N
P University of

Central Lancashire
UCLan

Central Lancashire Online Knowledge (CLoK)

Title Satellite attitude identification and prediction based on neural network
compensation

Type Article

URL https://clok.uclan.ac.uk/id/eprint/45368/

DOI 10.34133/space.0009

Date 2023

Citation Sun, Zibin, Simo, Jules and Gong, Shengping (2023) Satellite attitude
identification and prediction based on neural network compensation. Space:
Science &amp; Technology.

Creators | Sun, Zibin, Simo, Jules and Gong, Shengping

It is advisable to refer to the publisher’s version if you intend to cite from the work.
10.34133/space.0009

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the
http://clok.uclan.ac.uk/policies/



http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

Space: Science & Technology

A SCIENCE PARTNER JOURNAL

RESEARCH ARTICLE

Satellite Attitude Identification and Prediction

Based on Neural Network Compensation
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This paper proposed a new attitude determination method for low-orbit spacecraft. The attitude prediction
accuracy is greatly improved by adding the unmodeled environmental torque to the dynamic equation.
Specifically, the environmental torque extraction algorithm based on extended Kalman filter and series
extended state observer is introduced, and the unmodeled part of dynamic is identified through the inverse
dynamic model. Then, the collected data are analyzed and trained by a backpropagation neural network,
resulting in an attitude-torque mapping network with compensation ability. The simulation results show
that the proposed feedback attitude prediction algorithm can outperform standard methods and provide
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a high accurate picture of prediction and reliability with discontinuous measurement.

Introduction

The attitude determination of low-Earth-orbit (LEO) satellite
is essential for the normal operation such as communication,
maneuver, telemetry, etc. Under normal circumstances, the
satellite is equipped with infrared Earth sensors and star sen-
sors, which can achieve precise attitude determination in real
time. However, at the end of the satellite service life, or serious
malfunctions that occur in satellite electronic system, the atti-
tude determination system is unable to function properly. Then,
it is necessary to descend the orbit for the ablation and disor-
ganization in the atmosphere. During this process, accurate
satellite attitude prediction without the assistance of sensors is
very critical, which can help to determine the condition of sat-
ellite debris, estimate the landing area, and reduce the damage
caused by debris in advance.

Since the 1960s, researchers have been constantly exploring
how to estimate the orientation of nonworking LEO satellite.
There are 2 main research interests: The first is to refine the
environmental torque model, including the gravitational gra-
dient torque [1-3], magnetic torque [4], aerodynamic torque
[5-7], etc. The offline attitude estimation accuracy and credible
period have been greatly improved with the meticulous envi-
ronment model. The second method is based on filtering and
optimizing the measurement results observed by ground facil-
ities. Many data processing algorithms including the modified
Kalman filter [8], spatial-based least-squares estimation [9],
multiple model adaptive estimation [10], centered error entropy
unscented Kalman filter [11], the predictive attitude determi-
nation algorithm [12], etc. are used to filter out the observa-
tion noise tangled in the data. These data filtering algorithms
have been successfully validated on multiple aircraft platforms
[13-16].
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The disadvantages of the above aforementioned techniques
are also evident. The method based on refined environment
model can estimate the effect precisely in a period of time, but
the reliability wound descends greatly due to the uncertainty
of aerodynamic model and satellite parameters. On the other
hand, the method based on data filtering and optimization can
obtain accurate observations in real time, but it is difficult to
combine the prediction algorithm with the dynamic model to
form a prediction framework due to the high nonlinearity and
coupling of the environmental torques.

Recently, the breakthrough in neural network recently pro-
vides possibility for accurate attitude prediction. The neural net-
work is a nonlinear mapping function with high generalization
ability and self-learning ability. It has been proved mathemati-
cally that the network structure with enough neurons can esti-
mate any nonlinear function with extremely high accuracy [17].
The combination of neural network and dynamic model has
been applied to the fields of aerospace, machinery, and intelligent
control. Lin et al. combine the fuzzy intelligence control with
neural network to achieve the attitude control of a solar sail [18].
Carrara develops a neural-network-based attitude controller of
a satellite with deployable solar arrays [19]. Zhang et al. utilize
neural network to adjust the parameters of proportional integral
derivative control of satellite efficiently [20]. Raja et al. imple-
ment an adaptive neural network with quaternion and Euler
angles for the optimization of proportional integral derivative
satellite attitude dynamics and control system [21]. Yun and Fan
propose an adaptive control method based on Radial Basis
Function (RBF) neural network to solve the problem of satellite
attitude tracking [22]. However, the above methods only propose
theory and simulation experiment, without actual data as veri-
fication, and do not consider the measurement noise, which
reduces the reliability in practical applications.
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The main contributions of this paper are as follows: First, a
feedback attitude prediction algorithm is proposed, which can
achieve the current and persistent attitude prediction with high
accuracy. The complex dynamic model, few short-term attitude
observation data, and extremely uncertain atmospheric torque
cause it difficult to determine the attitude. However, our meth-
ods can extract the high-order unmodeled dynamics from the
attitude data and then compensate the environment uncertainty
through a trained neural network. Second, a high-order torque
identification framework based on extended Kalman filter (EKF)
and series extended state observer (ESO) is proposed, which
can reduce observation noise and effectively extract uncertain
environmental torque. The proposed framework can well solve
the deficiency of conventional ESO observation in noncascade
system and combine Kalman filter to reduce the observation
error. Through the combination of the 2 contributions, a set of
highly portable spacecraft attitude and orbit prediction frame-
work is provided.

The organization of this paper proceeds as follows: In the
Attitude Prediction Model of LEO Satellite section, the environ-
mental torques considered in LEO are reviewed, and the atti-
tude kinematic and dynamic model based on quaternion are
introduced. Then, the unmodeled torque extraction algorithm
based on EKF and series ESO is proposed in the Filtering and
Determination Attitude section. A well-trained torque compen-
sation network is introduced in the Unmodeled Compensation
Based on Neural Network section, which can map the current
state to the unmodeled environment torque. In the Simulation
and Results section, simulation results based on an actual satellite
are presented to illustrate the effectiveness of the proposed algo-
rithm. The results show that the method can reduce the attitude
prediction error effectively and maintain the reliability of the
estimation at a high level with persistent on-line measurement.

Attitude Prediction Model of LEO Satellite

For falling spacecrafts in LEO, the main environmental distur-
bances are the gravitational gradient torque generated by grav-
ity and the aerodynamic torque generated by atmospheric drag.
Under the interference of these environmental torques, the space-
craft velocity and angular velocity also change, further affecting
the prediction of the meteorite trajectory. This section reviews
the environmental torque considered in LEO and, furthermore,
demonstrates the kinematic and dynamic framework of attitude
prediction based on quaternion. The transformation between
the Euler angle and quaternion is also presented.

Environmental torque of LEO satellites
LEO satellites are affected by various environmental torques,
including gravity gradient torque, aerodynamic torque, solar
radiation torque, magnetic torque, etc. The torques are related
to satellite and environment conditions, such as the size, mass,
mass distribution, and orbital height that are essential for the
attitude prediction of the uncontrolled satellite. For LEO space-
crafts, the aerodynamic torque and gravity gradient torque are
mainly considered. The gravity gradient torque is often utilized
to stabilize Earth pointing with several degrees of error. The
aerodynamic torque plays a dominant role in the LEO and will
interfere the control system, causing the spacecraft to reverse at
the end of the mission.

According to the law of gravitation, the gravity of Earth
decreases with the distance from the center of Earth. So, the
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gravity of each part of the satellite is also different, resulting in
the gravity gradient torque. The gravity gradient torque can be
described as [23]:

Ngg = Ir ”5[l‘><(] r)] (1)
where r represents the centroid position vector of satellite rel-
ative to Earth, J is the inertia matrix of satellite, and u is the
gravitational constant of Earth. For LEO satellites, if the inertia
matrix is on the order of 1000 kg m’, then the gravity gradient
torque is around 3 X 107> N m [23].

The aerodynamic torque is generally caused by the impact of
atmospheric molecules on the surface of spacecraft. The complex
space shape leads to different aerodynamic forces on different
sides of the asymmetric satellite, resulting in the aerodynamic
torque. The aerodynamic torque is related to many elements,
including the current altitude, velocity, windward area, and so
on. Since it is difficult to calculate the windward area in real time,
wind tunnel tests are usually carried out to obtain the aerody-
namic coefficients under different attitudes. Then, the aerody-
namic torque is determined according to the angle of attack and
sideslip angle in the prediction. The aerodynamic torque can be
described as [23]:

Naero = %CDS,efpv2 Tep—cm )
where Cp, represents the aerodynamic torque coefficients in
3 directions in body coordinate system, S, ¢is the reference wind-
ward area, p represents the atmosphere density, v is the velocity
of the satellite, and r, is the offset distance between the
satellite centroid and tﬁe pressure center. The coefficient matrix
is obtained in real time by calculating the attack angle and
sideslip angle. Considering a satellite with 300 km orbital alti-
tude, 7.7 km/s velocity, 5 x 10™"" kg/m’ atmospheric density,
1 m” windward area and 1 m pneumatlc arm, then the aerody-
namic torque is around 3 x 107> N m at the same level as the
gravity gradient torque [23].

As for magnetic torque and solar radiation torque, for ordi-
nary LEO satellites, the magnitude of both isaround 1 X 10~ N m,
which is too small compared with the gravity gradient torque
and the aerodynamic torque. Therefore, the magnetic torque and
the solar radiation torque are not considered in this paper [23].

Attitude kinematic and dynamic equations

The attitude of satellite is usually defined by the rotation between
the Earth-centered inertial system and the body-fixed frame. The
Euler angle rotation sequence used in this paper is yaw—pitch-
roll. On the basis of the above definition, the attitude kinematic
equation in the Euler angle form is given by:

o= ﬁ (a)xbsinesin(p +w,y,cos6 + a)zbcosq)sine)

0= Wy},COSQ — W, sing (3)

1 ( . )
=——( w,;,sin@+w,,cos
cos0 \ PSP T @2pOSP

where y, 0, and ¢ Tepresent the yaw, pitch, and roll angle,
wb =00, w,,)" is the angular velocity expressed in body-
fixed frame. It is worth noting that in some special attitudes
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(the pitch angle is 90°), the attitude kinematic equation expressed
by the Euler angles (Eq. 3) will cause singularities. Here, we use
quaternions to express the attitude kinematic equation as:

QO 0 -y - Wy — Wy qo
QI — l @y 0 Wz —Wyp . q (4)
. 2
b) Wyp — WDy 0 Wyp a2
B q3 | | Wzp Dy — Wy 0 1 L9 ]

The main advantage of the quaternion representation is that
the attitude kinematic equation is free of singularities and the
kinematic equation matrix is linear. In addition, the conversion
between the quaternion and the Euler angle can be written as:

p=arcsin(2(q,9;+q4;))

_2(‘11‘12 _‘10‘13)
aG—qai+45—4; (5)
_2(%‘13 _qofb)

%9~ +45

6 =arctan

Y =arctan

[ @ 60 v .. 0.y
COS—COS—COS— +SsIn—sin—Ssin—
2 2 2 272 2
.o 0y ®. 0. v
SlnECOSECOS? - COSESIHESIHE
9= (6)

.0 v @ 0.y
cos—sin—cos— +sin—cos—sin—
2 2 2 2 2 2

o 0.v 9.0 vy
COS—COS—SINn— —SINn—S1IN—CO0S—
- 2 2 2 2 2 2

As for the attitude dynamics, the angular momentum of the
spacecraft can be expressed as:

H=Jo, %)

According to the angular momentum theorem, the change rate
of the spacecraft angular momentum can be expressed as:

dH
a2 M (8)
dt

The above equation holds in any coordinate system, while the
inertia matrix changes with the rotation of the spacecraft in the
Earth-centered inertial system, which is difficult for the attitude
integral prediction. In general, the attitude dynamic equation
is usually expressed in the body fixed frame as:

]-(bb+(0b><(]-cob)=M (9)

where M represents the sum of environmental moments.

Filtering and Determination of Attitude

In the open-loop prediction, the accurate measurement of sat-
ellite attitude is very important. A tiny initial deviation will
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cause the prediction results to gradually deviate from the actual
condition. The most straightforward method to estimate the
satellite attitude for a long time is to combine the dynamic
model with the observation data and then calculate the opti-
mal estimation according to the principle of minimum var-
iance. After obtaining the attitude estimation, the high-order
unmodeled information can be extracted from the original data
through the extended state identification, which will be instru-
mental to refine the dynamic model. In this section, the esti-
mation results of the satellite state are obtained by the EKF, and
then the unmodeled torque of satellite is estimated by series of
the ESO.

Extended Kalman filter

The attitude data measured by the ground observation facility
have uncertain Gaussian noise, which brings trouble to high
precise attitude determination. The EKF can integrate attitude
measurement data and prediction system by updating the opti-
mal estimation of the satellite attitude online according to the
real-time observation. In this section, the satellite attitude is
expressed as a quaternion vector, and the more accurate attitude
estimation is obtained by a standard EKF process. Consider the
nonlinear prediction update shown by:

/)E]:H =3 +f(§k)At (10)

where f(%; ) represents the sum of nonlinear environment torque
at state X and At represents the step size of EKE. Assuming that
the covariance matrix of the current state is P, and then the
update of the covariance matrix is given by:

- _ T
Pk+1 - d)k+1Pk(I)k+1 + Qk+1

(11)
where Q represents the system process noise covariance matrix
and @, is the state-transition matrix and can be expressed in
the following form:

2At T Wy Wy — Oy —qig — ok — Y43k

@y f 2At (%%

—Wyk Gok  —Dk 92k

Wy —0y 28t oy Gy Gok  —4uk

Py = % Wy Oy —Oy 280 =@ qix ok "
0 0 0 0 2At 0 0
0 0 0 0 0 2At O
| 0 0 0 0 0 0 2At |
The Kalman gain update equation is defined as:
Kiv1 = PI:+1H;£+1 <Hk+1Pl:+1Hg+1 +Rip >_ (13)

where R represents the measurement noise covariance matrix
and H, is the measurement matrix, and for simplicity of calcu-
lation, we have:
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[1000]
0100
0010 (14)
0001

Then, the state and the covariance matrix update based on Kalman
gain can be expressed as:

Xjep = /}EI:H + Ky (Yk+1 - H§I:+1) (15)

T T
1=K Hen] +He R H,

(16)

P = [I - Kk+1Hk+1]P1:+1

where y, = HX; represents the measurement results at t,.

Remark. It is worth noting that in the process of EKE, the process
noise and measurement noise must meet the conditions of the
linear uncorrelation, the zero mean, and Gaussian distribution;
otherwise, the filtering result may be inaccurate.

Series ESO

Some status information is difficult to be measured directly by
the sensors in the field of engineering, such as angular velocity,
angular acceleration, etc. However, the uncertainty estimation,
including the internal coupling, the external unknown distur-
bances, and the unmodeled dynamics, can be determined with
rarely observation information by building an ESO. After obtain-
ing the optimal attitude estimation with the EKE, a series of ESO
is introduced to extract the high-order unmodeled information
hiding in the attitude. Consider the following nonlinear dynamic
system to be observed:

{ 4=A(@)q a7)
Jo=—-woxXJo+f(qs)+d

where q = [q, 4,9, 95)" represents the attitude quaternion,
f(q,s) is the known as high-order input, which stands for the
known environment torques of satellite based on orbit infor-
mation s, and d is the unknown disturbance to be identified.

A series ESO system d= @, (®,(q))is constructed to obtain

the best estimation of d. The internal observer is designed as
follows:

€1=%21 =1

@, Zn=2n—Pae (18)

24y = —PByofal(€,0.5,6)

where y, € ¢, + v{(i = 0,1,2,3) represents the attitude measure-
ment results based on the sensors and the ground observation
facility, v; is the measurement noise, 8, = [$,1,f,,] > 0 is the
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AL\

AN
‘@%‘5‘}"@3}%

Y

. T.
feedback coefficient, z, = [z,;,2,,] " is the observer system state,
and the nonlinear error correction function is given by:

Fig.1.The structure of attitude prediction BP network.

B le|sgn(e), |e] >6
fal(e,a,6) = { (19)

e/8'7% |e| <6

The estimated value of the quaternion derivative can be expressed

as: 2, = q, and the estimation results of the angular velocity is
obtained through the reverse process of Eq. 4 as:

- -1
-9 =4, —q3 0
@ - 0 ~
l ]=2 9o 93 92 4 20)
0 a3 9 —410
| -9 41 9o 1]

The internal ESO has been completed up to now. The angular
velocity information of the satellite system can be extracted
from the observed quaternion data through the internal ESO,
and the angular velocity can be more accurate through a low-
pass filter. The external observer is designed as follows:

€ =2p1=)2
D, Zp1 =2~ P& 1

2y = — Pyafal(€,,0.25,5)

where y, € &;(i = 1,2,3) represents the angular velocity esti-
mation results based on the internal ESO, , = [f,1, f;,] > 0
is the feedback coefficient, z, = [z,,, z;,]  is the observer
system state, and z;, = @, is the estimation result of angular
velocity derivative. Then, the estimation result of environ-
ment torques can be obtained through the inverse process
of Eq. 17 as:

d=6xJ6-16-f(gs) (22)
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Similar to the internal ESO, the high-frequency oscillation gen-
erated in the estimation process can be suppressed by designing
a low-pass filter.

Unmodeled Compensation Based on
Neural Network

In this section, a double hidden layer backpropagation (BP)
network is constructed to learn the unmodeled environment
torque in the satellite. The BP neural network has high gener-
alization and self-learning ability, can reconstruct the mapping
relationship between the state and the environmental torque,
and plays a critical role in attitude prediction system.

Considering a 3-layer neural network as shown in Fig. 1,
the input layer of the network is the measured attitude infor-
mation: X;,,,,. = [qo, 41> 95 G5 T and the tutor signal of supervised
learning is the unmodeled torque identified in the Filtering and
Determination of Attitude section: y = [d,,d,,d,]". The activa-
tion function of the first hidden layer is the “Relu” function
defined as:

Network initialization

A 4

Training set initialization

Calculate the error
between the network

output and target

A\ 4

Error back propagation

A 4

Network weight update

Sufficient
iterations?

Yes

Training complete

Fig. 2. The whole training process of the neural network.
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ss>0

Relu:fi(s) =4 0s<0 (23)

Then, the relationship between the first input and output
layer can be expressed as:

Ny-1

() 9] @, @\ -

x; :f1<5i ):f1< 2 Wi X > i=12, ...,N;y (24)
j=0

where N> g =1,2,3 represents the number of neurons in each
layer and x, = 1 represents the bias term, which is not dis-
played in Fig. 2 for the intuition. The activation function of the
second hidden layer is a “Sigmoid” function defined as:

1
1+e

Sigmoid: f(s) = (25)

Then, the relationship between the second input and output
layer can be expressed as:

N,—1

G (@ @@\ ;

= ):f2< Y wida ) i=1,2, ...,N,  (26)
j=0

The final output of neural network is shown as:

Ny—1
_ 3,03 ;_
n= X =103 @7)
]:

The above process denotes the forward propagation of a single
group of samples. For the N groups of measured samples,

Xinput = (41 Q- > qu)> and the tutor signal:y,,,, = [d}, d, ..., dy].
The loss function based on sample set is selected as:
A ) N
E=Ez<dp—dp> =52{EP (28)
= p=

Table. The initial orbit and attitude parameters of Tiangong-1
Space Station.

Mass (kg) 76614
Attitude angle (°) 91, -59, -137
Angular velocity (°/s) —-0.2679, —0.01085, 1.0207
Position (km, in 4,561.4433, —3,977.5169,

J2000) —2,366.0892

Velocity (km/s, in 5.3239 3.3147 4.6915
J2000)

Inertia matrix
(kg m?) 16,407.00 —132.87 448.55
—132.87 76,391.94 —27.54

448.55  —27.54 70,912.02
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During the process of the network learning, the weight is con-
stantly updated according to the error between the output y
and the tutor signal y,,... For the qth layer:

oE, OE, ax(q) as(q)
dw(q) 6x(7) 05(?) ()w@ (29)

(i

OE
By analogy, the result of —(‘;), q = 1,2,3is calculated continu-
ow..

ously by backward propagal]tion. Then, the update of each neu-
ron weights can be expressed as:

JE,

Wk + 1) = wD k) + a—" o (30)

where @ > 0 is the network learning rate. The whole training
process is shown in Fig. 2.

Remark. The normalization of the network is essential. Since the
magnitude of the identified environmental torque is too small,
the training set should be mapped to the range of [0,1] by normal-
ization for a better training efficiency. The corresponding linear
transformation is also required during verification of the test set
and the attitude prediction process.

Simulation and Results

In this section, the whole process and simulation results of the
prediction system are presented. The target spacecraft is selected
as Tiangong-1 Space Station descending into the atmosphere.

! “*\\ Jppe—— \
| .“' .“}0 Network ' _d . Moment extract |
! p training : i e ',
: [

_______ Network
compensation

+ l
Environment Satellite 1Y
——
moment model Attitude
prediction

Fig. 3. The structure of attitude prediction system.

The detailed parameters are shown in Table. Because of the cou-
pling effect of the spacecraft orbit and attitude, it is difficult to
consider the independent influence of the environmental torque
independently. Therefore, 13 state parameters including a 3-axis
position, a 3-axis velocity (both expressed in J2000 coordinate
system), a quaternion, and an angular velocity are used in the
simulation. A disturbance is artificially added to the simulation
as the unmodeled environmental torque. The time step of the
EKFis 0.1 s, and the covariance matrix of the observation noise
is 1 X 10~*, which means that 1.1° noise is contained into the
observation.

The main structure of the prediction system is shown in Fig. 3.
Under the interference of the complex environmental torque and
the attitude orbit coupling, the angular velocity of the spacecraft
changes irregularly. The attitude data are used as measurement
samples for the torque identification and the attitude prediction
algorithm verification. Figure 4 shows the real attitude and angular
velocity of the spacecraft in LEO for 1 h. Figure 5 shows the Euler
angle error in distribution diagram.

200 T T T T T T
& | p Row
K} Pitch
o0 Y
g 0 ><\}\ \ \ W aw
5 4
& N \ |
_200 | | | 1
0 500 1,000 1,500 2,000 2,500 3,000 3,500
Time (s)
;\;; 1 L I I I I I I
~ — )
b k/\, *
8 x: AT —Y
© 0 . w
> z
g L7\
=
%D_l = | | | | | | i
< 0 500 1,000 1,500 2,000 2,500 3,000 3,500
Time (s)
Fig.4.The real Euler angle and angular velocity.
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2,000 | 2,000 f 2,000 f
)
e
£ 1,500 | 1,500 f 1,500 f
2
2
£1,000 1,000 f 1,000 f
A
500 f 500 1 500 1
0 0 0
-1 -1 05 0 05 1 -1

Fig.5.Euler angle error in distribution diagram.

After a period of iteration, the tracking is extracted quickly.
The identification results have strong shake since the ESO is
highly based on the observation. However, these shakes are fil-
tered out during the training of the neural network due to the
independence between the attitude and the estimated results.
The identification results are provided to the neural network
according to the algorithm in the Unmodeled Compensation
Based on Neural Network section. The neural network param-
eters used in this paper are set as: N; = 6, N, = 6, learning rate
a = 0.1, and maximum epoch is 200. The real torques, identifi-
cation results, and network output are shown in Fig. 6. The yellow
represents the identification results, the blue represents the real
torque, and red represents the torque estimated by the trained

Pitch error

%107

neural network. The results show that the neural network can
eliminate the shakes in the ESO and obtain high-precision esti-
mation of the unmodeled dynamics. Besides, the activation func-
tion of the neural network has a great influence on the learning
effect. The neural network with the “Relu+Sigmoid” activation
function has better effect than other activation functions through
simulations, such as the “Sigmoid+Relu”, “Sigmoid+Sigmoid”
function, etc.

Figure 7 shows the prediction effect of the whole system
after compensation. The blue line represents the real attitude
after 1 hour, the red line represents the attitude prediction results
without neural network compensation, the yellow line represents
the attitude prediction compensated by the neural network,

= T T T T T T T
£ o4r i
VR 02F
B ]
E —02f 1 1 1 i 1 1 L
500 1,000 1,500 2,000 2,500 3,000 3,500
Time (s) Estimated m |
1 T T T T T T Real m,
——— NN output m,

Torquey (Nm)
o
%
1

_1 1 1 1 1 1 1 \
500 1,000 1,500 2,000 2,500 3,000 3,500
Time (s)
’é\ 1 T T T T T
Z
o’ 0
=]
=)
ﬁ ~1 1 1 I 1 1 1
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Fig. 6. The real torque and neural network learning results.
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Fig.7.The prediction triaxial Euler angle with and without compensation.

while the purple line represents the attitude estimation generated
by using the direct state estimation results, in which the error
is large because of the interference of measurement noise. The
comparison shows that the attitude estimation accuracy after
compensation is higher and the accurate period is longer.

The final results of the proposed algorithm and the attitude
determination results are presented in Fig. 8. The results show
the observation error of the neural network compensated, directly

compensated, and uncompensated prediction with the periodic
observation correction (the cycle is 500 s). The comparison
indicates that under the periodic observation correction, the
spacecraft attitude prediction drift in the LEO exceeds 100° with
directly compensation or without compensation, while the error
is nearly controlled within 10° under the function of the neural
network compensation, which demonstrates the effectiveness of
the whole attitude compensation and prediction system.

C 150 T T T T T T
—
]
E 100
3 50
>‘3 0 )\ ) AN e ﬁ\.@
0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 -
Ti (s) — Error without d
1me (S Error with direct counter
Error with NN counter
o150 T T T T T T Correction
-
]
E 100
5 50
E 0 AR - AN
600 800 1,000 1,200 1,400 1,600 1,800 2,000
Time (s)
6 150 T T T T
=
o1
E 00
= 50
] |
o 0l A - e — L VN ]
0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
Time (s)

Fig.8.The prediction triaxial Euler error with periodic observation correction.
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Conclusion

Here, a novel prediction system is proposed to solve the attitude
determination problem of the low-orbit malfunctioning satel-
lite. An unmodeled torque identification method based on the
quaternion is introduced. Then, an attitude prediction system
is proposed combined with the BP neural network. The simu-
lation results show that this method has high prediction accu-
racy and high reliability with discontinuous measurement,
which proves the superiority and feasibility of this new method.
In addition, this method has high expansibility and can be
applied to various high-precision prediction fields with unmod-
eled disturbances. Excellent prediction results can be obtained
easily by optimizing the identification algorithm and designing
appropriate activation function.
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