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The '‘ForensOMICS’' approach for
postmortem interval estimation

from human bone by integrating
metabolomics, lipidomics, and proteomics

Andrea Bonicelli'**, Hayley L Mickleburgh??, Alberto Chighine*, Emanuela Locci?,
Daniel J Wescott®, Noemi Procopio™**t

'The Forensic Science Unit, Faculty of Health and Life Sciences, Northumbria
University, Newcastle upon Tyne, United Kingdom; ?Amsterdam Centre for
Ancient Studies and Archaeology (ACASA) — Department of Archaeology, Faculty
of Humanities, University of Amsterdam, Amsterdam, Netherlands; *Forensic
Anthropology Center, Texas State University, San Marcos, United States;
*Department of Medical Science and Public Health, Section of Legal Medicine,
University of Cagliari, Monserrato, Italy

Abstract The combined use of multiple omics allows to study complex interrelated biological
processes in their entirety. We applied a combination of metabolomics, lipidomics and proteomics to
human bones to investigate their combined potential to estimate time elapsed since death (i.e., the
postmortem interval [PMI]). This ‘ForensOMICS’ approach has the potential to improve accuracy and
precision of PMI estimation of skeletonized human remains, thereby helping forensic investigators
to establish the timeline of events surrounding death. Anterior midshaft tibial bone was collected
from four female body donors before their placement at the Forensic Anthropology Research
Facility owned by the Forensic Anthropological Center at Texas State (FACTS). Bone samples were
again collected at selected PMls (219-790-834-872days). Liquid chromatography mass spectrometry
(LC-MS) was used to obtain untargeted metabolomic, lipidomic, and proteomic profiles from the
pre- and post-placement bone samples. The three omics blocks were investigated independently by
univariate and multivariate analyses, followed by Data Integration Analysis for Biomarker discovery
using Latent variable approaches for Omics studies (DIABLO), to identify the reduced number of
markers describing postmortem changes and discriminating the individuals based on their PMI.

The resulting model showed that pre-placement metabolome, lipidome and proteome profiles

were clearly distinguishable from post-placement ones. Metabolites in the pre-placement samples
suggested an extinction of the energetic metabolism and a switch towards another source of fuel-
ling (e.g., structural proteins). We were able to identify certain biomolecules with an excellent poten-
tial for PMI estimation, predominantly the biomolecules from the metabolomics block. Our findings
suggest that, by targeting a combination of compounds with different postmortem stability, in the
future we could be able to estimate both short PMls, by using metabolites and lipids, and longer
PMls, by using proteins.

Editor's evaluation

This well-presented and sophisticated study provides significant proof-of-concept for the applica-
tion of the ForensOMICS approach as a new pathway for forensic taphonomy with great promise
to advance future research. The solid foundation of the research combining metabolomics,
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proteomics, and lipidomics is considered very exciting, strong, and expands the boundaries of
forensics research.

Introduction

The modifications that occur to the human body after death are complex and known to be affected by
a variety of intrinsic and extrinsic factors. The rate of decomposition can vary significantly depending
on the environment and even the manner of death. Nonetheless, the process of decomposition has
been demonstrated to be predictable, providing opportunities to estimate the time elapsed since
death (also known as postmortem interval [PMI]) based on gross morphological and/or microscopic
changes to the body. Precise and accurate estimation of the PMI is crucial to help establishing the
timeline of events surrounding death, can support medicolegal investigators with the identification of
the deceased and can corroborate or negate other forensic evidence.

In the first hours after death, the body undergoes several postmortem changes, including progres-
sive cooling (algor mortis), increased rigidity associated with muscle stiffness (rigor mortis), and pink-
purplish discolouration, in light skinned individuals, caused by the lack of blood circulation and the
settling of blood in the lowest areas (livor mortis) (Clark et al., 1997, Henssge and Madea, 2007,
Madea, 2016). After these stages, as the time since death increases, the breaking down and lique-
faction of the organs and other soft tissues will occur: a process referred to as putrefaction. The lack
of oxygenated circulation induces cellular hypoxia, leading to swelling of the cells, and subsequent
rupture of cell membranes and release of digestive enzymes. This triggers the autolytic digestion
of soft tissues (Lee Goff, 2009). The body becomes fully anaerobic, allowing anoxic (endogenous)
bacteria originated from the gut to proliferate and transmigrate throughout the entire body (Javan
et al.,, 2016; Jans et al., 2004). The activity of endogenous bacteria results in the accumulation of
gases which causes bloating of the soft tissues, starting from the abdomen but also taking place in the
face during early decomposition stages, and progressing towards the rest of the body. Colonization
of the body by insects and exogenous bacteria, mostly aerobic microorganisms, contributes further to
the macroscopic changes and to the reduction of the overall mass of soft tissues (Hyde et al., 2013;
Carter et al., 2017). Besides these, other extrinsic factors including abiotic environmental conditions
(e.g., humidity, temperature, sun exposition, aeration, burial context) and biotic factors, such as the
presence and type of microorganisms, insects, and scavengers (Cockle and Bell, 2015; Procopio
et al., 2017b), will affect the rate of decomposition of the soft tissues. Intrinsic factors known to
affect the rate of decomposition include, among others, body mass index and both antemortem and
perimortem pathological conditions (Mickleburgh et al., 2021). Completion of the putrefactive stage
and the activity of insects consuming the remaining soft tissues will leave the remains completely, or
almost completely, skeletonized, and dry.

The complex nature and interplay of intrinsic and extrinsic variables involved in the process of
decomposition makes the development of accurate and precise models for PMI estimation extremely
challenging. Traditional methods of PMI estimation include calculating PMI using the body tempera-
ture and ambient temperature (which relies on the predictability of algor mortis, and works for short
PMils only), or the visual assessment of gross morphological changes to the body to estimate a rela-
tively wide PMI range. Since the rate of gross morphological changes is variable, methods that rely on
the visual scoring of decomposition stages suffer from issues of poor accuracy and precision. An addi-
tional problem of such methods is the effect of interobserver variations on the scoring of decompo-
sition stages. For all commonly used PMI estimation methods, the accuracy and precision decreases
considerably as decomposition progresses, and is particularly problematic when the remains are
partially or completely skeletonized (Henssge and Madea, 2007, Madea, 2016).

In recent years, the number of studies exploring the use of biomolecular methods for PMI esti-
mation has risen sharply, due to their potential for providing more accurate and precise estimation
methods based on the rates of decay of different molecules and compounds (Procopio et al., 2018b;
Prieto-Bonete et al., 2019; Pesko et al., 2020; Locci et al., 2019; Zelentsova et al., 2020). Better
understanding of biomolecular decomposition of bone will provide opportunities to develop biomo-
lecular methods for the estimation of longer PMs (i.e., timeframes in which soft tissues are unlikely to
be preserved). Moreover, through the combined analysis of multiple different panels of omics, greater
precision and accuracy of PMI estimation can potentially be achieved.
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Biomolecular decomposition is caused by both enzymatic and microbial breakdown of large mole-
cules, resulting in the breakage of proteins into amino acids (AA), of carbohydrates into more simple
monosaccharides, and of lipids into simpler fatty acids chains (Dent et al., 2004; Nolan et al., 2020).
In carbohydrate decomposition, the complex polysaccharides are normally broken down via microbial
activity into smaller units of monosaccharides. This breakdown can be fully achieved by oxidation,
with the production of carbon dioxide and water, or can be partially achieved with the production of
organic acids and alcohols. Alternatively, the monosaccharides can be degraded by fungal activity
into glucuronic, citric, and oxalic acids, or by bacteria into lactic, butyric, and acetic acids (Dent et al.,
2004, Stuart, 2013). During the decay of lipids, free saturated and unsaturated fatty acids are released
due to the hydrolysis mediated by the action of intrinsic lipases released after death. These can then
be converted into hydroxyl fatty acids (the main constituent of adipocere) by the action of specific
bacterial enzymes in humid environments, or can associate with potassium and sodium ions, resulting
in the formation of salts (Stuart, 2013). Protein degradation is primarily an enzyme-driven process, led
by the action of proteases, which occurs at different rates for different proteins and tissues. Proteolytic
enzymes induce the hydrolytic breakdown of proteins and the production respectively of proteoses,
peptones, polypeptides, and finally AA, which can be further modified via deamination (production
of ammonia), decarboxylation (production of cadaverine, putrescine, tyramine, tryptamine, indole,
skatole, and carbon dioxide) and desulfhydralation (production of hydrogen sulphide, pyruvic acid,
and thiols) (Dent et al., 2004; Stuart, 2013). Time-dependent non-enzymatic processes can also
affect protein degradation and modifications (i.e.,deamidations).

The analysis of low molecular weight compounds and decomposition by-products is becoming
more popular in forensic science, particularly for the purpose of estimating PMI (Locci et al., 2020).
Time since death was recently reported as the main variable driving modifications in the metabo-
lome occurring after death (Chighine et al., 2021) in many soft tissues and fluids, so the metabo-
lomic approach appears ideal to estimate PMI. However, the potential forensic significance of the
postmortem bone metabolome is as yet underexplored (Alldritt et al., 2019). Several studies on
soft tissues (vitreous and aqueous humour) have examined metabolomics for the purpose of deter-
mining short PMIs. Examining longer PMIs based on metabolomics analysis of humour has not been
possible due to evaporation and leakage through the corneal surface as time since death progresses
(Locci et al., 2019). Girela et al., 2008 reported a significant positive correlation between PMI
and taurine, glutamate, and aspartate levels found in vitreous humour. These results were partially
confirmed by Zelentsova et al., 2020, who found a correlation between the levels of hypoxanthine,
choline, creatine, betaine, glutamate, and glycine and PMI. Another approach employing "H-NMR
on aqueous humour from pig heads reported taurine, choline, and succinate as major metabolites
involved in the postmortem modification (Locci et al., 2019). The same study also showed an orthog-
onally constrained PLS2 model showing prediction error of 59 min for PMI <500 min, 104 min for PMI
from 500 to 1000 min, and 118 min for PMI >1000 min. Besides humour, muscle is one of the most
frequently targeted tissues in metabolomics studies focused on short PMI estimation. Pesko et al.,
2020 recently evaluated rat and human biceps femoris muscles from the same individuals at different
PMls, demonstrating an increase of the abundance of several metabolites, including most of those
derived from the breakdown of proteins, and in particular highlighting how threonine, tyrosine and
lysine show the most consistent and predictable variations in relatively short PMIs. An untargeted
metabolomics study on muscle tissue also indicated the potential of isolating biomarkers associated
with age (Wilkinson et al., 2020), suggesting the potential applications of metabolomics for both
age-at-death and PMI estimation.

To date, only three studies have used lipidomics assays for PMI estimation. Two of them were
conducted on muscle tissue and showed, in general, a negative correlation between most lipid classes
and PMI, as well as an increment in free fatty acids (Langley et al., 2019; Wood and Shirley, 2013).
The third study applied lipidomics to trabecular bone samples from calcanei spanning a PMI of approx-
imately 7 years and highlighted the presence of 76 potential N-acyl AA that could be employed for
PMI estimation, however their correlation with PMI has not yet been fully elucidated (Dudzik et al.,
2017).

Several studies have tried to quantify the degree of survival of proteins and the accumulation of
post-translational modifications (PTMs) of AA in both animal and human models (Procopio et al.,
2017b; Mickleburgh et al., 2021; Prieto-Bonete et al., 2019, Procopio et al., 2021; Mizukami
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et al., 2020) as well as under different conditions (e.g., in aquatic environments, different types of
coffins, buried vs. surface) (Procopio et al., 2021; Mizukami et al., 2020; Bonicelli et al., 2022). The
premise of these studies is that the protective action of the hydroxyapatite is expected to enhance
the survival of proteins, allowing potential estimation of longer PMls. Results generally showed that
blood/plasma and ubiquitous proteins decrease in their abundance constantly starting from the early
decomposition stages, whereas proteins more strongly connected to the mineral matrix such as bone-
specific proteins are able to survive for longer PMIs and can be useful indicators for PMI estimation
also in skeletonized remains. Similarly, also the accumulation of specific non-enzymatic PTMs, such as
deamidations, can be used as a biomarker for the evaluation of the PMI in bones.

While many studies have applied different analytical platforms for proteomics, metabolomics, and
lipidomics to several different matrices (Pesko et al., 2020; Locci et al., 2019, Zelentsova et al.,
2020; Girela et al., 2008; Li et al., 2018, Wu et al., 2018; Hirakawa et al., 2009; Banaschak et al.,
2005; Li et al., 2017), relatively little is known about the biomolecular decomposition of bone tissue.
Moreover, while clinical studies have applied multi-omics methods with some frequency, their poten-
tial for the development of more precise and accurate biomolecular PMI estimation methods has not
been explored. The present study applies, for the first time, a multi-omics approach (i.e., combined
proteomics, metabolomics and lipidomics, defined here as the 'ForensOMICS’ approach) to pre- and
post-decomposition tibial cortical bone samples from four human female body donors, to identify
potential multi-omics biomarkers of time since death. The multi-omics approach uses the natural
differences in manner and rate of decomposition between the different biomolecules (proteins,
metabolites, lipids) to expand the potential range of PMIs and to cross-correlate results between
different sets of biomarkers to narrow down PMI ranges based on the degradation of multiple biomol-
ecules. The use a of a single omics technique would not be suitable to investigate a wide range of
potential PMIs. Metabolites and lipids are appropriate for short PMIs while protein has been proved
to be stable across longer ones. Therefore, the combination of the three classes of biomolecules aims
to obtain an ideal coverage across a wider range of PMIs. Additional advantages of the integration
of different biomolecule classes might include greater flexibility in their application across different
environments and different postmortem treatments, since it could increase the likelihood of retrieving
suitable markers for PMI estimation. The present study provides a proof-of-concept for future valida-
tion of the multi-omics approach on a larger number of individuals.

Results

Single omics profile

The metabolites matrices resulting from the combination of metabolomics ESI+ and ESI- data
were combined in a final matrix with a total of 104 identified compounds after the removal of non-
endogenous compounds following querying in HMDB. Furthermore, after preliminary inspection via
PCA, lipidomics ESI+ results were excluded due to their poor contribution to a potential discriminant
model. Each omics block was then evaluated individually via univariate (Kruskal-Wallis and Dunn'’s
pairwise test) and multivariate (partial least square discriminant analysis [PLS-DA]) analysis. The overall
the clustered image map (CIM) and individual plot obtained with metabolomics suggested a clear
separation between fresh and decomposed samples and the total variance explained by the model
in the first two components taken together was 60% (Figure 1—figure supplement 1). More inter-
estingly, increasing PMIs were found to cluster progressively further away from the fresh samples.
By observing the clustering of the variables in the CIM, it was clear the presence of three major
behaviours: (i) reduction in the intensity of compounds between the pre-deposition samples and the
skeletonized ones; (ii) higher intensity of compounds for the 219, 790, 843 days PMI groups; (iii)
presence of compounds that specifically were more intense in the 872 days PMI. Examples of these
behaviours can be observed in Figure 1—figure supplement 1. These compounds were found to be
significant for Kruskal-Wallis but were only visually selected (Figure 1—figure supplement 1) because
of their trend with PMI. However, these results were not fully supported by statistical testing, as pair-
wise analysis mainly showed significant differences between few PMI groups, specifically between
baseline vs. more advanced PMls (Figure 1—figure supplement 2). It is interesting to note that D2
appeared to have a specific profile in the pre-deposition state that clearly differed from the other
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donors, therefore potentially affecting the overall clustering and partially hiding the effect of PMI. In
contrast, D4 after decomposition showed a distinct profile, likely associated with the prolonged PMI.

Lipidomic profiling (Figure 1—figure supplement 2) showed that the closer cluster to the pre-
deposition individuals is the 872 days group, followed by 219, 790, and 834 days. This could be
related to the fact that a large number of lipids, not highly abundant in the fresh portion of the sample,
was found to be higher in intensity for early PMIs to then progressively decrease. However, a large
block constituted mostly by ceramides, was here shown to be highly present in the skeletonized D4
compared to the remaining individuals, suggesting a relationship with PMI. The same three behaviours
extrapolated for metabolite features were identified for lipids (Figure 1—figure supplement 2). The
model for this block explains 73% of the variance in the first two components.

Finally, proteins showed an inferior discriminatory power in comparison with the other classes of
molecules according to individual consensus plot (Figure 1—figure supplement 3). The variance
explained in the model in the first two components was only 35% and, besides the major separation
between pre- and post-decomposition, it was not possible to clearly discriminate the various PMls
(Figure 1—figure supplement 3). However, with the exception of D3 (834 days PMI), it is clear that
the skeletonized samples cluster away from the fresh ones with increasing PMIs. Few proteins evalu-
ated via univariate statistics, however, showed clear visual and significant negative trends in the overall
sample (Kruskal-Wallis), although pairwise comparison could not confirm the statistical significance of
the difference across PMIs (Dunn'’s test, Supplementary file 1). These proteins were ASPN_HUMAN,
H4_HUMAN, HBB_HUMAN, OSTP_HUMAN, VIME_HUMAN. Moreover, what was clear in Figure 1—
figure supplement 3 is the large variation between replicates that could affect the evaluation of the
proteins’ behaviour with PMI.

Omics integration

All the 24 human bone samples were included in the omics integration model (Figure 1). We firstly
evaluated correlations between the omics block using PLS regression. Results for component 1
showed an R value of 0.94 between metabolomics and lipidomics, 0.96 between metabolomics and
proteomics and 0.87 between lipidomics and proteomics. Feature selection using the DIABLO method
aimed to identify highly correlated and discriminant variables across the three omics. The arrow plot
(Figure 1A) showed the overall separation between fresh and skeletonized samples, which was mainly
developed along the first component. However, it was possible to note that the individual with the
longest PMI (D4, 872 days) also clustered away from the remaining skeletonized samples along the
second component (Figure 1B). The optimal number of components was set at three by means of
threefold cross-validation repeated 100 times (Figure 1B). The overall balanced error remained below
0.4 (Figure 1—figure supplement 4). After tuning the model by attributing the same weight to all
the omics blocks, the ideal panel of markers selected in the first component that retained most of the
covariance of the system includes 14 metabolites, 5 lipids and 5 proteins (Figure 1C). These loading
plots show that a few metabolite markers have a high loading for different PMls, whereas both lipid
and protein markers have high values particularly for the fresh samples. Considering the individual
-omics consensus plots in Figure 1—figure supplement 5, metabolite and lipid blocks showed a
better segregation between the various PMIs in the skeletonized state in comparison with the protein
one. There is, however, overlap in all blocks for these intermediate PMls.

Multi-omics sample variations between bones from fresh and skeletonized cadavers were also
supported by the CIM (Figure 1D), which showed a clear separation between the two groups. Most
of the compounds selected by the model were highly abundant in the fresh samples and less abun-
dant in the skeletonized ones, although the lower panel of metabolites (in Figure 1D) showed an
opposite trend. In general, it could be observed that the samples with shorter PMIs (up to 834 days)
showed a decline for proteins, lipids, and for eight of the metabolites selected for the PMI model
as well as an increase in the remaining six metabolites in comparison with their fresh counterparts.
Whereas the decline in the abundance of proteins and lipids in comparison with the fresh samples was
similar between all the 12 skeletonized samples, the increase or decrease in the abundance of specific
metabolites was more exacerbated in the samples with the longest PMI (872 days) in comparison with
the others (Figure 1D). To conclude, the model was first cross-validated resulting in a mean standard
error of the classification error of 9.67. Additionally, after performing permutation test there was still
significant difference in the discrimination between the PMIs (p=0.001).
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Figure 1. Results for the tuned model. (A) Arrow plot showing multiblock contexts for the overall model. (B) Optimal number of components to
explain model variable calculated via cross-validation (error bars provide standard deviation). (C) Loading plot showing how each variable contributes
to the covariance of each group. (D) The clustered image map (CIM) shows the selected compounds in the final model. It is possible to see that most

Figure 1 continued on next page
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Figure 1 continued

compounds decrease in intensity after decomposition except for few metabolites and two lipids that specifically increase in certain postmortem interval
(PMI) intervals.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Results for the metabolomics data.

Figure supplement 2. Results for the lipidomics data.

Figure supplement 3. Results for the proteomics data.

Figure supplement 4. Balanced error variations across variable selection steps.

Figure supplement 5. Score plots for partial least square discriminant analysis (PLS-DA) results of all the omics blocks considered.

By evaluating individual markers, it was possible to identify compounds that increased or decreased
consistently across the PMI (Figure 2A). More specifically, palmitoyl ethanolamide, ethyl palmitolate,
N,N-diethylethanolamine, sedanolide, 12-aminododecanoic acid, and acetamide showed the lowest
values for the fresh samples and increasing values with prolonged decomposition time. The remaining
metabolites decreased consistently with PMI with a considerable drop between the baseline and
219 days. Lipids and proteins selected for the model, instead, were all characterized by a drastic
reduction in their intensity in the skeletonized samples in comparison with the fresh ones. Proteins
selected here were two histone proteins (histone H2A type TH [H2ATH] and histone H4 [H4]), haemo-
globin subunit alpha (HBA), vimentin (VIME) and actin (ACTB).

High significant correlations (r>0.9) were also identified between compounds belonging to the
three distinct omics blocks (Figure 2B). Palmitoyl ethanolamide showed negative correlation with
all lipids selected but PC(16:1e_20:4)+HCOO and with H2ATH_HUMAN and H4_HUMAN proteins.
Creatinine, hypoxanthine, and D-Neopterin were positively correlated with all lipids selected but
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PC(16:1e_20:4)+HCOO and with H2ATH_HUMAN and H4_HUMAN proteins, whereas creatine was
positively correlated with all lipids selected but PC(16:1e_20:4)+HCOO and with H2ATH_HUMAN.

Discussion

This study comprises, to the best of our knowledge, the first attempt to apply a panel of three
omics methods to human bones from a controlled decomposition experiment, to identify potential
biomarkers for biomolecular PMI estimation. To develop and validate multi-omics PMI estimation
methods for forensic applications, replication studies in substantial sample sizes of human bones
will be necessary. However, the availability of bone samples both before and after decomposition
from the same individuals is currently very limited. The work presented here represents a proof-of-
concept study on the potential advantages of combining different omics for PMI estimation. The small
number of individuals included is consistent with numbers generally used in human decomposition
experiments, in which for practical and ethical reasons larger samples, such as used in clinical studies,
are very difficult to obtain. While the sample size used here is not suitable for validation purposes, it
serves to demonstrate the value and potential of the ‘ForensOMICS’ approach.

Considering each omics individually, the proteomic profile appears to show quite a considerable
overlap between the individuals from three post-decomposition groups (i.e., 219, 790, and 834 days)
suggesting that this method on its own does not provide sufficient sensitivity to segregate close PMls
(Figure 1—figure supplement 3). This could be due to the nature of these biomolecules; proteins, in
fact, are highly stable and may be better suitable for long-term PMI estimation in forensic scenarios
(Procopio et al., 2018b; Prieto-Bonete et al., 2019) as well as in the investigation of archaeological
remains (Wadsworth et al., 2017, Warinner et al., 2022). Additionally, other analyses such as post-
translational protein modifications may reveal a greater potential for PMI estimation in bones than the
evaluation of the abundance of specific markers on their own (Procopio et al., 2018b). Employing
a system biology approach for PMI estimation for forensic purposes by combining more than one
class of biomolecules that have different postmortem stability (Dent et al., 2004) provides a more
comprehensive biological explanation of the processes under investigation. This is achieved here by
combining different layers of omics (i.e., metabolomics, lipidomics, and proteomics) to reconstruct
the molecular profile of the overall system. The DIABLO model simultaneously identifies important
markers to optimize the classification of a specific variable by combining multiple omics techniques
(Singh et al., 2019). This is normally used to explain the biological mechanisms that determine a
disease and its development, while in our case the main advantage is represented by the potential of
selecting a pool of compounds that effectively explains, and could accurately estimate, PMI changes
over an extended period of time. One interesting aspect of this approach is the difference in clus-
tering between the metabolite and lipid blocks individually compared to the integration model. It
can be seen in Figure 1—figure supplement 1 (metabolomics block) that samples with increasing
PMls seem to cluster further away from the pre-deposition sample in a time-dependent manner, with
the 219 days PMI being closer to the fresh donors and the 872 days one being the furthest located.
However, as suggested, the metabolomics profile of D2 seems to be significantly different from the
other donors in the fresh state, and this could suggest that interindividual variation could affect the
efficient clustering. This has been already highlighted in the proteomics work conducted on the same
samples and was likely caused by the health condition of the donor prior to death (Mickleburgh et al.,
2021). In contrast, the positioning of the PMI in the cluster tree behaves in the opposite way for lipids,
where the various profiles seem not to be affected by any apparent interindividual variation in the
fresh nor in the decomposed state (Figure 1—figure supplement 2). Considering now the clustering
of the integrative model, it provides a clear classification of the PMIs obtained by the combination
of the three single blocks. Since the approach chosen for this pilot study was discriminant analysis
and PMI was provided to the model as a categorical variable, we believe that treating the response
variable (PMI) as an ordinal or continuous variable on a larger sample size could improve the interpre-
tation of the results and the forensic applicability of the methodology. Despite acknowledging these
limitations, these preliminary results show the possibility of using multi-omics integration to identify
different PMI groups. Furthermore, the results for proteomics, that individually does not allow discrim-
ination for these specific time intervals, are integrated in the final model by retaining only the proteins
that contribute to PMI identification.
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Additionally, the presence of the two main clusters identified (fresh and skeletonized) has been
driven by the greater differences between pre- and post-deposition. Conventionally, when performing
method development for PMI estimation on bone samples collections, the baseline time is not avail-
able. Therefore, the differences captured with the analysis would be obtained on skeletonized samples
only. We believe, however, that due to the uniqueness of the sample it was not ideal to remove the
pre-deposition specimens. Despite these issues, we found moderate to high correlation between
the omics blocks that allows their integration using the sparse algorithm (Singh et al., 2019) for PMI
estimation.

Recently, literature has grown on the use of molecular studies via omics platforms, especially for
short-term PMls. Most of the studies involving metabolomics for PMI estimation focused on quickly
degradable matrices (e.g., muscle, blood, humour) collected over a short period of time (<1 month)
(Pesko et al., 2020; Locci et al., 2019; Banaschak et al., 2005; Ith et al., 2011; Ith et al., 2002). As
previously mentioned, the analysis of proteins in bone has shown applicability to estimate relatively
long PMIs in forensics (Procopio et al., 2018b; Mizukami et al., 2020; Procopio et al., 2018a) as
well as to address archaeological questions (Ntasi et al., 2022; Pal Chowdhury et al., 2021; Brandt
and Mannering, 2021; Richter et al., 2022; Brown et al., 2016), due to the prolonged survival of
this type of biomolecules. Finally, according to the studies presented so far, it seems that postmortem
changes of lipids could provide PMI estimation across several years, although there is great need for
validation (Dudzik et al., 2017; Dudzik et al., 2020). The combination of these biomolecules’ classes
in a multi-omics model could therefore be beneficial for estimating PMI across a broader range of
potential PMIs. Metabolites and lipids offer accuracy in the short to medium term while proteins
could be the main markers for longer PMIs due to their greater stability. Furthermore, variable selec-
tion (Singh et al., 2019; Rohart et al., 2017) would offer the advantage of simplifying experimental
procedures and targets those markers that behave consistently with PMI. To limit the potential effects
of interindividual variability, we considered variables that showed no outliers among the four body
donors and created a model that limits as much as possible the number of predictors without affecting
the assessment of the PMI.

Our results for the metabolomics assay display clear differences between the pre- and post-
placement bone metabolomic profiles, suggesting the potential to use these profiles to assess long
PMls. The small sample size in this study does not allow us to make any deep inferences about the
biological significance of the metabolomics profiles of the post-placement samples, as these may
have been influenced by exogenous factors. With regard to the pre-placement samples, the PMls
ranging between 2 and 10 days at 4°C would have allowed some minimal postmortem modifications
in the metabolome to occur (Chighine et al., 2021). The metabolomic profiles of these samples are
characterized by creatine, taurine, hypoxanthine, 3-hydroxybutyrate, creatinine, and phenylaniline.
Hypoxanthine is a well-known hallmark of ATP consumption and, consequently, a sign of exhaustion of
normal substrates (i.e., glucose and pyruvate) of the tri-carboxylic acid (TCA) cycle. In conjunction with
the presence of creatine, taurine, creatinine, phenylalanine, and 3-hydroxybutyrate, we may hypoth-
esize a switch towards TCA cycle anaplerosis through amino acidic and ketonic substrates, in pursuit
of a resilient ATP production during the early/mid-PMls. Not only was the proposed metabolomic
approach able to identify the pre- and post-deposition groups according to the bone metabolome
modifications, but it was also sensitive enough to detect at very long PMls. The presence of exoge-
nous compounds (i.e., caffeine, ecgonine, dextromethorphan, tramadol N-oxide, penbutolol, salicylic
acid) that could reflect lifestyle habits or pharmacological therapies, and thus potentially has major
implications in forensic toxicology and personal identification, is consistent with evidence from animal
models (Alldritt et al., 2019). Enrichment analysis can be found in Figure 3.

Several polar metabolites identified in this study have previously been found in other tissues to
show a consistent decay pattern after death. In fact, most of the compounds of interest matched
here have already been flagged in other tissues as good potential biomarkers of PMI across shorter
timeframes (Figure 2A). Uracil, a pyrimidine base of RNA, was previously seen to increase over a
14-day PMI in human muscle tissue when analysed by LC-MS (Pesko et al., 2020). Similar results for
this compound were found in GC-MS analysis of rat's blood (Dai et al., 2019). In contrast, no clear
association between this metabolite and PMI was found in aqueous humour (Locci et al., 2019).
In the present study, after a drop in normalized intestines between the baseline and first PMI, we
detected an increase until 834 days, and a drop towards the longest PMI considered. It is worth
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Figure 3. Metabolite set enrichment analysis based on differentially expressed metabolites identified in bone.

mentioning that most metabolites drop significantly after the baseline (‘fresh’) times (Figure 2A),
suggesting that compound decomposition is driving this first part of the PMI following the stop of
human metabolism. It is interesting that with the increase in PMI there is also an increment in several
compounds that could be associated with the breakdown of larger biomolecules (e.g., proteins) or
with the presence of microbial communities that leave their own metabolic profile on bone surface.
Another common marker of interest is hypoxanthine for its association with hypoxia (Locci et al.,
2019, Zelentsova et al., 2020; Kaszynski et al., 2016; Jawor et al., 2019, Locci et al., 2021), which
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seems to drastically drop between the baseline times and the first PMI timepoint, as well as in the last
time interval, showing a good consistency with PMLI. In contrast, hypoxanthine was seen to increase
until 48 hr and then to decrease at 72 hr in rat blood (Donaldson and Lamont, 2013). Zelentsova
et al., 2020, showed a positive relation between hypoxanthine and PMI in human serum, aqueous and
vitreous humour. To fully understand the behaviour of this compound in bone tissue, a longitudinal
study should be performed, also including short PMIs. Leucine has also been reported in short time
scale to increase in human muscle tissue (Pesko et al., 2020) and this agrees with our results where,
after the initial drop, we noticed a consistent increase from the first PMI onwards. What can be clearly
seen in Figure 2A is that D2 affects the linearity of the trend, suggesting that there might be some
degree of interindividual variability. This is the case for several compounds; this limitation could be
mitigated by increasing the number of individuals per timepoint in future studies. Creatinine has previ-
ously been reported to be a good marker in both muscle tissue (Pesko et al., 2020). Although it has
not been mentioned in literature previously, we also found that neopterin, a biomarker for immune
system activation commonly profiled in blood, serum, and urine (Melichar et al., 2017, Laudanski
et al., 2021), has a strong negative correlation with PMI. Taurine, also in accordance with studies on
vitreous humour (Locci et al., 2019), showed a predictable positive behaviour with PMI. Acetamide
is a nitrogen-based compound associated with active and advanced decay (Dekeirsschieter et al.,
2012) that, not surprisingly, showed the best positive association with PMI, resulting in being the most
reliable biomarker within the entire panel considered. Palmitoylethanolamide is a carboximidic acid
that was shown to accumulate in relation with cellular stress in pig brains postmortem (Buczynski and
Parsons, 2010). These findings agree with our study, which revealed a clear increase of this metabolite
with increasing PMIs. N,N-diethylethanolamine, belonging to the class of organic compounds known
as 1,2-aminoalcohols, has not yet been highlighted for its potential in PMI estimation. In the current
study, this molecule increased in the decomposed samples, although no clear trends were observed
across the various PMls. A proposed mechanism for its accumulation is the partial oxidation driven by
bacterial decomposition of monosaccharides into organic alcohols (Dent et al., 2004; Nolan et al.,
2020). 12-Aminododecanoic acid and 12-hydroxydodecanoic acid are instead medium-chain fatty
acids that show a positive relationship with PMI. Previous studies based on skeletal muscle tissue
reported a decline in very-long-chain fatty acids (Langley et al., 2019, Wood and Shirley, 2013) in
very short PMIs. It is not possible to exclude the cleavage of longer chains by the action of lipases
or microorganic activity (Dent et al., 2004; Stuart, 2013). The last compound selected in the final
model is methylmalonic acid, a carboxylic acid which is an intermediate in the metabolism of fat and
proteins. It has been shown that abnormally high levels of organic acids in blood (organic acidaemia),
urine (organic aciduria), brain, and other tissues lead to general metabolic acidosis (Narayanan et al.,
2011). In this study, even with a postmortem increase in its concentration, it is not possible to identify
a clear trend across the decomposed samples; this may be related to interindividual biological differ-
ences of the donors involved in this study (e.g., age and health condition).

From the lipidomic assay, only five markers were selected in the final model. These are three
lysophosphatidylcholines (LPCs), one phosphatidylcholine (PC) and one phosphatidylinositol (PI), all
showing decreasing intensities in the decomposed samples in comparison with the ‘fresh’ ones. PCs
are generally the most abundant neutral phospholipids and represent the main constituent in cellular
membranes. LPCs are derived from the hydrolysis of dietary and biliary PCs and are absorbed as such
in the intestines, but they become re-esterified before being exported in the lymph (McMaster, 2018).
They are present in cell membranes and in blood. Their half-life in vivo is limited because of the quick
metabolic reaction that involves lysophospholipases and LPC-acyltransferases (Law et al., 2019). In
contrast, PLS are amphiphilic molecules that are also minorly present in cell membranes, whose role
is to modulate the membrane curvature and to have other bioactive functions such as interacting
with peripheral proteins (Falkenburger et al., 2010) and inhibiting osteoclast formation (Alhouayek
et al., 2018). After death, these compounds can be converted into fatty acids via hydrolysis to then
hydrogenize or oxidase to form saturated and unsaturated fatty acids (Dent et al., 2004). This process
is driven by intrinsic tissues lipases (Dent et al., 2004). A very limited number of studies have applied
lipidomics for PMI estimation. Langley et al., 2019, evaluated human skeletal muscle tissue from 31
donors over a PMI of 2000 accumulated degree days showing consistent extraction of phosphati-
dylglycerol (PG) 34:0 and phosphatidylethanolamine 36:4, which showed good correlation with PMI.
Wood and Shirley, 2013, investigated the lipidome of human anterior quadriceps muscle from one

Bonicelli et al. eLife 2022;11:e83658. DOI: https://doi.org/10.7554/eLife.83658 11 of 22


https://doi.org/10.7554/eLife.83658

e Llfe Research article

Biochemistry and Chemical Biology

donor at 1-, 9-, and 24-day PMIs showing the decline of sterol sulphates, choline plasmalogens, etha-
nolamine plasmalogens, and PGs and the increase of free fatty acids. Our results lend support to these
earlier findings and further confirm the potential of lipidomics for PMI estimation. Nonetheless, direct
comparison with these studies is not possible as they considered different tissues for much shorter
PMls. Additionally, lipids profiled from the muscle tissue after decomposition are suggested to derive
from cell membrane breakdown (Langley et al., 2019; Wood and Shirley, 2013). We suggest that, in
bone material, the lipidome under investigation accounts not only for cell membrane decomposition
of embedded osteocytes but also for the marrow and fluids embedded in the bone pores.

The proteomics results revealed that two ubiquitous proteins (histones), haemoglobin, ACTB, and
VIME are the best candidates within this multi-omics PMI model. These five proteins selected by
the model represent those which were best able to discriminate between the ‘fresh’ bones and the
‘skeletonized’ bones but are therefore not necessarily the best biomarkers to differentiate between
the four post-decomposition PMIs. For insights on the most suitable protein biomarkers for differ-
entiating between the longer PMIs, identified by excluding the ‘fresh’ samples, see Mickleburgh
et al., 2021. It is not surprising to see that the proteins highlighted in the model are either ubiquitous
proteins or blood or muscle tissue proteins, as their abundance would naturally be higher in ‘fresh’
bone than in ‘skeletonized’ bones. The HBA is found in red blood cells but is often also identified in
bone samples with long PMIs from archaeological contexts (Smith and Wilson, 1990), and its consis-
tent time-dependent degradation has been previously highlighted in skeletal remains using several
platforms (Ramsthaler et al., 2011; Wiley et al., 2009). Furthermore, it has already been reported
in skeletal tissue from controlled decomposition studies of animals, and already highlighted as a
potential biomarker for PMI estimation (Procopio et al., 2018b). VIME was also previously reported
by Procopio et al., 2018b, to be associated with PML. It is a filament protein abundant in muscle
tissue, and therefore its association with bone, particularly with the ‘fresh’ samples, is not unexpected.
However, we emphasize that this could also be due to interindividual variability, and that further
investigation may clarify the usefulness of VIME to estimate PMI. ACTB, similar to VIME, is a struc-
tural protein that forms cross-linked networks in the cytoplasmatic compartments and that is strongly
connected with the presence of muscle tissue residues. A previous study showed the decrease in
myosin contents with increasing PMls, similarly to what we observed here for ACTB. The remaining
two proteins are both components of the nucleosomes, in our study were shown to be drastically
reduced in bone tissue also at the first the baseline PMI taken into consideration. In sum, these results
allowed the identification of five protein biomarkers which make good candidates for estimation of
short PMIs (<900 days) (e.g., considering time points limited to months postmortem) and not for years
after death for which structural and functional proteins in bone have been shown better targets to
employ for PMI estimation (Mickleburgh et al., 2021; Prieto-Bonete et al., 2019).

Based on the findings of this exploratory study, we argue that the multi-omic method we adopted
here shows considerable potential for the future development of an accurate and precise PMI estima-
tion method for human bone. Further research should focus on increasing the sample size, to ultimately
validate the method for application in forensic investigation of skeletonized human remains. Beyond
the findings discussed at length above, we emphasize that it is of paramount importance to establish
which biomolecules identified here are associated with the human metabolism and degradation, and
which are produced by the decomposers’ microbial activity. Controlled taphonomic experiments on
human decomposition at human taphonomy facilities provide the opportunity to elucidate biomo-
lecular decomposition of human bone. A comprehensive understanding of the origin of different
compounds is key to provide a detailed explanation of the postmortem changes that affect bone and
other tissues, ultimately helping to shed a light on biomolecular PMI investigations and on the real
potential that multi-omics analyses can have in this direction.

Materials and methods
Body donors

Bone samples were collected from four female human body donors, aged between 61 and 91 years
(mean 74+11.6 SD), at the Forensic Anthropology Center at Texas State University (FACTS). FACTS
receives whole body donations for scientific research under the Texas revised Uniform Anatomical Gift
Act (Health and Safety Code, 2009). Body donations are made directly to FACTS and are exclusively
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Table 1. Sample composition, demographics, deposition context, and postmortem interval (PMI).
The sample ID column reports the biological replicates used. Additional information on the body
donors and observations made during collection of bone samples (e.g., medical treatments, bone
colour, and density) can be found in the supplementary information in Mickleburgh et al., 2021.

Sample ID Sex Age (years) PMI Deposition context

Pre-deposition samples

D1_TF_A Female 91 10 days Open pit
D1_TF_B Female 91 10 days Open pit
D1_TF_C Female 91 10 days Open pit
D2 TF_A Female 67 2 days Burial
D2_TF_B Female 67 2 days Burial
D2_TF_C Female 67 2 days Burial
D3 TF_A Female 61 3 days Burial
D3 TF_ B Female 61 3 days Burial
D3 TF.C Female 61 3 days Burial
D4_TF_A Female 77 10 days Open pit
D4_TF_B Female 77 10 days Open pit
D4 TF_C Female 77 10 days Open pit

Post-deposition samples

D1_TS_A Female 91 219 days Open pit
D1_TS_B Female 91 219 days Open pit
D1.TS_C Female 91 219 days Open pit
D2_TS_A Female 67 834 days Burial
D2_TS_B Female 67 834 days Burial
D2 TS _C Female 67 834 days Burial
D3 TS_A Female 61 790 days Burial
D3 TS B Female 61 790 days Burial
D3 TS _C Female 61 790 days Burial
D4 TS A Female 77 872 days Open pit
D4 TS B Female 77 872 days Open pit
D4_TS_C Female 77 872 days Open pit

acquired through the expressed and documented will of the donors and/or their legal next of kin.
Demographic, health, and other information are obtained through a questionnaire completed by
the donor or next of kin. The data are securely curated by FACTS, and the body donation program
complies with all legal and ethical standards associated with the use of human remains for scientific
research in the United States. The number of individuals (n=4) used in this preliminary study is consis-
tent with other taphonomic studies conducted on human remains for proof-of-concept purposes.
Larger sample sizes may be used to validate preliminary results, such as those proposed by this study,
at a later stage.

The bodies were stored in a cooler at 4°C prior to sampling. After collection of the initial (pre-
placement) bone samples, the bodies were placed outdoors to decompose at the Forensic Anthro-
pology Research Facility (FARF), the human taphonomy facility managed by FACTS, between April
2015 and March 2018. Two of the four body donors (D1 and D4, see Table 1), were placed in shallow
hand-dug pits which were left open throughout the duration of the decomposition experiment. The
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pits were covered with metal cages to prevent disturbance by large scavengers. Donors D2 and D3
were deposited in similarly sized hand-dug pits and were immediately buried with soil. Environmental
data for the duration of the project are available as Supplementary file 2.

Sampling

Bone samples (ca. 1 cm®) of the anterior midshaft tibia were collected prior to placement of the body
outdoors, and again upon retrieval of the completely skeletonized remains as can be seen in Figure 4.
Each body was in ‘fresh’ stage of decomposition when pre-placement samples were taken, and in
‘skeletonization’ stage when post-placement samples were collected, based on scoring of the gross
morphological changes (Megyesi et al., 2005). The duration of each placement and the deposition
context are reported in Table 1. The soft tissue was incised with a disposable scalpel, and a 12 V
Dremel cordless lithium-ion drill with a diamond wheel drill bit was used at max. 5000 revolutions to
collect ~1 ecm?® of bone. Sampling instruments were cleaned with bleach and deionized water between
each individual sample collection.

A total of eight samples were collected in Ziploc bags, transferred immediately to a -80°C freezer,
and subsequently shipped overnight on dry ice to the Forensic Science Unit at Northumbria Univer-
sity, UK. The samples were then transferred to a lockable freezer at —20°C as per UK Human Tissue Act
regulations (licence number 12495). Part of the analyses were conducted by the ‘ForensOMICS’ team
(NP and AB) at Northumbria University prior to their transfer to the University of Central Lancashire.
Specifically, the bone samples were defrosted, and fine powder was obtained with a Dremel drill
equipped with diamond-tipped drill bits operated at speed 5000 rpm, to avoid heat damage caused
by the friction with the bone. The collected powder was homogenized and stored in 2 mL protein
LoBind tubes (Eppendorf UK Limited, Stevenage, UK) at —80°C until extraction and testing. The
powder sample was later divided into 25 mg aliquots. Three biological replicates (e.g., three aliquots
of bone sample per specimen) were extracted and analysed for each specimen. The research and
bone sample analyses were reviewed and approved by the Ethics committee at Northumbria Univer-
sity (ref. 11623).

Biphasic extraction, adapted Folch protocol

Chloroform (Chl), AnalaR NORMAPUR ACS was purchased from VWR Chemicals (Lutterworth, UK).
Water Optima LC/MS Grade, Methanol (MeOH) Optima LC/MS Grade, Pierce Acetonitrile (ACN),
LC-MS Grade and Isopropanol (IPA), OptimaLC/MS Grade were purchased from Thermo Scientific
(Hemel Hempstead, UK). In total three biological replicates for each of the eight specimens were
extracted according to a modified (Folch et al., 1957) as follows: 25 mg of bone powder was placed
in tube A and 750 pL of 2:1 (v/v) Chl:MeOH were added, vortexed for 30 s, and sonicated in ice for
additional 20 min. Three-hundred pL of LC-MS grade water was added to induce phase separation
and sonicate for another 15 min. The sample was then centrifuged at 10°C for 5 min at 2000 rpm. The
lower (lipid) fractions were collected and transferred to fresh Eppendorf tubes and the samples were
re-extracted with a second time using 750 pL of 2:1 (v/v) Chl:MeOH. The two respective fractions were
combined and the remaining aqueous fractions centrifuged at 10°C for 5 min at 10000 rpm and the
supernatant tranferred to fresh Eppendorf tubes. The organic lipid fraction was preconcentrated using
a vacuum concentrator at 55°C for 2.5 hr or until all organic solvents have been removed. The aqueous
metabolite fractions were flash frozen in liquid nitrogen and preconcentrated using a lyophilizer cold
trap —65°C to remove all water content. The respective dry fractions were then stored at -80°C until
analysis. The metabolite fraction was resuspended in 100 pL in 95:5 ACN/water (% v/v) and sonicated
for 15 min and centrifuged for 15 min at 15 K rom at 4°C and supernatant was then transferred to
1.5 mL autosampler vials with 200 pL microinsert and caped. Twenty plL of each sample were collected
and pooled to create the pooled QC. The lipid extracts were resuspended in 100 pL of 1:1:2 (v/v)
water:ACN:IPA and sonicated for sonicated for 15 min and centrifuged for 15 min at 15 K rpm at 10°C
and supernatant was then transferred to 1.5 mL autosampler vials with 200 pL microinsert and caped.
Twenty pL of each sample were collected and pooled to create the pooled QC. The sample set was
then submitted for analysis.

LC-MS analysis

Metabolite and lipid characterization of the bone samples was performed on a Thermo Fisher Scien-
tific (Hemel Hempstead, UK) Vanquish Liquid Chromatography (LC) Front end connected to IDX High
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Figure 4. Positioning of the bodies in the single graves (left) pre-decomposition and (right) after complete

skeletonization.
The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Flowchart of the experimental design of the study.
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Resolution Mass Spectrometer (MS) system. Full details for both metabolomics and lipidomics runs
are reported below.

Metabolomics

Hydrophilic liquid interaction chromatography was used for the chromatographic separation for metab-
olites. The separation was achieved using a Waters Acquity UPLC BEH amide column (2.1x150 mm
with particle size of 1.7 pm, part no. 186004802), operating at 45°C with a flow rate of 200 pL/min. The
LC gradient consists of a binary buffer system, namely buffer ‘A’ (LC/MS grade water) and buffer ‘B’
(LC/MS grade ACN) both containing 10 mM ammonium formate. Independent buffer systems were
used for positive and negative electrospray ionization (ESI) acquisition respectively, for ESI+ the pH of
buffers was adjusted using 0.1% formic acid and for negative using 0.1% ammonia solution. The LC
gradient was the same for both polarities, namely 95% ‘B at TO hold for 1.5 min and a linear decrease
to 50% ‘B’ at 11 min, followed by hold for 4 min, return to starting condition and hold for further
4.5 min (column stabilization). The voltage applied for ESI+ and ESI- was 3.5 and 2.5 kV, respectively.
Injection volumes used were 5 pL for ESI+ and 10 pL for ESI-.

Lipidomics
Standard reverse phase chromatography was used for the chromatographic separation of lipids. The
separation was achieved using a Waters Acquity UPLC CSH C18 column (2.1x150 mm with particle
size of 1.7 ym, part no. 186005298), operating at 55°C with a flow rate of 200 pL/min. The LC gradient
consists of a binary buffer system, namely buffer ‘A’ (LC/MS grade water:ACN, 40:60 % v/v) and buffer
‘B’ (IPA:ACN, 90:10% v/v) both containing 10 mM ammonium formate. Independent buffers systems
were used for positive and negative ESI modes respectively, for ESI+ the pH of buffers was adjusted
using 0.1% formic acid and for negative using 0.1% ammonia solution. The LC gradient was the same
for both polarities, namely 60% ‘B’ at TO hold for 1.5 min, linear increase to 85% ‘B’ at 7 min, increase
to 95% ‘B’ at 12.5 min and hold for 4.5 min before returning to starting conditions and holding for
further 4.5 min (column stabilization). The voltage applied for ESI+ and ESI- was 3.5 and 2.5kV, respec-
tively. Injection volumes used were 3 pL for ESI+ and 5 pL for ESI-.

The HESI conditions for 200 pL were as follows: sheath gas 35, auxiliary gas 7, and sweep gas of
0. lon transfer tube temperature was set at 300°C and vaporizer temperature at 275°C. These HESI
conditions were applied to both metabolomics and lipidomics and lipidomics assays.

MS acquisition

MS data were acquired using the AcquieX acquisition workflow (data-dependent analysis). The MS
operating parameters were as follows: MS1 mass resolution 60 K, for MS2 30 K, stepped energy (HCD)
20, 25, 50, scan range 100-1000, RF len (%) 35, AGC gain, intensity threshold 24, 25% custom injection
mode with an injection time of 54 ms. An extraction blank was used to create a background exclusion
list and a pooled QC was used to create the inclusion list.

Data processing

The metabolomic positive and negative data sets were processed via Compound Discoverer (version
3.2) using the untargeted metabolomic workflow with precursor mass tolerance 10 ppm, maximum
shift 0.3 min, alignment model adaptive curve, minimum intensity 14, S/N threshold 3, compound
consolidation, mass tolerance 10 ppm, RT tolerance 0.3 min. Database matching were performed at
MS2 level using Thermo Scientific mzCloud mass spectral database with a similarity index of 50% or
higher.

The lipidomic positive and negative data sets were processed via Thermo Scientific LipidSearch
(version 4) using the following workflow: HCD (high energy collision database), retention time 0.1 min,
parent ion mass tolerance 5 ppm, product ion mass tolerance 10 ppm. Alignment method (max), top
rank off, minimum m-score 5.0, all isomer peaks, ID quality filter A and B only. Lipid IDs were matched
using LipidSearch in silico library at MS2 level. Corresponding metabolomics and lipidomics pooled
QCs samples were used to assess for instrumental drifts; the relative standard deviation (RSD) varia-
tion across the QCs for metabolomics and lipidomics were less than 15%. Any metabolite/lipid feature
with an RSD of 25% or less within the QCs was retained.
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Proteomics

Proteomics results from a pilot study conducted on the same samples used in this study were previ-
ously published and discussed in Mickleburgh et al., 2021. Analyses were conducted following an
adapted protocol developed by Procopio and Buckley, 2017a, for protein extraction and LC-MS-MS
analysis. MS data for proteomic analysis were made available via ProteomeXchange Consortium
via the PRIDE (Ternent et al., 2014) partner repository with the data set identifier PXD019693 and
10.6019/PXD019693.

Statistical analysis

An overview of the ForensOMICS pipeline can be found in Figure 4—figure supplement 1. Metab-
olomics and lipidomics data were normalized by mean values, cube root transformation and Pareto
scaling was applied. Proteomics data were normalized using log2 transformation. For preliminary
data evaluation, Principal component analysis (PCA) was applied to the profiles obtained by each
single chromatographic separation method for metabolomics and lipidomics and for the proteomic
block to exclude data sets with poor discriminatory power. At first, univariate analysis was performed
by Kruskal-Wallis. Despite the small sample size per PMI, pairwise Dunn'’s test with Holm's corrected
p-value was applied to the set to have an overview of the differences between different PMIs. PLS-DA
was first employed to analyse each omics block. Correlation between blocks was then investigated
with pairwise PLS regression prior to DIABLO analysis (Singh et al., 2019) based on multiblock
sPLS-DA using the ‘mixOmics’ package in R (version 4.1.2) (Rohart et al., 2017). The initial model was
tuned using a threefold/100 repeats cross-validation to perform variable selection and produce a final
model that maintains the maximum covariance reducing the number of the compounds used for the
classification. Classification error rate was further cross-validated (threefold, 100 repeats) and signifi-
cance of the classification was tested via permutation test (k=3 and 999 permutation) implemented in
the ‘RVAideMemoire’ package (Hervé et al., 2018). All cross-validation in this study was performed
considering explicitly the biological replicates. Enrichment analysis was carried out considering pre-
and post-placement samples combined.

Conclusions

In conclusion, our results support the potential for developing an accurate and precise multi-omics
PMI estimation method for human bone for application in forensic contexts to aid criminal investi-
gation and assist with identification of the deceased. Despite the small sample size used here, this
study demonstrates how the approach can discriminate between short and long PMls. This method
can produce classification models including different markers (e.g., protein, metabolites, and lipids) to
assess both short- and long-term PMIs, with a high level of accuracy, as the compounds under investi-
gation have complementary decay rates. The use of different biochemical markers that have different
postmortem stability offers the advantage of covering both short-term PMIs, by including metabolites
and lipids, and long-term PMls, by implementing in the model more stable proteins that consistently
degrade after death. This could not be fully proven based on our results, as the PMI taken into
exam is not sufficiently spread along the timeline and more individuals per timepoint are necessary.
However, the possibility of selecting only discriminating variables allows the combination of omics
that in isolation could not discriminate in a satisfactory way the PMIL. In the present study, proteomics
did represent the less ideal omics for the estimation of the time elapsed since death, however few
protein variables were successfully included in the model. Furthermore, in the present study the order
between the various PMIs was voluntarily not considered in data analysis in order to avoid biases in
the generation of the discriminant model. We expect that the PMI estimation over extended time
periods will be unlikely achieved by employing any of these three omics individually. Furthermore,
treating PMI as a continuous variable could be key in providing an optimal approach for the estima-
tion of PMI. Furthermore, this methodology provides new insights on the biological processes that
occur after death and will help establishing whether the presence of certain molecules is the result of
their molecular degradation or if it is mostly associated with the bacterial metabolism, a central ques-
tion in forensic science. The proposed 'ForensOMICS' approach must be validated by the analysis of
substantial sample sizes in future controlled taphonomic experiments conducted in multiple different
environments, as this represents the main source of variation in human decomposition, as well as by
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evaluating a broader PMI with a more comprehensive coverage of data points in the time period taken
into consideration.
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