrix-fracture system; Cloud point pressure		
Corresponding Author:	Asghar Gandomkar, Ph.D Shiraz University Shiraz, IRAN, ISLAMIC REPUBLIC OF		
First Author:	Asghar Gandomkar, Ph.D		
Order of Authors:	Asghar Gandomkar, Ph.D		
	Hamid Reza Nasriani, PhD		
	Robert M. Enick, PhD		
	Farshid Torabi, PhD		
Abstract:	The rate of mass transfer between the fractures and matrix in gas invaded zone can significantly influence on the oil recovery during the forced gravity drainage process. However, in this study, a new approach was suggested to improve the gravity drainage process in gas invaded zone. Poly(fluoroacrylate) (PFA), as a CO2-philic thickener, was injected into the gas invaded zone to illustrate the impact of interfacial mechanisms such as gas diffusion coefficient and interfacial tension (IFT) on oil recovery. Also, the cloud point pressures were measured to ensure that the PFA did not come out of the solution due to a phase change during IFT, gas diffusion coefficient, and gravity drainage experiments. Results showed that the CO2-PFA thickener (20000 ppm) could decrease the IFT from 56 to 24 dyne/cm compared to the pure CO2 scenario, improving the gravity drainage mechanism in the gas invaded zone. In addition, the CO2 diffusion coefficients were increased approximately more than two times during CO2-PFA injection in comparison with pure CO2 injection in both porous media and bulk oil phase scenarios at reservoir conditions. Also, an incremental oil recovery of 16 percent was achieved during PFA/CO2 compared to pure CO2 injection in the gas invaded zone. Therefore, gas gravity drainage is the most important mechanism once gas thickener or CO2 enters the fractures in the gas invaded zone.		
Suggested Reviewers:	Dandina Rao, PhD Professor, Louisiana State University dnrao@lsu.edu		
	Hamid Hosseinzade Khanamiri, PhD Research Associate, Norwegian University of Science and Technology hamid.hosseinzade@ntnu.no		
	Edris Joonaki, PhD Research Associate, TUV SUD Ltd NEL ej5@hw.ac.uk		
	Aliakbar Hassanpouryouzband, PhD Research Associate, The University of Edinburgh Hssnpr@ed.ac.uk		
	Riyaz Kharrat, PhD Professor, University of Mining Leoben riyaz.kharrat@unileoben.ac.at		

The effect of CO₂-philic thickeners on gravity drainage mechanism in gas invaded zone

*Asghar Gandomkar¹, Hamid Reza Nasriani², Robert M. Enick³, Farshid Torabi⁴

¹Department of Petroleum Engineering, Faculty of Chemical and Material Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran

²School of Engineering, Faculty of Science and Tachnology, University of Central Langeshira, Procton PP1, 2HE

²School of Engineering, Faculty of Science and Technology, University of Central Lancashire, Preston PR1 2HE,
United Kingdom

³Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States

⁴Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada

Abstract

The rate of mass transfer between the fractures and matrix in gas invaded zone can significantly influence on the oil recovery during the forced gravity drainage process. However, in this study, a new approach was suggested to improve the gravity drainage process in gas invaded zone. Poly(fluoroacrylate) (PFA), as a CO₂-philic thickener, was injected into the gas invaded zone to illustrate the impact of interfacial mechanisms such as gas diffusion coefficient and interfacial tension (IFT) on oil recovery. Also, the cloud point pressures were measured to ensure that the PFA did not come out of the solution due to a phase change during IFT, gas diffusion coefficient, and gravity drainage experiments. Results showed that the CO₂-PFA thickener (20000 ppm) could decrease the IFT from 56 to 24 dyne/cm compared to the pure CO₂ scenario, improving the gravity drainage mechanism in the gas invaded zone. In addition, the CO₂ diffusion coefficients were increased approximately more than two times during CO₂-PFA injection in comparison with pure CO₂ injection in both porous media and bulk oil phase scenarios at reservoir

^{*} Corresponding Author: Email Addresses: agandomkar@shirazu.ac.ir (Asghar Gandomkar)

- conditions. Also, an incremental oil recovery of 16 percent was achieved during PFA/CO₂ compared to pure CO₂ injection in the gas invaded zone. Therefore, gas gravity drainage is the most important mechanism once gas thickener or CO₂ enters the fractures in the gas invaded zone.
- 31 **Keywords**: Gas invaded zone, Gas thickeners, CO₂ diffusion coefficients, Gravity drainage,
- 32 Matrix-fracture system, Cloud point pressure

Introduction

27

28

29

30

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

CO₂ injection in naturally fracture reservoirs is the process of storing and capturing atmospheric carbon dioxide combined with enhanced oil recovery. It is one method of decreasing the amount of CO₂ in the atmosphere with the goal of reducing global climate change (Hassanpouryouzband et al., 2021 and 2018). Naturally fractured carbonate reservoirs (NFRs) hold a significant portion of the global oil reserves. Gravity is the only conceivable economic driving mechanism in widely fractured reservoirs because extremely conductive fractures create shortcuts for the injected fluids. In the production from fractured carbonate reservoirs, three zones can be recognised: (1) a gas invaded zone with oil-filled matrix and gas-filled fractures, (2) an oil rim with oil-filled matrix and fractures, and (3) a water invaded zone with water-filled fractures and oil-filled matrix (Li et al., 2018; Kharrat et al., 2021; Farrokhrouz et al., 2022). The oil flow in the gas invaded zone will be largely through the matrix due to the gravity drainage mechanism. When gas from gas-saturated fractures moves oil in the matrix, gas gravity drainage occurs. The gas gravity drainage is derived from the difference in density of the oil and gas phases. By injecting gas or gas thickeners into the fracture-matrix system, these contact with insitu fluid through diffusion. This makes the oil to swell, and consequently lessens the oil viscosity, absorbs the

light component, and drops the IFT. Therefore, the gas diffusion coefficient and IFT can affect the gravity drainage mechanism in the gas invaded zone. Therefore, it is significantly important to fully understand these mechanisms under actual reservoir conditions (Guo et al., 2022; Aghabarari et al., 2022). The diffusion coefficient is a key parameter in controlling the mixing rate of the injected gas and insitu fluids. Gas dissolution will change the insitu fluid properties significantly including the reduction in oil viscosity and oil swelling which consequently result in the improvement of oil mobility and enhancing the oil recovery (Gao et al., 2019). In Berea cores saturated with n-hexadecane, Li et al. (2006 and 2009) estimated the effective CO₂ diffusion coefficient. They came to the conclusion that the readings were slightly affected by pressure changes ranging from 2.3 to 6.3 MPa. Li et al. (2016) investigated the impacts of oil saturation and tortuosity on CO₂ diffusivity in porous media with poor permeability. The diffusion coefficients were found to be highly influenced by the oil saturation and permeability of the porous medium. Gao et al. (2019) used tortuosity to link the CO₂ mass transfer coefficient to the permeability of porous media. They discovered that the high tortuosity can slow down the CO₂ diffusivity by restricting gas solubility. The prior measurements of diffusion coefficients, on the other hand, still need to be extended by using gas thickeners. In addition, several field performance analyses (Al-Shibli et al., 2022; Zobeidi et al., 2021; King et al., 1970; Carlson, 1988) and laboratory experiments (Saidi et al., 1993; Clemens et al., 2001; Sajjadian et al., 1999, Zobeidi et al., 2018) showed that the oil recovery factor could be significantly enhanced if gravity drainage process is the leading production mechanism. Carlson (1988) also came to the conclusion that high oil recovery after a gas drive operation is attributable to gravity forces reflected by considerable differences in density between the oil and gas. However, the obtained conclusion ignores the process's numerous side consequences. Laboratory studies of gravity

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

drainage in fractured rock were conducted by Sajjadian et al. (1999). They reported that capillary continuity and re-infiltration could improve oil recovery factor. Clemens et al. (2001) demonstrated that when there are no fractures in the horizontal plane and the oil must flow sideways into the fracture system, the drainage rate is further lowered, resulting in lower drainage rates. Ameri et al. (2013) investigated the effect of miscibility on the gasoil gravity drainage in naturally fractured reservoirs. The findings show that injecting a nonequilibrium gas with a larger scale of solubility into the oil phase causes a zone of reduced oil viscosity, leading to enhanced gravity-mediated recovery. Zobeidi et al. (2018) investigated the impact of gravity drainage on the block to block interactions in NFRs. Their findings showed that oil penetration into lower blocks occurs rapidly. Hasanzadeh et al. (2021) investigated the forced and free-fall gravity drainage mechanism in a fractured physical model. Results reveal that the forced gravity drainage performs better under controlled process conditions than the free-fall gravity drainage. Karimaie et al. (2010) investigated gas-oil gravity drainage process in fractured carbonate rock with low IFT and gas injection. They showed that even after water injection, low IFT gravity drainage may recover a large amount of oil in NFRs. Ameri et al. (2015) evaluated the rate of mass-transfer between the fractures and the matrix while a gas solvent is injected into a fracture system. Their findings revealed that matrix wettability has no effect on solvent injection performance, and that the remaining oil in the matrix may be recovered using an increased gravity drainage procedure. Kahrobaei et al. (2012) illustrated that transfer rates of solvent between fracture and matrix is a function of the rock permeability, oil viscosity and the density of both oil and solvent. Consequently, based on the previous works, the data of CO₂ diffusion coefficients and gravity drainage mechanism in hydrocarbon fluids and crude oil is still undersupplied at the actual reservoir conditions. Also, a large portion of the

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

recorded data are within a limited temperature range (<60 °C) and pressures (<2500 psi), and the effect of gas thickeners on gas diffusivity coefficient and gravity drainage mechanism is not reported. Moreover, several experimental and theoretical studies are conveyed in the literature to study the efficacy of a gas or solvent injection in NFRs under static conditions. Still, few pieces of work have focused on the mas transfer mechanisms between matrix and fracture under dynamic conditions. In addition, the gas diffusion coefficient is still a controversial challenge during gas-based EOR for improving the gravity drainage mechanism in the gas invaded zone. However, the gas thickener scenario can be one of the new approaches for improving the mass transfer processes under flow conditions between fracture and matrix. Recently, several pieces of research have been done to improve the oil recovery by polymer thickeners for gas-based EOR in the conventional reservoir (Gandomkar et al., 2021; Gandomkar et al., 2020a; Dai et al., 2018; Alhinai et al., 2017; Lee et al., 2016; Zhang et al., 2011). The dissolution of polymer thickeners in gases can cause a series of gas properties changes such as IFT reduction, gas diffusivity coefficient improvement, and viscosity enhancement, which can promote the gravity drainage mechanism in the gas invaded zone. Therefore, in this study, this new approach was considered to investigate the effect of gas thickener on gravity drainage mechanism in the gas invaded zone. Furthermore, polymer thickeners can improve gas characteristics in two ways: 1) by dissolving heavy polymers (high molecular weight) in gases, and 2) by dissolving the small molecules as direct thickeners. The substantial amount of co-solvent (toluene) in the case of heavy gas thickeners, on the other hand, is troublesome and makes field application of this mixture unfeasible. Furthermore, fluorous-based thickeners with high molecular weights are still the only agents shown to dissolve in CO₂ without the need of a co-solvent. Therefore, except for the fluorous based thickeners, it is adequate to utilise low molecular weight thickeners (without

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

adding co-solvents), as these are more economically agents during gas-based enhanced oil recovery (Enick et al., 2012 and 2018; Dhuwe et al., 2016). Though, according to previous studies. it indicated that several thickeners poly(ethylene was gas such oxide) (PEO), poly(vinyl alcohol) (PVOH), poly(styrene) (PS), poly(phenylene oxide) (PPO), poly(acrylic acid) (PAA), poly(hydroxy alkanoates) (PHAA), poly(vinyl acetate) (PVAC), and poly(isobutylene) (PIB), are seriously CO₂-phobic agents. On the contrary, poly(dimethyl siloxane) (PDMS) and poly(fluoroacrylate) (PFA) are significantly CO₂-philic candidates (Xu et al., 2001; Kikic et al., 2009; Mohamed et al., 2011; Enick et al., 2012 and 2018; Zaberi et al, 2020; Mao et al., 2013; Talebian et al., 2014; Gandomkar et al., 2021). Therefore, in this study, PFA was used as a CO₂-philic gas thickener to improve the gravity drainage mechanism during gas injection in the gas invaded zone. PFA is an amorphous, viscous, clear homopolymer that dissolves in CO₂ at temperatures and pressures that are appropriate for CO₂-assisted oil recovery. Furthermore, there is no extensive investigation of the mass transfer process in the literature for CO₂-PFA thickener injection. Therefore, the goal of this paper is to recognize the governing oilrecovery mechanisms during CO₂ thickener injection in the gas invaded zone such as CO₂ diffusion coefficient, IFT, and gravity drainage.

134 135

136

137

138

139

140

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Materials and methods

• Rock and fluid properties

All laboratory experiments employed reservoir crude oil with an API of 32 from one of the Middle Eastern oil fields. The oil filtration was performed to separate particles and impurities from the oil to reduce any experimental complications. In addition, original formation water (172000 ppm) was considered for gravity drainage tests. The properties of both formation water

and reservoir crude oil are reported in Table 1. Also, the carbonate reservoir rock was used for gravity drainage and CO_2 diffusion coefficients tests. The chemical composition of carbonate rock was determined using the XRD (X-Ray Diffraction) technique. According to the observations, the crushed material contains roughly 80 % calcite ($CaCO_3$), 11 % dolomite ($CaMg(CO_3)_2$), 5 % anhydrate ($CaSO_4$) and 4% clay. The corresponding error values for the XRD results were lower than \pm 0.5 %. In addition, during the gravity drainage and gas diffusion coefficient processes, the connate water saturation and the wettability of the core is set to those of their reservoir conditions.

Table 1

• Cloud point measurement

In this study, the poly(fluoroacrylate) gas thickener was synthesized by our team following the synthesis that has been previously described in detail elsewhere (Zaberi et al., 2020); the average molecular weight of the polymer was 550000 g/mol. PFA is a CO₂-philic agent which is monomer based and has six fluorinated carbons (not eight), thus eradicating the environmental concerns that are associated with possible degradation products. The gas thickeners solubility in CO₂ was measured by the HPHT visual cell described in our previous works (Gandomkar et al., 2020a, 2020b; Azizkhani and Gandomkar, 2019). However, a specific amount of PFA must be weighed and injected into the window cell first. The sample was then given a certain amount of carbon dioxide to achieve the appropriate composition. A magnetic stirrer was utilised to create a revolving magnetic field from a pressurised mixture with a constant overall composition (2000 rpm). It was repeated until the window cell produced transparent, single-phase solutions at a suitable temperature and pressure. Finally, all samples were subjected to pressure reductions at intervals of 20 psi. The equilibrium condition took roughly two hours to identify any visual

changes, and the poor solubility thickeners may take more time. Generally, the cloud point pressures of gas/thickeners in the fog form were determined in the bulk sample by visual monitoring. The measurements were taken at least three times, with a ± 5 psi repeatability. This process was implemented for different PFA concentrations such as 5000, 10000, 20000, and 30000 ppm. Next, the mixtures were used for all experiments, such as IFT measurements, CO_2 diffusion coefficient calculations, and gravity drainage tests.

• IFT measurement

The interfacial tension of oil/CO₂ and oil/CO₂-PFA were measured using the HPHT IFT 700 equipment. The pendant drop technique is state of the art and precise method for determining the IFT. During IFT measurements, a drop of oil is formed from the capillary needle's tip, which CO_2 or CO_2 -PFA bounds at the reservoir conditions (P_{res} =3000 psi and T_{res} = 100 °C). Furthermore, the IFT error was computed using the standard deviation of four repeat measurements of each mixture and was around 0.1 (Gandomkar et al., 2020b; Azizkhani and Gandomkar, 2019).

• CO₂ diffusion coefficients measurement in the matrix-fracture system

Figure 1 shows a schematic design of the experimental setup for determining CO₂ diffusion coefficients. Diffusion cell, gas/oil supply system, HPLC pump, data gathering system, and temperature maintenance system were the primary components. The fluids and porous media were held in a diffusion cell with an ID of 5 cm and a depth of 10 cm. The diffusion cell was built to withstand pressures of up to 8000 psi and temperatures of up to 150°C. In this study, the gas thickener or CO₂ diffusivity coefficients in bulk oil and porous media are measured in the

same diffusion cell. Therefore, for the diffusivity of the gas in the oil, the diffusion cell is filled with gas thickeners (or CO₂) and oil with a suitable contact interface between the oil and gas thickeners. This scenario was created to test diffusivity without the use of porous media. In addition, a core that was initially saturated was inserted into the diffusion cell in the instance of gas diffusivity in porous media. As a result, the annulus space provided a larger region for gas diffusion into the core. It simulating the situation in which CO₂/gas thickeners are injected into gas invaded zone. In the case of the bulk oil phase, all the containers were cleaned, and then all cylinders were vacuumed for two hrs. After that, a required volume of oil was pumped into the diffusion cell. Gas thickeners or CO₂ were transferred to a cylinder, and then the HPLC pump pressurised it to the desired pressure. The system was maintained at a desirable temperature for 2 hrs. At the beginning of the diffusion test, the pressurised gas thickeners or CO₂ was transferred to the diffusion cell. The pressure was logged by the pressure transducer connected to data acquisition in the cell. When the diffusion process achieved a steady-state condition, it came to an end. Furthermore, the approach for the gas diffusion experiment on porous media was identical to scenario 1. Rather than injecting the oil straight into the cell, the diffusion cell was filled with a core saturated with formation fluids. The core saturation was carried out in a separate coreflooding setup, described in our previous works in detail (Gandomkar and Rahimpour 2015, 2017). The core is prepared during the gas diffusion coefficient process based on the idea that the core's saturation state (connate water saturation) and wettability (aging process) are restored to their original state. The core sample C5 from Table 2 was used for the gas diffusion coefficient process. The gas diffusion coefficient tests were repeated for pure CO₂ and CO₂/PFA in different PFA concentrations such as 5000, 10000, 20000, and 30000 ppm. The pressure decay method is widely used to measure the CO₂/gas thickeners diffusion coefficient

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

and thus was applied in this work (Gao et al., 2019; Li et al., 2006). The CO₂ or gas thickener diffusion coefficient will be estimated by mathematical model based on the measured instantaneous pressure data. The mathematical description of CO₂ or gas thickener diffusion in the porous medium could be defined as follows based on the Fick's law (Li et al., 2016; 2009):

213
$$\frac{\partial C(r,t)}{\partial t} = D_{eff} \frac{\partial^2 C(r,t)}{\partial r^2}$$
 (1)

214 The boundary and initial conditions are:

209

210

211

212

215
$$C(r,t) = 0$$
 at $0 < r < r_0$ (2)

216
$$C(r,t) = 0 \text{ at } t \ge 0 \text{ and } r = r_0$$
 (3)

Where C(r,t) are the gas thickener or CO_2 concentration during the diffusion process, mol.m³; t is the diffusing time, s; D_{eff} is the effective diffusion coefficient, m².s⁻¹; r₀ is the core radii, m; and r is the CO_2 diffusion radius, $0 < r < r_0$, m. The analytical solution to diffusion equation is:

$$C = C_0 \left[1 - \frac{2}{r_0} \sum_{n=1}^{\infty} \frac{J_0(ra_n)exp(-D_{eff}a_n^2 t)}{a_n J_1(r_0 a_1)} \right]$$
(4)

Changing equation (4) in the form of mass and integrating it with r, and then replacing the real gas equation of state ($\Delta PV = Z\Delta nRT$) into equation 4, could be presented in the form of the instant pressure change among the square root of time:

$$\Delta P = \frac{4M_{\infty}ZRT\sqrt{D_{eff}}}{r_0V\sqrt{\pi}}\sqrt{t} = k\sqrt{t}$$
 (5)

Where K can be calculated through the simple linear regression, the gas thickener or CO₂ diffusion coefficient is determined by equation (6) (Chai et al., 2019; Li et al., 2006):

$$D_{eff} = \frac{\pi}{16} \left(\frac{r_0 kV}{M_{\infty} ZRT} \right)^2$$
 (6)

229 Where:

- \bullet r₀: porous media's radii, m;
- **♦** k: the gradient of the pressure change v.s the square root of time;
- ❖ V: gas thickener or CO₂ volume in the annulus area between the core and the cell, m³;
- \star M_{∞} : CO₂ or gas thickener dissolved in the porous medium, mole;
- **❖** Z : Gas thickener or CO₂ deviation factor, dimensionless;
- **❖** T : temperature in Kelvin.

247

248

250

- Also, in the bulk oil phase, the molar flux of gas thickener or CO₂ diffusing into an oil column can be presented based on Fick's law (Hoteit et al., 2009; Zhang et al., 2000). The procedure is
- can be presented eased on rights and (recent or any 2005). The procedure is
- similar to the mathematical model described for porous media. Therefore, based on the Fick's
- law, the relationship between the pressure and time is:

242
$$P(t) = P_{eq} + a_1 \exp(-b_1 t) + a_2 \exp(-b_2 t)$$
 (7)

- Where all the constants a_1 , b_1 , a_2 , b_2 and P_{eq} can be calculated through the non-linear regression
- of the experimental data. After that, the gas thickener or CO₂ diffusion coefficient in the bulk oil
- phase can be calculated as follows:

$$D_{AB} = \frac{4b_1 H^2}{\pi^2} \tag{8}$$

where the liquid height in the cell is shown as H, m; and D_{AB} is the gas thickener or CO₂ diffusion coefficient, m².s⁻¹.

249 Figure 1

• Gravity drainage process in gas invaded zone

The experimental setup, shown in Figure 2, simulated the vertical gravity drainage mechanism in a matrix block-fractured system in gas invaded zone. The main parts of the experimental setup are a vertically-mounted core holder, BPR, oven, data acquisition, HPLC pump, transfer vessel,

and separator. The core holder has several pressure gauges to display the critical parameters linked with oil recovery from the cores. A total length of 72.9 cm carbonate cores (4 carbonate cores) with 4 inches (10.16 cm) in diameter was centered in the middle of a core holder with an internal diameter of 11 cm; 0.84 cm larger than the carbonate core. The annular space of 0.42 cm can simulate the experimental model's vertical fracture. It should be noted that oil recovery by gravity drainage in gas invaded zone is a function of capillary continuity between matrix blocks. Several authors have addressed this phenomenon reporting different results (Firoozabadi et al., 1990, 1994; Saidi, 1991). Therefore, the horizontal fracture opening was considered 30 µm to provide the capillary continuity between blocks in fractured reservoirs. Moreover, the carbonate core samples were initially saturated by formation water (Table 2). Reservoir crude oil was then injected to create connate water saturation. The core saturation procedure was made in a selfgoverning coreflooding setup, described in our previous works in detail (Gandomkar and Rahimpour, 2015 and 2017; Gandomkar et al., 2013; Nematzadeh et al., 2012). During gravity drainage tests, the cores are also prepared with the intention of restoring the connate water saturation and the wettability of the core (aging process) to their reservoir conditions (Zendehboudi et al., 2011). After that, the saturated oil-wet cores were centered vertically in the middle of a core holder. The system was obtained to the desired temperature, and then gas thickener or CO₂ was inserted into the 0.42 cm wide annulus, to simulate the fractures between the core samples and core holder. The system was pressurised by gas thickener or CO₂ injection to the desired pressure, and finally, oil recovery versus time was documented. Other researchers have already used the described model to simulate the oil recovery from gas invaded zone experimentally (Schechter et al., 1996; Pooladi-Darvish et al., 2000; Babadagli et al., 2003). It should be highlighted that oil recovery by gravity drainage in gas invaded zone significantly

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

depends on capillary and gravity forces. Therefore, to experimentally simulate the gravity drainage process in the gas invaded zone, gas thickener or CO₂ was injected from the top of the column at a constant frontal advance rate. At the same time, the capillary number was controlled to be lower than its critical value (less than 10^{-5}) to establish the capillary force dominating the flow process (Babadagli et al., 2003; Firoozabadi et al., 1990, 1994; Saidi 1991). Two different scenarios, including CO₂/PFA and pure CO₂ injection, were considered to study the impact of gas thickener on oil recovery in the gas invaded zone. In addition, the oil recovery factors were measured based on the original oil in place.

285 Figure 2

Table 2

Results and discussion

This study investigates the effect of CO_2 -philic polymeric thickener (PFA) on the gravity drainage mechanism in the gas invaded zone during CO_2 injection through the synergy of the interfacial mechanisms. First, the dissolution of PFA in CO_2 was conducted for different PFA concentrations, 5000, 10000, 20000, and 30000 ppm, via cloud point pressure measurements. After that, these new resolutions were used for all other tests. Therefore, the effect of PFA-thickened carbon dioxide on IFT measurements was estimated at various temperatures. After that, the CO_2 diffusion coefficients in porous and non-porous media were calculated during pure CO_2 and PFA- CO_2 scenarios. Finally, the oil recovery was illustrated through a gravity drainage mechanism during CO_2 thickener injection in the gas invaded zone under reservoir conditions (i.e. $T_{res} = 100$ °C and $P_{res} = 3000$ psi). These results have been presented as follows.

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

• The dissolution of gas thickener in CO₂

The dissolution of PFA in CO₂ was examined by calculating cloud point pressures. The cloud point appears as the pressure at which the single-phase solutions were achieved at favourable temperature and pressure. After that, the resulting single-phase mixtures were used for all other tests in the gas invaded zone. The cloud point pressures of CO₂/PFA solutions with four different PFA concentrations, 5000, 10000, 20000, and 30000 ppm, for temperatures of 40, 70, and 100 °C were reported in Figure 3. The cloud point pressure measurements were 2250 to nearly 3100 psi. These results show that increasing temperature and PFA concentration generally raise the cloud point pressures. These were 2260, 2420, and 2680 psi at different temperatures of 40, 70, and 100 °C, respectively, for 5000 ppm PFA concentration. Also, these were 2680, 2810, 2950, and 3100 psi for different concentrations of 5000, 10000, 20000, and 30000 ppm, respectively, at 100 °C. The results highlighted that the lower temperatures provided higher thickeners solubility in CO₂. Moreover, the high concentrations of PFA (30000 ppm) increased the cloud point pressures to 3100 psi at 100 °C. In addition, Figure 4 illustrates the effect of PFA concentrations on the cloud point pressure at 40, 70, and 100 °C. From this result, it increases approximately linearly with increasing in PFA concentrations. Also, it showed that the cloud point pressure was higher than it by increasing the temperature at the same PFA concentration. It is known as the entropy of mixing, and it has the ability to control this condition. The density of PFA is almost unchanged with temperature, whilst the density of gas rises as temperature decreases. As a result, the density difference widens and the entropy of mixing decreases, causing the temperature to behave inversely during the thickened gas phase (Azizkhani and Gandomkar 2019). Enick et al. (2018) showed that the PFA is remarkably soluble in CO₂, requiring only about 1450 psi to

dissolve 30000 ppm of PFA in CO₂ at 24°C. The main difference between their results and our measurements is referred to as PFA molecular weight and temperature conditions. However, our cloud point measurements have a good consistency with their results. PFA solubility in CO₂ was determined, and single-phase solutions were employed for all subsequent studies in the gas invaded zone. As a result, in the remaining trials in this work, the pressure was always kept above the cloud point pressure to guarantee that the PFA did not come out of the solution because of phase change.

330 Figure 3

331 Figure 4

• The effect of gas thickener on IFT

Karimaie et al. (2010) investigated the gravity drainage mechanism in fractured carbonate rock during gas injection in low IFT. They reported that the gas-oil gravity drainage at low IFT is an efficient oil recovery technique at secondary and tertiary injection in the gas invaded zone. Therefore, in this study, the CO₂/PFA solutions were considered to examine the performance of gas thickeners on gravity drainage by IFT reduction. The impact of PFA thickener on oil and CO₂ interfacial tension was measured at reservoir pressure (3000 psi). Also, the cloud point pressure for 30000 ppm PFA at 100 °C was higher than reservoir pressure (3100 psi). Therefore, only at this point, the IFT was conducted at a pressure higher than reservoir pressure (3200 psi) to guarantee that the PFA did not come out of the solution due to a phase change. The results (Table 3) displays that the high molecular weight of PFA can meaningfully decrease the IFT. For example, the IFT between the pure CO₂ and reservoir fluid was 56 dyne/cm, and it was lowered to 24 dyne/cm for 20000 ppm CO₂/PFA scenario at reservoir conditions. Also, the IFTs were

increased by increasing temperature, but while PFA dissolved to the CO₂, it was increased lower than that compared to pure CO₂ scenarios. Moreover, Figure 5 illustrates the effect of PFA concentrations on IFTs between CO₂/PFA and reservoir crude oil at the reservoir conditions. The findings indicated that the IFTs were reduced by increasing PFA concentrations. It could be considered as a rise in gas density in the attendance of thickeners (Harrison et al., 1996). Figure 6 shows the MMPs of crude oil and CO₂/thickener estimated using the vanishing interfacial tension (VIT) approach using interfacial tension data (Ghorbani et al. 2019 and 2020; Gandomkar et al., 2020b). The MMPs were 3510 and 3320 psi for pure CO₂ and 20000 ppm PFA, respectively, at reservoir temperature. The results show that the CO₂ thickener could meaningfully decrease the minimum miscibility pressure. Consequently, the MMP for pure carbon dioxide and PFA-thickened CO₂ (20000 ppm) were more than the reservoir pressure (P_{res}=3000 psi). So the immiscible injection will happen under reservoir conditions during the gravity drainage and gas diffusion coefficient experiments.

Table 3

359 Figure 5

360 Figure 6

• Gas diffusion in matrix block during CO₂/thickener injection

The gas diffusion coefficient is a key parameter to control the mixing rate of the injected gas and crude oil. By injecting gas into the gas invaded zone, gas associates with the oil through diffusion, that result in change in different properties such as drop in IFT and viscosity, and oil swelling, which can improve the oil recovery in the gas invaded zone. Thus, it is vital to explore the gas diffusivity under real reservoir conditions during CO₂/PFA scenarios. Table 4 shows the gas diffusion coefficients for the CO₂-oil and CO₂/PFA-oil systems in porous media and bulk oil

phase scenarios. At reservoir conditions, the pure CO₂ diffusion coefficients in the bulk oil phase and porous media were 11.8 and 0.24 * 10⁻⁹ m².s⁻¹, respectively. Results showed that the pure CO₂ diffusion coefficient in the bulk oil phase was higher than that in porous media. In other words, the CO₂ pressure drop in the bulk oil phase system was more significant than that in porous media, demonstrating a higher volume of CO₂ was dissolved. The enlargement of the contact area between oil and CO₂ in bulk oil phase system compared to porous media system significantly improved the gas diffusivity coefficient. Therefore, mass transfer between fracturematrix decreases, resulting in low CO₂ reaching inside the porous media compared to the oil phase system. In the porous media case, the mass transfer was decreased due to heterogeneity compared to the bulk oil phase. CO₂ penetrates the thin oil film first and then disperses the oil in the porous media. Furthermore, the pores of varied diameters are twisted and interlinked in carbonate reservoirs due to the complex geological sedimentation processes. The path for a gas molecule to diffuse via the pores is complex and tortuous. As a result, reaching the inside porous media would take the longest, corresponding to the pressure decrease in the system (Zhang et al., 2000; Chai et al., 2019). Based on Figure 7, the CO₂ diffusion coefficients were increased during PFA/CO₂ injection in both scenarios. For example, these were 33.8 and 0.56 * 10⁻⁹ m².s⁻¹ for 20000 ppm polymer thickener in the bulk oil phase and porous media systems, respectively, at reservoir conditions. Renner (1988) illustrated that the diffusion coefficient is extremely reliant on both solvent and solute viscosity (oil and CO₂ respectively), that highlights the impact of temperature, pressure and fluid composition. Therefore, it can be rationalised by bearing in mind two distinctive phenomena from the aspect of the gas thickener enhanced oil recovery technique; 1) a reduction in oil viscosity due to CO₂ diffusion, and 2) increasing gas viscosity due to polymer thickener dissolution in CO₂. Additionally, these two phenomena may improve the CO₂

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

diffusion coefficient during CO₂/PFA injection. During the gas-based enhanced oil recovery, the porous media's properties are of great importance in analysing the gas diffusion process in a fractured-matrix system. Therefore, the relationship of CO₂ diffusion between the bulk oil phase and porous media can be described as the effective diffusion coefficient (Li et al., 2006; Hoteit et al., 2009):

$$D_{eff} = \frac{\varphi D_{bulk}}{\tau} \tag{9}$$

397 Where:

♦ D_{eff}: gas diffusion coefficient in porous media;

❖ D_{bulk}: gas diffusion coefficient in the bulk oil phase;

 \star τ : touristy of the porous media;

Table 4

403 Figure 7

• Enhanced oil recovery in gas invaded zone during CO₂/thickener injection

Gravity drainage is one of the most critical mechanisms in gas invaded zone, and it plays a significant impact on oil recovery during gas-based methods. Moreover, the synergy of the aforementioned mechanisms on oil recovery was investigated by two different sets of gravity drainage scenarios: pure CO₂ and PFA/CO₂ (20000 ppm) injection. Figure 8 illustrates the ultimate oil recovery factor based on the gravity drainage process in the gas-vented zone at reservoir conditions. The pure CO₂ and PFA/CO₂ scenarios indicated that about 36 and 52 percent oil recovery factor was produced in the gas invaded zone during the gravity drainage process. Therefore, an incremental oil recovery of 16 percent was achieved during PFA/CO₂ compared to pure CO₂ injection in the gas invaded zone. The lower oil recovery achieved in the

pure CO₂ scenario is due to a high capillary hold-up zone. The density difference and low interfacial tension between the phases also contribute to the substantial oil recovery efficiency recorded during the gravity drainage test. In this study, the gas and oil density to increase by dissolution of PFA in CO₂ and also more gas in solution, respectively which caused a change in density difference and consequently improving oil recovery. The principal force countered by the matrix capillary pressure is the density difference between pure CO₂ or CO₂/PFA in the fracture and the oil in the matrix. Furthermore, the interfacial tension between oil and CO₂/PFA lowers, resulting in a decrease in capillary hold-up. The remaining oil saturation above the new hold up zone will also diminish in this instance, especially if the interfacial tension goes below one dyne/cm (Karimaie et al., 2010). Additionally, it should be highlighted that in cases where high CO₂ solubility in the oil phase increases the oil density, the higher density leads to unavoidable natural convection and, consequently, higher oil recovery. Accordingly, the high CO₂ mass transfer and IFT reduction during the gas thickener injection compared to pure CO₂ scenario can improve the oil recovery in gas invaded zone. This is consistent with the findings of other researchers (Pedrera et al., 2002; Shahidzadeh et al., 2003).

429 Figure 8

Conclusion

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

430

431

432

433

434

435

- Lower temperatures provided higher PFA solubility in CO₂. Also, the high concentration of PFA (30000 ppm) increased the cloud point pressure to 3100 psi at 100 °C.
- The high molecular weight of PFA thickener could enhance the oil recovery in gas invaded zone due to a decrease in the IFTs.
- The CO₂ thickener could significantly reduce the minimum miscibility pressure and may be improved oil recovery during the gravity drainage process.

437	•	The CO ₂ pressure drop in the bulk oil phase system was more significant than that in
438		porous media, indicating a higher amount of CO ₂ diffusion coefficient.
439	•	The mass transfer was decreased due to heterogeneity compared to the bulk oil phase
440		during the CO ₂ diffusion tests.
441	•	The CO ₂ diffusion coefficients were increased during PFA/CO ₂ injection in both
442		scenarios at reservoir conditions.
443	•	An incremental oil recovery of 16 percent was achieved during PFA/CO ₂ compared to
444		pure CO ₂ injection in the gas invaded zone.
445		
446		
447		
448		
449		
450		
451		
452		
453		
454		
455		
456		
457		
458		

460 **Nomenclature**

- 461 API American Petroleum Institute
- 462 EOR Enhanced Oil Recovery
- 463 HPHT High Pressure-High Temperature
- 464 HPLC High Pressure Liquid Chromatography
- 465 IFT Interfacial Tension
- 466 MMP Minimum Miscibility Pressure
- 467 PAA poly(acrylic acid)
- 468 PDMS poly(dimethyl siloxane)
- 469 PEO poly(ethylene oxide)
- 470 PFA poly(fluoroacrylate)
- 471 PHAA poly(hydroxy alkanoates)
- 472 PIB poly(isobutylene)
- 473 PPO poly(phenylene oxide)
- 474 P_{res} Reservoir Pressure
- 475 PS poly(styrene)
- 476 PVAC poly(vinyl acetate)
- 477 PVOH poly(vinyl alcohol)
- 478 rpm Revolutions Per Minute
- 479 T_{res} Reservoir Temperature
- 480 VIT Vanishing Interfacial Tension
- 481 XRD X-Ray Diffraction

References

483

486

488

491

494

498

499

500

- 484 Aghabarari, A., Ghaedi, M., Evaluation of the effects of homogenizing matrix block sizes on the simulation of naturally fractured reservoirs, Journal of Petroleum Science and 485 Engineering, 213, 110373, 2022.
- Alhinai, N., Saeedi, A., Wood, C., Experimental Study of Miscible Thickened Natural 487

Gas Injection for Enhanced Oil Recovery, Energy & Fuels, 31 (5), 4951-4965, 2017.

at Oman Petroleum & Energy Show, Muscat, Oman, SPE-200102, 2022.

- Al-Shibli, A., Al Maamari, H., Griborio, C., Adeponle, S., Autonomous Gas Shut-Off in 489 Gas Oil Gravity Drainage Reservoir, Sultanate of Oman, Paper presented at the SPE Conference 490
- Ameri, A., Farajzadeh, R., Suicmez, V.S., Verlaan, M., Bruining, J., Effect of non-492 equilibrium gas injection on the performance of (immiscible and miscible) gas-493

oil gravity drainage in naturally fractured reservoirs, Energy and Fuels, 27, 10, 6055-6067, 2013.

- 495 Ameri, A., Farajzadeh, R., Suicmez, V.S., Verlaan, M., Bruining, J., Dynamic interactions between matrix and fracture during miscible gravity drainage in naturally fractured 496 reservoirs, Journal of Industrial & Engineering Chemistry, 54, 19, 5356-5371, 2015. 497
 - Azizkhani A., Gandomkar, A., A novel method for application of nanoparticles as direct asphaltene inhibitors during miscible CO₂ injection, Journal of Petroleum Science and Engineering, 2019.
- Babadagli, T., Selection of proper enhanced oil recovery fluid for efficient matrix 501 recovery in fractured oil reservoirs, Colloids and Surfaces A: Physicochemical and Engineering 502 503 Aspects, 223, 157-175, 2003.

- Carlson, L.O., Performance of Hawkins Field Unit under Gas Drive-Pressure
- Maintenance Operations and Development of an Enhanced Oil Recovery Project, SPE/DOE
- 506 Enhanced Oil Recovery Symposium, Tulsa, SPE 17324, 1988.
- Chai, D., Fan, Z., Li, X., Gas Transport in Shale Matrix Coupling Multilayer Adsorption
- and Pore Confinement Effect, Chemical Engineering Journal, 370, 1534-1549, 2019.
- Clemens, T., Wit, K., The effect of fracture spacing on gas/oil gravity drainage in
- 510 naturally fractured reservoirs, presented at the SPE annual technical conference and exhibition,
- 511 New Orleans, SPE 71507, 2001.
- Dai, C., Wang, T., Zhao, M., Sun, X., Impairment mechanism of thickened supercritical
- 513 carbon dioxide fracturing fluid in tight sandstone gas reservoirs, Fuel, 211, 60-66, 2018.
- 514 Dhuwe, A., Klara, A., Sullivan, J., Enick, R., Assessment of solubility and viscosity of
- 515 ultra-high molecular weight polymeric thickeners in ethane, propane and butane for miscible
- EOR, Journal of Petroleum Science and Engineering, 145, 266-278, 2016.
- Enick, R., Olsen, D., Ammer, J., Schuller, W., Mobility and conformance control for CO₂
- 518 EOR via thickeners, foams, and gels- A literature review of 40 years of research and pilot tests,
- Eighteenth SPE improved oil recovery symposium held in Tulsa, SPE 154122, 2012.
- Enick, R., Lee, J.J., Cummings, S.D., Zaberi, A., Fluoroacrylate polymers as CO₂-soluble
- conformance control agents, SPE 190176, 2018.
- Farrokhrouz, M., Taheri, A., Iglauer, S., Keshavarz. A., Exact Analytical Solutions of
- 523 Countercurrent Imbibition with Both Capillary and Gravity Effects, Energy and Fuels, 36, 3,
- 524 1457-1469, 2022.
- Firoozabadi, A., Hauge, J., Capillary Pressure in Fractured Porous Media, Journal of
- 526 Petroleum Technology, 784-791, 1990.

- Firoozabadi, A., Markeset, T., Fracture-Liquid Transmissibility in Fractured Porous
- Media, SPE Reservoir Engineering Journal, 201-207, SPE 24919, 1994.
- Gandomkar, A., Nasriani, H.R., The role of direct asphaltene inhibitors on asphaltene
- stabilization during gas injection, Fuel journal, 282, 118827, 2020a.
- Gandomkar, A., Sharif, M., Nano composites performance as direct thickeners for gas
- based enhanced oil recovery, a new approach, Journal of Petroleum Science and Engineering,
- 533 194, 107491, 2020b.
- Gandomkar, A., Rahimpour, M., The impact of monovalent and divalent ions on
- 535 wettability alteration in oil/low salinity brine/limestone systems, Journal of Molecular
- 536 Liquids, 248, 1003-1013, 2017.
- Gandomkar, A., Rahimpour, M.R., Investigation of low salinity water flooding in
- secondary and tertiary enhanced oil recovery in limestone reservoirs, Energy & Fuels journal, 29,
- 539 7781-7792, 2015.
- Gandomkar, A., Kharrat, R., Tertiary FAWAG Process on Gas and Water Invaded Zones,
- an Experimental Study, Journal of Energy Sources, Part A: Recovery, Utilization, and
- Environmental Effects, 493921, 2013.
- Gandomkar, A., Torabi, F., Riazi, M., CO₂ mobility control by small molecule thickeners
- 544 during secondary and tertiary enhanced oil recovery, The Canadian Journal of Chemical
- 545 Engineering, 99, 6, 1352-1362, 2021.
- Guo, W., Fu, Sh., Li, A., Xie, H., Cui, Sh., Experimental research on the mechanisms of
- 547 improving water flooding in fractured-vuggy reservoirs, Journal of Petroleum Science and
- 548 Engineering, 213, 110383, 2022.

- Gao, H., Zhang, B., Fan, L., Study on Diffusivity of CO₂ in Oil-Saturated Porous Media
- under High Pressure and Temperature, Energy and Fuels, 33(11), 11364-11372, 2019.
- Ghorbani, M., A. Gandomkar, and G. Montazeri, Describing a strategy to estimate the
- 552 CO₂-heavy oil minimum miscibility pressure based on the experimental methods. Energy
- Sources, Part A: Recovery, Utilization, and Environmental Effects, 41, 17, 2083-2093, 2019.
- Ghorbani, M., A. Gandomkar, and G. Montazeri, Experimental Investigation of
- Asphaltene Content Effect on Crude Oil/CO₂ Minimum Miscibility Pressure, Periodica
- Polytechnica Chemical Engineering Journal, 64(4), 479–490, 2020.
- Harrison, K.L., Johnston, K.P., Sanchez, J.S., Effect of Surfactants on the Interfacial
- Tension between Supercritical Carbon Dioxide and Polyethylene Glycol, Langmuir, 12, 2637-
- 559 2644, 1996.
- Hasanzadeh, M., Azin, R., Fatehi, R., Zendehboudi, S., New insights into forced and free
- fall gravity drainage performance in a fractured physical model, Journal of Petroleum Science
- and Engineering, 203, 108568, 2021.
- Hassanpouryouzband, A., Yang, J., Tohidi, B., Cheremisin, A., Insights into CO₂ Capture
- by Flue Gas Hydrate Formation: Gas Composition Evolution in Systems Containing Gas
- Hydrates and Gas Mixtures at Stable Pressures, ACS Sustainable Chemistry & Engineering, 6, 5,
- 566 5732-5736, 2018.
- Hassanpouryouzband, A., Joonaki, E., Edlmann, K., Haszeldine, R.S., Offshore
- Geological Storage of Hydrogen: Is This Our Best Option to Achieve Net-Zero?, ACS Energy
- 569 Letters 6, 6, 2181-2186, 2021.
- Hoteit, H., Firoozabadi, A., Numerical modeling of diffusion in fractured media for gas-
- injection and–recycling schemes, SPE Journal, 14(2), 323–337, 2009.

- Kahrobaei, S., Farajzadeh, R., Suicmez, V.S., Bruining, J., Gravity-Enhanced Transfer
- 573 between Fracture and Matrix in Solvent-Based Enhanced Oil Recovery, Journal of Industrial &
- Engineering Chemistry Research, 51, 44, 2012.
- Karimaie, H., Torsæter, O., Low IFT gas-oil gravity drainage in fractured carbonate
- porous media, Journal of Petroleum Science and Engineering, 70, 1-2, 67-73, 2010.
- Kharrat, R., Zallaghi, M., Ott, H., Performance Quantification of Enhanced Oil Recovery
- 578 Methods in Fractured Reservoirs, Energies Journal, 14, 4739, 2021.
- Kikic, I., Polymer-supercritical fluid interactions, The Journal of Supercritical Fluids, 47
- 580 (3), 458-65, 2009.
- King, R.L., Stile, J.H., A Reservoir Study of the Hawkins Woodbine Field, presented at
- the SPE 45th Annual Fall Meeting, Texas, SPE 2972, 1970.
- Lee, J.J., Dhuwe, A., Stephen, D., Eric, J., Enick, R., Polymeric and Small Molecule
- Thickeners for CO₂, Ethane, Propane and Butane for Improved Mobility Control, SPE Improved
- Oil Recovery Conference, Tulsa, SPE 179587, 2016.
- Li, Z., Dong, M., Shirif, E., Transient natural convection induced by gas diffusion in
- 587 liquid-saturated vertical porous columns, Industrial & Engineering Chemistry Research journal,
- 588 45, 3311-3319, 2006.
- Li, Z., Dong, M., Experimental study of carbon dioxide diffusion in oil-saturated porous
- 590 media under reservoir conditions, Industrial & Engineering Chemistry Research journal, 48,
- 591 9307-9317, 2009.
- Li, S., Li, Z., Dong, Q., Diffusion coefficients of supercritical CO₂ in oil-saturated cores
- under low permeability reservoir conditions, The Journal of CO₂ Utilization, 14, 47-60, 2016.

- Li, Y., Pu, W., Wei, B., The feasibility of CO₂ and N₂ injection for the Tahe fracture-
- cavity carbonate extra-heavy oil reservoir: An experimental study, Fuel, 226, 598–606, 2018.
- Mao, S., Zhang, D., Li, Y., Liu, N., An improved model for calculating CO2 solubility in
- 597 aqueous NaCl solutions and the application to CO₂–H₂O–NaCl fluid inclusions, Chemical
- 598 Geology 347, 43-58, 2013.
- Mohamed, A., Sagisaka, M., Guittard, F., Cummings, S., Paul, A., Rogers, S. E., Heenan,
- R. K., Dyer, R., Eastoe, J., Low fluorine content CO₂-philic surfactants, Langmuir, 27 (17),
- 601 10562-9, 2011.
- Nematzadeh, M., Kharrat, R., Gandomkar, A., An experimental study of secondary WAG
- 603 injection in a low-temperature carbonate reservoir in different miscibility conditions, Petroleum
- science and technology, 30, 13, 1359-1368, 2012.
- Pedrera, B., Bertin, H., Hamon, G., Wettability effect on oil relative permeability during
- 606 gravity drainage, SPE/DOE 13th Symposium on Improved Oil Recovery, Oklahoma, SPE
- 607 77542, 2002.
- Pooladi-Darvish, M., Firoozabadi, A., Co current and counter current imbibition in a
- water-wet matrix block, SPE Journal, 5 (1), 3-11, 2000.
- Renner, T.A., Measurement and Correlation of Diffusion Coefficients for CO₂ and Rich—
- Gas Applications, SPE Reservoir Engineering Journal, 3(2), 517528, 1988.
- Shahidzadeh, N., Bertrand, E., Dauplait, J.P., Borgotti, J.C., Gravity drainage in porous
- media: the effect of wetting, Journal of petroleum science and engineering, 39, 409–416, 2003.
- Schechter, D.S., Guo, B., Mathematical Modeling of Gravity Drainage after Gas Injection
- into Fractured Reservoirs. SPE Improved Oil Recovery Symposium, USA, SPE 35710, 1996.

- Saidi, A.M., Discussion of Capillary Pressure in Fractured Porous Media, Journal of
- Petroleum Technology, SPE 21892, 1991.
- Saidi, A.M., Sakthikumar, S., Gas Gravity Drainage under Secondary and Tertiary
- 619 Conditions in Fractured Reservoirs, presented at the Middle East Oil Show, Bahrain, SPE 25614,
- 620 1993.
- Sajjadian, V.A., Danesh, A., Tehrani, D.H., Laboratory studies of gravity drainage
- mechanisms in fractured carbonate reservoir reinfiltration, SPE 54003, 1999.
- Talebian, S. H., Tan, I. M., Masoudi, R., Onur, M., Fluid-fluid interactions in a system of
- 624 CO₂, oil, surfactant solution, and brine at high pressures and temperatures-A Malaysian reservoir
- case, Journal of Petroleum Science and Engineering 124, 313-22, 2014.
- Xu, J., Enick, R., Thickening carbon dioxide with the fluoroacrylate-styrene copolymer,
- SPE Annual Technical Conference and Exhibition, 2001.
- Zendehboudi, S., Rezaei, N., Chatzis, I., Effect of Wettability in Free-Fall and
- 629 Controlled Gravity Drainage in Fractionally Wet Porous Media with Fractures, Energy and
- 630 Fuels, 25, 10, 4452-4468, 2011.
- Zhang, Sh., She, Y., Gu, Y., Evaluation of Polymers as Direct Thickeners for
- 632 CO₂ Enhanced Oil Recovery, Journal of chemical engineering data, 56 (4), 1069-1079, 2011.
- Zhang, Y., Hyndman, C., Maini, B.B., Measurement of gas diffusivity in heavy oils,
- Journal of petroleum science and engineering, 25(1), 37-47, 2000.
- Zobeidi, K., Fassihi, M.R., Block to block interactions and their effects on miscibility
- gravity drainage in fractured carbonate reservoirs, experimental and analytical results, Journal of
- 637 Petroleum Science and Engineering, 1, 164, 696-708, 2018.

638	Zobeidi, K., Shaffe, M.M., Ghazvini, M.G., The effect of gravity drainage mechanism of
639	oil recovery by reservoir simulation; a case study in an Iranian highly fractured reservoir, Journa
640	of Petroleum Exploration and Production Technology, 2021.
641	Zaberi, H.A., Lee, J.J., Enick, R., Beckman, E.J., Vasilache, M., An experimenta
642	feasibility study on the use of CO2-soluble polyfluoroacrylates for CO2 mobility and
643	conformance control applications, Journal of Petroleum Science and Engineering, 184, 106556
644	2020.
645	
646	
647	
648	
649	
650	
651	
652	
653	
654	
655	

657	List of Tables
658	Table 1: The properties of both formation water and reservoir crude oil
659	Table 2: The properties of the carbonate core samples
660	Table 3: The interfacial tensions of CO ₂ or CO ₂ /PFA and oil in different PFA concentrations and
661	temperatures
662	Table 4: The gas diffusion coefficients measurements in both bulk oil phase and porous media
663	systems in different PFA concentrations at reservoir conditions
664	
665	
666	
667	
668	
669	
670	
671	
672	
673	
674	

Table 1

Formation water		Crude oil		
Ions	Concentrations (ppm)	Hydrocarbon Type	mole percent	
Na ⁺	57441	N.Paraffins	36.4	
$\frac{Mg^{2+}}{Ca^{2+}}$	1783	Iso.Paraffins	21.5	
Ca^{2+}	9704	Naphthenes	24.7	
Cl ⁻	103021	Aromatics	15.2	
HCO ₃ -	28	Saturates C ₁₅ ⁺	1.2	
SO ₄ ² -	6	Aromatics C ₁₅ ⁺	1.0	
K^+	13	Total sum	100.0	
Br ⁻	4	S.G (60°F), ASTM D40452	0.8	
TDS (ppm)	172000	Molecular weight, g/mol, IP-86	106.3	

Table 2

Carbonata agree	Length	D	PV	Porosity	Permeability	Swc
Carbonate cores	(cm)	(in)	(cc)	(%)	(md)	(%)
C1	15.7	4	145.1	11.4	5.8	27.5
C2	17.1	4	188.5	13.6	6.4	28.3
C3	18.7	4	159.2	10.5	6.8	29.0
C4	21.4	4	196.1	11.3	7.5	28.2
C5*	6.3	1.5	7.8	10.6	6.2	27.6

^{*}This core was used to CO₂ diffusion coefficients tests in porous media

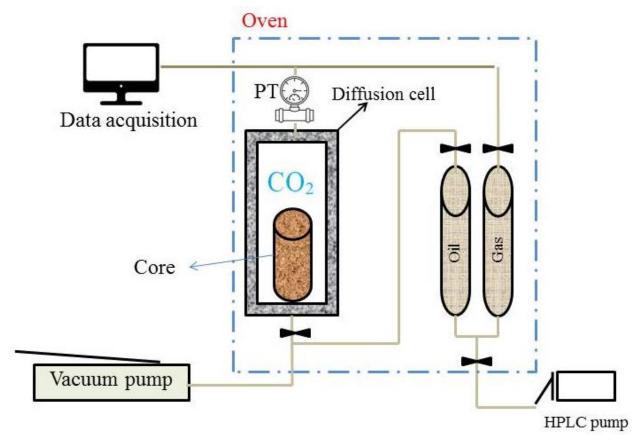
Table 3

Injection Gas	DEA (nnm)	IFT (dyn/cm)		
	PFA (ppm)	40 °C	70 °C	100 °C
CO_2	0	30.0	42.0	56.0
	5000	23.0	31.0	41.0
CO ₂ /PFA	10000	14.0	26.0	33.0
CO2/FFA	20000	05.0	12.0	24.0
	30000	00.5	06.0	15.0*

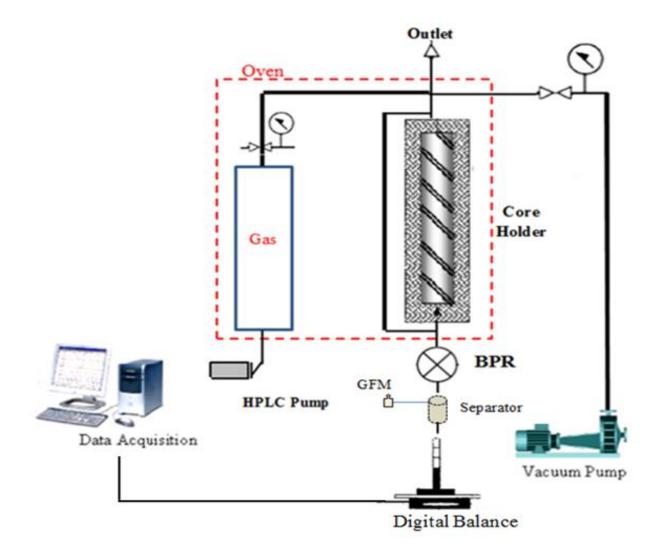
*IFT was conducted at pressure higher than reservoir pressure (3200 psi) to ensure that the PFA did not come out of the solution due to a phase change. Because of the cloud point pressure of these conditions (30000 ppm and 100 °C) was higher than reservoir pressure (3100 psi).

Table 4

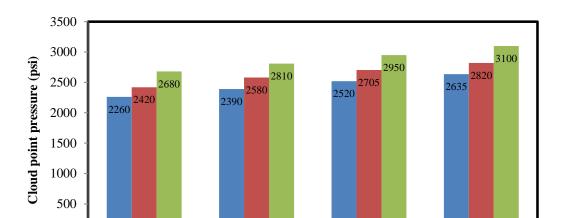
Scenarios	Gas diffusion coefficients (10 ⁻⁹ m ² .s ⁻¹)			
	Bulk oil phase	Porous media		
Pure CO ₂	11.80	0.24		
CO ₂ /PFA (5000 ppm)	21.10	0.41		
CO ₂ /PFA (10000 ppm)	28.40	0.50		
CO ₂ /PFA (20000 ppm)	33.80	0.56		
CO ₂ /PFA (30000 ppm)	36.70	0.61		


List of Figures

812


829

830


Figure 1: A schematic diagram of the experimental setup for measuring the CO₂ diffusion 813 814 coefficients in both bulk oil phase and porous media systems at reservoir conditions Figure 2: The experimental setup for gravity drainage mechanism in matrix block-fractured 815 816 system in gas invaded zone Figure 3: The cloud point pressures of CO₂/PFA solutions with four different PFA 817 concentrations, 1: 5000 ppm; 2: 10000 ppm; 3: 20000 ppm; 4: 30000 ppm 818 Figure 4: The effect of PFA concentrations on the cloud point pressure at 40, 70, and 100 °C 819 Figure 5: The effect of PFA concentrations on IFTs between CO₂/PFA and reservoir crude oil at 820 reservoir conditions 821 Figure 6: The interfacial tension data for calculating the MMPs of crude oil and CO₂/thickener 822 by vanishing interfacial tension (VIT) technique 823 Figure 7: The CO₂ diffusion coefficients during PFA/CO₂ injection in both porous media and 824 bulk oil phase scenarios, 1: pure CO₂; 2: CO₂/PFA (5000 ppm); 3: CO₂/PFA (10000 ppm); 4: 825 826 CO₂/PFA (20000 ppm); 5: CO₂/PFA (30000 ppm) Figure 8: The ultimate oil recovery factor during gravity drainage process in gas invaded zone 827 828 for pure CO₂ and PFA/CO₂ (20000 ppm) scenarios

833 Figure 1

847 Figure 2

■ T=40 oC ■ T=70 oC ■ 100 oC

PFA Concentrations

Figure 3

T= 40 oC T=70 oC 100 oC

3200
3200
2800
2400
2200

Figure 4

Gas thickener concentrations (ppm)

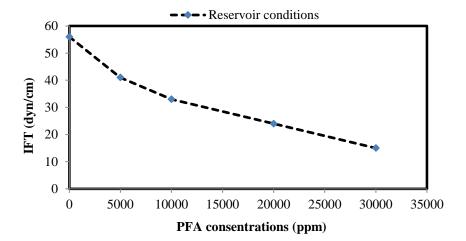


Figure 5

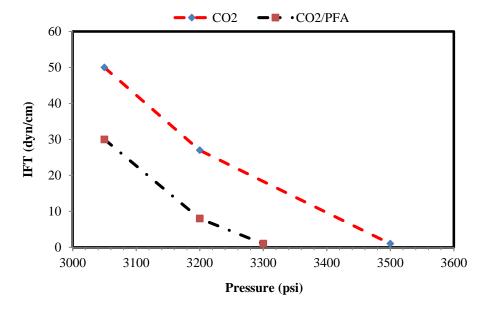
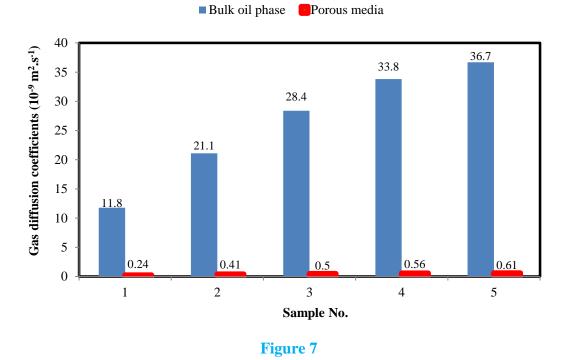
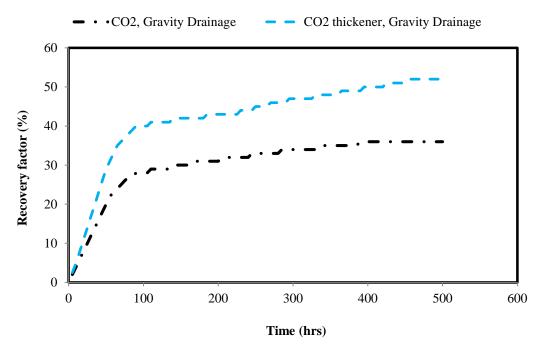




Figure 6

950 Figure 8

Declaration of Interest Statement

Declaration of interests

☑ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.	
□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:	
	_

Credit author statement

Asghar Gandomkar: Conceptualization, Methodology, Validation, Investigation, Resources, Writing - Original Draft, Writing - Review & Editing, Visualization, Supervision, Project administration. Hamidreza Nasriani: Conceptualization, Methodology, Validation, Investigation, Resources, Writing - Original Draft, Writing - Review & Editing, Visualization.

Robert M. Enick: Conceptualization, Methodology, Investigation, Writing - Original Draft, Writing - Review & Editing. Farshid Torabi: Conceptualization, Methodology, Validation, Investigation, Resources, Writing - Original Draft, Writing - Review & Editing, Visualization.