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Abstract 

Ongoing oscillatory neural activity before stimulus onset influences subsequent visual perception. 

Specifically, both the power and the phase of oscillations in the alpha-frequency band (9-13 Hz) have 

been reported to predict the detection of visual stimuli. Up to now, the functional mechanisms 

underlying pre-stimulus power and phase effects on upcoming visual percepts are debated. Here, we 

used magnetoencephalography recordings together with a near-threshold visual detection task to 

investigate the neural generators of pre-stimulus power and phase and their impact on subsequent 

visual-evoked responses. Pre-stimulus alpha-band power and phase opposition effects were found 

consistent with previous reports. Source localization suggested clearly distinct neural generators for 

these pre-stimulus effects: Power effects were mainly found in occipital-temporal regions, whereas 

phase effects also involved prefrontal areas. In order to be functionally relevant, the pre-stimulus 

correlates should influence post-stimulus processing. Using a trial-sorting approach, we observed that 

only pre-stimulus power modulated the Hits vs. Misses difference in the evoked response, a well-

established post-stimulus neural correlate of near-threshold perception, such that trials with stronger 

pre-stimulus power effect showed greater post-stimulus difference. By contrast, no influence of pre-

stimulus phase effects were found. In sum, our study shows distinct generators for two pre-stimulus 

neural patterns predicting visual perception, and that only alpha power impacts the post-stimulus 

correlate of conscious access. This underlines the functional relevance of prestimulus alpha power on 

perceptual awareness, while questioning the role of alpha phase.  
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Introduction 

Spontaneous fluctuations in neural oscillatory activity that precede the presentation of a sensory 

stimulus impact conscious perception in the visual (Hanslmayr et al., 2007; Romei et al., 2008; van 

Dijk et al., 2008; Dugué et al., 2011; Chaumon & Busch, 2014; Wutz et al., 2014; Benwell, Keitel, 

et al., 2017; Samaha et al., 2017; Rassi et al., 2019), auditory (Henry & Obleser, 2012; Frey et al., 

2014), and somatosensory domain (Linkenkaer-Hansen et al., 2004; Ai & Ro, 2014; Weisz et al., 

2014; Baumgarten et al., 2016). Typically, neuroscience research investigating the effects of pre-

stimulus oscillations employ “near-threshold” stimuli, whose intensity is set at an individual sensory 

threshold, with the aim of maximizing response variability in conscious report while avoiding 

confounding factors related to the physical properties of the stimuli. By definition, repeatedly 

presented near-threshold stimuli are detected in approximately half of the trials. Generally, trials in 

which the target-stimuli were successfully detected (i.e., Hits) are associated with a greater evoked 

response compared to trials in which the target-stimuli were missed (i.e., Misses). These post-stimulus 

differences are a hallmark of conscious perception of near-threshold stimuli (Dehaene & Changeux, 

2011; Sanchez et al., 2020).  

Especially in the visual domain, pre-stimulus oscillations in the alpha-frequency band (9-13 Hz), as 

measured by means of electro- and -magneto-encephalographic recordings (EEG and MEG; for a 

review see Ruhnau et al., 2014), play a key role. Numerous studies have demonstrated that pre-

stimulus alpha-band power inhibits perceptual awareness, with a reduced probability of detecting a 

near-threshold stimulus on trials with high alpha-band power in the pre-stimulus window (Ergenoglu 

et al., 2004; van Dijk et al., 2008; Wyart & Tallon-Baudry, 2008; Wutz et al., 2014; Limbach & 

Corballis, 2016; Iemi et al., 2017; Samaha et al., 2017). Furthermore, it has been shown that 

perceptual outcome is also influenced by the phase of alpha-band oscillations in the pre-stimulus 

window (Busch, Dubois, & Vanrullen, 2009; Mathewson et al., 2009; Busch & Van Rullen, 2010), 

supporting the idea of discrete sampling of visual processing (VanRullen, 2016a). Taken together, 
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findings on pre-stimulus power and phase have led to the development of multiple frameworks 

relying on the core concept of pulsed-inhibition exerted by oscillatory brain activity in the alpha band 

(Klimesch et al., 2007; Jensen & Mazaheri, 2010; Mathewson et al., 2011; Jensen et al., 2014; Schalk, 

2015; Zazio et al., 2020). Nevertheless, so far it is still unclear whether pre-stimulus alpha-band 

power and phase reflect the same or different mechanisms. In particular, little is known about the 

neural sources of pre-stimulus oscillations and how they impact the post-stimulus response. 

The modeling of brain sources involved in pre-stimulus oscillatory effects is of particular importance, 

given recent findings showing that neural activity in several stages along the visual stream is crucial 

for conscious report, from early sensory areas to higher-order frontal regions (Andersen et al., 2016; 

Van Vugt et al., 2018). Previous work on pre-stimulus alpha-band activity suggests the involvement 

of both posterior brain regions as well as parietal and frontal areas (Thut et al., 2006; Hanslmayr et 

al., 2007, 2011; van Dijk et al., 2008; Romei et al., 2008; Busch, Dubois, & Vanrullen, 2009; 

Mathewson et al., 2009; Dugué et al., 2011; Limbach & Corballis, 2016; Iemi et al., 2017; Samaha 

et al., 2017). However, many findings reported so far arise from EEG recordings (for MEG evidence 

see: van Dijk et al., 2008; Wutz et al., 2018; Rassi et al., 2019) and/or focus on a single feature of 

ongoing alpha activity (i.e., power or phase), resulting in an incomplete picture of the brain areas 

involved in ongoing alpha-band oscillations and leaving the question open whether the effects of 

power and phase originate from the same brain areas. Furthermore, only very few studies specifically 

investigated interactions between pre-stimulus alpha-band oscillations and stimulus-evoked response 

(for example see Wutz et al., 2014): if pre-stimulus alpha activity is functionally relevant for 

conscious perception, then we would expect it to impact not only the perceptual outcome (i.e., Hit 

and Miss response), but also the classic neural correlates of conscious access (i.e., the stimulus-

evoked neural activity).  

In the present study, we first aimed at replicating the impact of spontaneous fluctuations in pre-

stimulus alpha-band power and phase on visual perception found previously, by adopting a near-
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threshold visual detection paradigm similar to the one reported in (Busch, Dubois, & Vanrullen, 

2009). Importantly, however, the MEG recordings together with brain source modeling used here 

enabled us to advance on previous EEG evidence by examining these effects at the brain source level. 

Second, we compared Hits and Misses in pre-stimulus alpha-band power, pre-stimulus alpha-band 

phase and in the stimulus-evoked response (i.e., event-related fields, ERFs) with particular emphasis 

on how pre-stimulus features shape post-stimulus neural correlates of conscious detection. This 

strategy allowed us to more thoroughly map out the neural basis of pre-stimulus power and phase 

effects and their functional impact on visual percepts and visual-evoked responses.   

Materials and Methods 

Participants 

Twenty healthy volunteers took part in the study after giving written informed consent (12 female, 

mean age ± SD: 26 ± 4 years, all right-handed). All participants had normal or corrected-to-normal 

vision and no history of neurological disorders. The study was conducted in accordance with the 

Declaration of Helsinki and approved by the local ethics committee of the University of Trento.  

Apparatus 

Stimulus presentation  

Stimuli were generated using MATLAB 2012b (The MathWorks, Natick, MA, USA) and 

Psychophysics Toolbox 3 (Brainard, 1997, Pelli, 1997). A DLP projector (PROPixx; VPixx 

Technologies) showed the stimuli at a refresh rate of 120 Hz centered onto a translucent screen. The 

screen was located in front of the participant (viewing distance, 150 cm) within the dimly lit, 

magnetically shielded MEG room. Stimulus timing was controlled with a data and video processing 

peripheral (DATAPixx; VPixx Technologies) and monitored via a photo diode placed at the upper 

left corner of the projection screen. The delay between trigger and stimulation onset was corrected 

using the photodiode information.  
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MEG recordings 

Whole-head MEG was continuously recorded with a sampling rate of 1 kHz (Neuromag306 system; 

Elekta, Stockholm, Sweden), placed in a magnetically shielded room. MEG data was recorded by 306 

sensors (one magnetometer and two orthogonal planar gradiometers for each of 102 positions). For 

each participants, a Polhemus Fastrack digitizer (Polhemus, VT, USA) was used to acquire the 

location of a set of landmarks: nasion and left/right periauricular points, five head position indicator 

(HPI) coils to track the position of the participants’ head during the experiment, and more than 200 

head shape samples, needed for offline head shape modeling.  

Stimuli and experimental procedure 

Participants were comfortably seated in a dimly lit, sound attenuated and magnetically shielded room. 

The visual detection task was similar to the one described in (Busch, Dubois, & Vanrullen, 2009) 

(Fig. 1a). A fixation cross was always present in the center of the screen, while two lateral markers 

on its right side (7° of visual angle eccentricity) indicated the location in which the target could 

appear. Participants were asked to maintain fixation, while covertly attending the lateral site indicated 

by the markers. The target was presented in 80% of the trials, after a variable interval between 1 and 

2 s after fixation onset, so that target onset was unpredictable. The target was a small dot (7’ of visual 

angle), which was briefly presented (for 8.3 ms, i.e., one frame) at individual luminance threshold 

(i.e., 50% of detection accuracy; determined before the MEG recording with a staircase procedure for 

each participant). A question mark appeared 1.5 s after the target presentation and the participants 

were asked to report whether they detected the target or not by pressing the left and the right key on 

an MEG compatible button pad (RESPONSEPixx, VPixx technologies, CA), with the index and 

middle finger of their dominant hand, respectively. The buttons were counterbalanced across subjects. 

A new trial began after the response, or after 2 s if no response was recorded. Participants performed 

6 blocks of 150 trials each (due to technical reasons, two participants only completed 4 blocks); a 
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brief pause of a few minutes was provided between blocks to avoid drops of attention and alertness 

throughout the experiment. The experiment lasted approximately 1.5 hours.  

Data analysis 

Behavioral data 

Detection performance was evaluated in terms of Hits (i.e., number correct detections on the total of 

presented targets) and Misses (i.e., rate of Missed targets). The false alarm rate was estimated based 

on target-absent trials (20% trials). 

MEG data 

Preprocessing 

MEG data analysis was performed in MATLAB 2016b (The MathWorks, Natick, MA, USA), using 

the FieldTrip toolbox (Oostenveld et al., 2011) and the CircStat toolbox (Berens, 2009). The MEG 

signal was high pass filtered at 1 Hz and a notch filter at 50 Hz and 100 Hz was applied to remove 

line noise. Data was downsampled to 256 Hz and epoched from 2 s before to 2 s after stimulus onset. 

A set of summary statistics (variance, maximum absolute amplitude, maximum z value) was used to 

detect and then remove outliers of channels and trials. Moreover, epochs were visually inspected and 

noisy channels as well as trials with residual artifacts (noise, eye movements and muscular artifacts), 

were removed (semi-automatic artifact rejection). On average, 10 ± 2% of the trials and 4 ± 2 channels 

were discarded (mean ± SD). For every subject, the number of trials for Hits and Misses was equalized 

by randomly selecting a subset of trials from the condition with more trials, because phase calculation 

is sensitive to trial number (VanRullen, 2016b). Target-absent trials as well as trials with no response 

were excluded.  

Source-projection 
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Pre-processed sensor data was projected into source space. For each participant, we performed the 

co-registration between anatomical and MEG channels by using the individual MRI and the 

landmarks recorded prior to acquisition. Only MEG gradiometer data was used. A structural magnetic 

resonance image (MRI) was available for 15 of 20 participants. For the remaining subjects, we 

obtained the canonical cortical anatomy from the affine transformation of a Montreal Neurological 

Institute (MNI)- template brain (Montreal, Canada; brainweb.bic.mni.mcgill.ca/brainweb/) to the 

subject’s digitized head shape. A single shell head model (Nolte, 2003) was used to represent the 

geometrical and electro-magnetic properties of the head. Then, we constructed the source model by 

using a spatial grid of 889 points with a resolution of 15 mm in MNI space, which was warped into 

the individual head model. In this way, the data from each subject was mapped onto a common space. 

Finally, a Linearly Constrained Minimum Variance (LCMV) beamformer filter (Van Veen et al., 

1997) was applied to the single-trial data, using a covariance window from -0.3 s to -0.1 s with respect 

to stimulus onset. Anatomical structures corresponding to localized sources were identified using the 

MNI brain and Talairach atlas (MRC Cognition and Brain Sciences Unite, Cambridge, UK; 

imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach). 

Event-related fields 

ERFs were computed by low pass filtering the signal at 20 Hz and averaging over trials for Hits and 

Misses. Polarity was discarded by taking the absolute value of ERFs. 

Time-frequency representations  

Time–frequency representations (fast Fourier transform) were calculated on single-trial data using 

Hanning tapers applied to short sliding time windows in steps of 10 ms in the frequency range 

between 1 and 30 Hz. We used a frequency-dependent window width of five cycles per frequency. 

The squared absolute value of the Fourier estimates gave the signal power. Phase coherence across 

trials was quantified with the inter-trial coherence metric (ITC; (Lachaux et al., 1999)). To control 

for difference in amplitude across trials and extract only the information about phase, the length of 
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the complex vectors resulting from Hanning tapering and Fourier transform was normalized to 1 

across all trials. Then, ITC was calculated as the length of the resultant complex Fourier vectors across 

trials along the unit circle. The range of ITC values is between 0 and 1, with 0 representing random 

phase angle distributions and 1 perfect phase-locking across trials. Phase coherence with ITC was 

calculated separately for trial subsets for Hits (ITCHITS), Misses (ITCMISSES) and comprising Hits and 

Misses together (ITCALL). To quantify phase opposition between the trial subsets, we used the Phase 

Opposition Sum (POS, defined in (1)), which has been shown to be more reliable compared to other 

measures (e.g., Phase Bifurcation Index; (VanRullen, 2016b)).  

(1)  POS = ITCHITS + ITCMISSES – 2*ITCALL 

POS values are positive only when both Hits and Misses are phase locked and have opposite phase 

angles. We used a permutation approach to test whether the POS values were significantly greater 

than expected by chance (see Permutation statistics for POS on p. 15).  In all other cases (i.e., only 

one condition presents high ITC, both conditions present low ITC, or both conditions present high 

ITC but with similar phase angles), POS values are not statistically different from chance.  

Effect of pre-stimulus alpha power on the evoked response 

To investigate the impact of pre-stimulus alpha power on ERFs, we selected subsets of trials, in which 

the power effect was “maximized” or “minimized”, respectively. To this end, we averaged power 

over the alpha-frequency band (9-13 Hz) and across the pre-stimulus time points from -0.45 s to -0.3 

s (i.e., the time range were the power effect was found to be maximal). Trial sorting was performed 

in two ways: 1) based on the data at the virtual sensor that shows the strongest power difference 

between Hits and Misses, which was located in occipital-temporal cortex (Fig. S1a), and 2) based on 

the data averaged over all significant virtual sensors in the contrast between Hits and Misses. In both 

analyses, we selected 30% of Hit trials with the lowest pre-stimulus alpha power and 30% of Misses 

with the highest pre-stimulus alpha power to “maximize” the effect (POWMAX-EFFECT). Conversely, 

in order to “minimize” the effect, we selected the 30% of Hits with the highest pre-stimulus alpha 
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power and the 30% of Misses with the lowest pre-stimulus alpha power (POWMIN-EFFECT). The trial 

subsets for both power and phase were balanced with respect to the trial numbers for Hits and Misses 

for each participant. On average, the new subsets comprised 83 trials (minimum trial number: 55). 

Then, ERFs were calculated at all virtual sensors and time points from 0.2 s before to 0.8 s after 

stimulus onset, following the same steps as reported above, for each trial subset. The two analyses 

lead to similar results. 

Effect of pre-stimulus alpha phase on the evoked response 

The effect of pre-stimulus alpha POS on ERFs was investigated as follows. Following the same 

reasoning that we applied to the analysis of pre-stimulus alpha power, our aim was to maximize and 

minimize the effect of pre-stimulus alpha phase opposition. Therefore, POS was calculated as 

described above, and trial sorting was performed in different ways. First, trial sorting was performed 

based on the data at the two virtual sensors that showed the highest POS values in the analysis of pre-

stimulus alpha phase, which were located in two spatially distant regions in the left visual and in the 

right prefrontal cortex (Fig. S1b-c). Considering that phase, by definition, is not stationary over time, 

we calculated the mean phase angles over Hit- and Miss-trials at the middle frequency and time point 

in the range of interest, i.e., at 11 Hz and at 200 ms before stimulus onset. We expected to find the 

strongest differences at these single spatial-spectral-time points; however, this selection could be too 

narrowly focused. Therefore, trial sorting was additionally performed by (i) averaging over all 

significant virtual sensors for the phase effect and (ii) by averaging over the whole time-frequency 

range of the POS statistics, i.e., from -0.3 to -0.1 s before stimulus onset and between 9 and 13 Hz. 

In all the analyses, the effect of pre-stimulus phase opposition was maximized by selecting the 30% 

of trials with phase angles closest to the mean phase angle within Hits and Misses (POSMAX-EFFECT), 

respectively, and minimized by selecting the 30% of trials with phase angles close to ± 90° from its 

mean phase angle (POSMIN-EFFECT; a schematic representation that explains the rationale of the POS 

trial sorting approach in more detail can be found in Fig. S2). Then, ERFs for POSMAX-EFFECT and 
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POSMIN-EFFECT were calculated at all virtual sensors and time points from 0.2 s before to 0.8 s after 

stimulus onset, as described above. All the analyses lead to similar results.  

Statistical analysis  

Behavioral data analysis 

The behavioral analysis of Hit- and Miss-rates was performed by means of dependent samples t-tests. 

Moreover, a repeated-measure analysis of variance (rm-ANOVA) with 6-level factor Block was run 

to test for an alertness decrease throughout the experiment. This analysis included 18 out of 20 

participants who completed the 6 experimental blocks. 

Non-parametric cluster-based permutation statistics for ERFs and power 

MEG data for Hits and Misses in ERFs and pre-stimulus power were compared by performing non-

parametric cluster-based permutation tests for dependent samples (two-tailed t-statistics; (Maris & 

Oostenveld, 2007)). This procedure allows controlling for the multiple comparisons problem (type I 

error), arising when performing statistical tests at multiple time points and sensors. First, it identifies 

significant spatio-temporal adjacent clusters, summing t-values within each cluster to reveal a cluster-

level test statistic. Then, it performs random permutations by exchanging the data between Hits and 

Misses within participants. After each permutation run, the maximum cluster level statistic was 

recorded to obtain a reference distribution of cluster-level statistics (approximated with Monte Carlo 

procedure of 1000 permutations). Finally, cluster-level p-values were estimated as the proportion of 

values in the reference distribution exceeding the cluster-statistics obtained in the real data. The level 

of significance was set at p < 0.05.  

The non-parametric cluster-based permutation was used to compare the ERFs between Hits and 

Misses over all virtual sensors and the time points from -0.2 s before to 0.8 s after stimulus onset. The 

same analysis (Hits vs. Misses) was applied separately to the trial subsets arising from trial sorting 

for maximization / minimization of pre-stimulus alpha power (i.e., POWMAX-EFFECT and POWMIN-
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EFFECT) and phase (i.e., POSMAX-EFFECT and POSMIN-EFFECT) and for the difference between Hits and 

Misses for each trial subset. The difference in alpha-band power (averaged between 9-13 Hz) between 

Hits and Misses was tested with the non-parametric cluster-based permutation procedure over the 

pre-stimulus time window (-0.5 to 0 s before stimulus onset) and across all virtual sensors. The 

cluster-based permutations over virtual sensors and time-points were performed also to compare Hits 

and Misses in the ERFs baseline (-0.5 to 0 s before stimulus onset), and in the post-stimulus alpha 

power (averaged between 9-13 Hz; see Supplementary Materials). Finally, the Hits-Misses difference 

was calculated to test the relationship between ERF amplitude and post-stimulus alpha power at the 

latency of the two ERF peaks, by means of Pearson correlation (see Supplementary Materials). 

Permutation statistics for POS 

The statistical analysis of POS between Hits and Misses followed the approach reported by Busch et 

al. (2009). First, we re-calculated POS for “pseudo-Hits” and “pseudo-Misses” trial subsets drawn 

randomly from a merged pool of all trials for each participant. This procedure was repeated 500 times, 

giving rise to a shuffled POS distribution under the null hypothesis for each participant. The same 

trials were considered in the computation of the real and the shuffled data. In a second step, we 

randomly selected one permutation out of the 500 POS per participant, and computed the grand-

average across participants. The second step was performed 10000 times. Finally, we computed p-

values as the proportion of shuffled POS grand-averages that exceeded the observed POS grand-

average. The level of significance was set at p < 0.05. Phase opposition was tested across all virtual 

sensors for the average POS over the alpha frequency band (9-13 Hz) immediately before stimulus 

onset (-0.3 s to -0.1 s, consistent with the locus of the effects found in Busch et al., 2009). The false 

discovery rate (FDR) procedure (Benjamini & Hochberg, 1995) was applied, in order to correct for 

multiple comparisons over virtual sensors. Finally, the same statistical steps were performed on new 

subsets of Hits and Misses which have been stratified for pre-stimulus alpha power, to rule out 

possible confounds of power in the estimation of POS (see Supplementary Materials). 
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Repeated-measures ANOVAs for max-effect and min-effect subgroups 

The ERF peak amplitudes were averaged across all significant virtual sensors and +/-20 ms around 

each peak identified from the ERF grand-average for both Hits and Misses in POWMAX-EFFECT and 

POWMIN-EFFECT. The effects of pre-stimulus alpha power on the evoked response at the two ERF peaks 

was investigated by means of 2x2 rm-ANOVAs with the factors Response (Hits, Misses) and Effect 

(POWMAX-EFFECT, POWMIN-EFFECT). The same statistical model was applied to POS data (factors: 

Response – Hits, Misses – and Effect - POSMAX-EFFECT and POSMIN-EFFECT) calculated at the two 

virtual sensors of interest (i.e., in left visual and right prefrontal cortex). 

Results 

As expected, participants detected on average around half of the near-threshold visual targets, with 

no difference between Hits and Misses (mean ± SE for repeated measures (Morey, 2008): Hit rate: 

42.3 ± 1.1%; Miss rate: 45.6 ± 1.2%; t = 1.49, p = 0.154; Fig. 1b). Because in a few trials we recorded 

no response (which may have been provided too early, i.e., before the question mark appearance, too 

late, i.e., after 2 s with respect to the time interval for the response, or may have not been provided at 

all), the sum of the Hit- and Miss rates was not 100%. Performance did not vary significantly between 

the experimental blocks (F5, 85 = 1.55, p = 0.18), suggesting that alertness did not decrease throughout 

the experiment. Moreover, the false alarm rate was very low (2.5% ± 0.6), indicating that participants’ 

response reflected actual detection. The stimulus-evoked response on Hit-trials was significantly 

larger than on Miss-trials (cluster-corrected p = 0.002; Fig. 1c). The time course of ERFs on Hit-trials 

showed two clear peaks: an earlier one at ~0.24 s, mostly involving left occipital areas contralateral 

to the target location (maximum t-value located in left occipital cortex, Brodmann area (BA) 19; tMAX 

= 4.69; MNI coordinates in mm: -20 -65 -5). Then, there was a later peak at ~0.36 s, showing more 

wide-spread activity across parietal and temporal areas and also extending to the right hemisphere 

(maximum t-value located in right supramarginal gyrus, in parietal cortex BA 40; tMAX = 4.84; MNI 

coordinates in mm: 70 -20 25; Fig. 1d). Hits and Misses did not differ in the pre-stimulus baseline (p 
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> 0.42, see Supplementary Materials and Fig. S3a). Furthermore, the analysis of power in the post-

stimulus window showed lower alpha power levels in Hits than Misses (cluster-corrected p = 0.002; 

see Supplementary Materials and Fig. S3b), and no significant correlation was observed between ERF 

amplitude and post-stimulus alpha power at the latency of the two ERF peaks (all abs (r) < .14, all p 

> 0.58, see Supplementary Materials and Fig. S3c). 

Next, we investigated alpha-band fluctuations and their influence on the perceptual outcome on the 

brain source-level by computing time-frequency analyses in the time window preceding stimulus 

onset (-0.5 -0 s) for Hit- and Miss-trials. First, in line with previous work (Busch, Dubois, & 

VanRullen, 2009; Limbach & Corballis, 2016) we found that lower alpha power levels preceded Hits 

compared to Misses peaking at ~0.36 s before target onset (cluster-corrected p = 0.01; Fig. 2a). Brain 

source results (Van Veen et al., 1997) revealed the strongest effects over occipital-temporal areas, 

which were lateralized to the left hemisphere, contralateral to stimulus presentation (minimum t value 

in the left occipital cortex, BA 39; tMIN = -3.64; MNI coordinates in mm: -50, -65, 10; Fig. 2b). 

Second, confirming previous reports (Busch, Dubois, & Vanrullen, 2009; Mathewson et al., 2009) 

we found oscillatory alpha-band activity just before stimulus onset (-0.3 to -0.1 s) to be phase locked 

with opposed phase angles on Hit- vs. Miss-trials: POS was significantly higher than expected by 

chance in 77 virtual sensors in source-space (all FDR-corrected p < 0.046; Fig. 2b). Separate analyses, 

in which the trials were stratified for pre-stimulus alpha power, confirmed that the POS results were 

not confounded by power (16/889 FDR-corrected significant virtual sensors; smallest p < 0.001; see 

Supplementary Materials and Fig. S4). Brain source results revealed significant phase effects in the 

left occipital cortex (second highest POS value in BA 19; POSMAX(2) = 0.046; MNI coordinates in 

mm: -50, -80, 10) but also in prefrontal cortex in the right hemisphere (maximum POS value located 

in right BA 10; POSMAX(1) = 0.047; MNI coordinates in mm: 25, 55, -20). In sum, both pre-stimulus 

power and phase affected perceptual outcome, but we found different neural generators for the 

observed effects. Both pre-stimulus power and phase effects involved occipital-temporal regions 
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contralateral to the stimulus location, but the phase effects also extended to prefrontal cortex 

ipsilateral to stimulation.  

In a next step, we investigated the influence of the observed pre-stimulus effects on the subsequent 

post-stimulus evoked responses. If pre-stimulus alpha-band power and phase are functionally relevant 

for conscious perception, then we would expect them to impact not only the behavioral outcome, but 

also the neurophysiological correlate of conscious access, namely the post-stimulus evoked response. 

To this end, we selected subsets of trials in which the pre-stimulus alpha-band power- and phase 

impact was maximized and minimized, respectively (30% trials each for POWMAX-EFFECT, POWMIN-

EFFECT, POSMAX-EFFECT and POSMIN-EFFECT, see Methods and Fig. S6-S9 for single-subject data on 

sorted trial for POSMAX-EFFECT and POSMIN-EFFECT). First, the trial sorting for the maximal and minimal 

phase effects was done based on two separate regions of interest in the left occipital cortex and in the 

right prefrontal cortex (for single-subject data see Figs. S6-S9). As a confirmation of our trial-sorting 

approach, we found strong pre-stimulus effects in the max-effect trial subsets (cluster-corrected p = 

0.002 in POWMAX-EFFECT; in POSMAX-EFFECT, 595/889 FDR-corrected significant virtual sensors for 

trial-sorting by left occipital - smallest p < 0.001 - and 589/889 for trial-sorting by right prefrontal - 

smallest p < 0.001; Fig. S5). By contrast, there were (almost) no significant effects in the min-effect 

trial subsets (no cluster identified in POWMIN-EFFECT; for POSMIN-EFFECT, 0/889 FDR-corrected 

significant virtual sensors for trial-sorting by left occipital - smallest p = 0.91 - and 5/889 for trial-

sorting by right prefrontal – smallest p = 0.036). For all trial subsets, we found significant post-

stimulus differences in the ERFs between Hits and Misses (all cluster-corrected p = 0.002). 

Importantly, however, the post-stimulus ERF difference (Δ Hits-Misses) was significantly greater for 

the POWMAX-EFFECT vs. POWMIN-EFFECT trial subset (cluster-corrected p = 0.008). This effect on ERFs 

occurred between 0.17 s to 0.25 s after stimulus onset. It engaged different brain regions – parietal 

and frontal areas of both hemispheres (Fig. 3a) – than those of the pre-stimulus power effect per se, 

which mostly involved left occipital-parietal areas (Fig. 2b). Consistent with the cluster-based 
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analysis, the repeated-measures ANOVAs on the two ERF peaks (at peak 1 = 240 ± 20 ms and at 

peak 2 = 360 ± 20 ms) showed significant interactions between Response (Hit vs. Miss) and Effect 

(POWMAX-EFFECT vs. POWMIN-EFFECT; Peak 1: F1,19 = 17.8, p < 0.001, ηp
2 = 0.48; Peak 2: F1,19 = 4.5, 

p = 0.047, ηp
2 = 0.19; Fig. 3b). Bonferroni-corrected post-hoc comparisons showed that the response 

for Hits in POWMAX-EFFECT was larger than in POWMIN-EFFECT only for the first peak (Peak 1: p = 

0.013; Peak 2: p = 0.7). Furthermore, for both peaks we observed a main effect of Response (Peak 1: 

F1,19 = 19.9, p < 0.001, η2 = 0.51; Peak 2: F1,19 = 24, p < 0.001, η2 = 0.56) showing a significantly 

larger response for Hits than Misses in both power levels, while the factor Effect alone was not 

significant (Peak 1: F1,19 = 0.5, p = 0.47, η2 = 0.02; Peak 2: F1,19 = 0.04, p = 0.84, η2 < 0.1). Similarly, 

in the second analysis, in which trial sorting was based on the average over all significant virtual 

sensors, instead of the single one showing the strongest effect, a greater ERF-difference (Δ Hits-

Misses) in POWMAX-EFFECT vs. POWMIN-EFFECT was observed, between 0.41 s and 0.52 s after stimulus 

onset (cluster-corrected p = 0.042).  

By contrast, the pre-stimulus phase effects had less influence on the post-stimulus evoked response. 

There were no significant differences between the POSMAX-EFFECT vs. POSMIN-EFFECT trial subsets for 

the post-stimulus ERF-difference (Δ Hits-Misses), neither when tested with a cluster-based analysis 

across all virtual sensors and time points (trial sorting by left occipital: smallest cluster-corrected p = 

0.875; trial sorting by right prefrontal: smallest cluster-corrected p = 1) nor when tested at the peaks 

on the virtual sensors where we found the effects for the pre-stimulus power trial subsets (all p > .05 

for the interaction between Response and Effect; Fig. S10). In line with these results, no effect on 

ERFs was found when trial sorting was performed by averaging over all significant virtual sensors 

(cluster-corrected p > 0.85; Fig. S11a), nor when trial sorting was performed by averaging over the 

whole time-frequency range of interest (cluster-corrected p > 0.18; Fig. S11b). In sum, we only found 

a post-stimulus influence on the ERFs for the pre-stimulus power effects but not for the pre-stimulus 

phase effects.  



18 
 

Discussion  

In the present work, we successfully replicated previous findings of pre-stimulus alpha-band activity 

effects on perceptual outcome in a near-threshold visual detection task. Hits differed from Misses in 

both features of pre-stimulus alpha-band oscillations, power and phase, as well as in the visual-evoked 

response. Importantly, we observed distinct brain sources linked to pre-stimulus alpha activity. 

Whereas pre-stimulus alpha-band power effects occurred in sensory-related brain regions 

contralateral to the presentation of the stimulus, the effect of pre-stimulus alpha-band phase also 

involved higher order regions in prefrontal cortex ipsilateral to stimulation. Furthermore, pre-stimulus 

alpha power (but not phase) had an impact on the stimulus-evoked response, boosting the neural 

response of successful conscious perception.  

Pre-stimulus alpha power involves lateralized occipital-temporal areas 

As expected, we observed stronger pre-stimulus alpha-band power preceding Miss-trials compared 

to Hits. Our result is consistent with the hypothesis of an inhibitory effect of alpha-band activity on 

conscious perception (Klimesch et al., 2007; Jensen & Mazaheri, 2010), which has been further 

confirmed by several recent findings (Limbach & Corballis, 2016; Benwell, Keitel, et al., 2017; 

Benwell, Tagliabue, et al., 2017; Iemi et al., 2017; Samaha et al., 2017; Iemi & Busch, 2018). The 

difference in pre-stimulus alpha-band power between Hits and Misses was strongest around 0.4 s 

before stimulus onset and occurred in the left occipital-temporal cortex. This finding is in line with 

reports of sensory-related, “occipital alpha”, suggested by topographical EEG maps that indicate the 

involvement of posterior electrodes (Thut et al., 2006; Hanslmayr et al., 2007; Romei et al., 2008), 

as well as by previous MEG studies, which identified occipital and parietal areas involved in the 

alpha-band power modulation for visual discrimination ability (van Dijk et al., 2008) or visual-

temporal integration (Wutz et al., 2014). Furthermore, it is worth noting that the target stimulus in 

the detection task was always presented in the right side of the screen; therefore, the lateralization of 

the effect contralateral to target presentation, together with the involvement of posterior brain areas, 
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strongly support the hypothesis of a key role of alpha-band power in modulating local excitability of 

sensory-related brain regions (Jensen & Mazaheri, 2010).  

Prestimulus alpha phase involves both occipital and prefrontal areas  

On top of the alpha-band power modulations, we also observed significant effects of pre-stimulus 

alpha-band phase on visual perception: Hit- and Miss-trials were linked to opposite phases just before 

stimulus onset. This result successfully replicates previous findings (Busch, Dubois, & Vanrullen, 

2009; Mathewson et al., 2009) and corroborates the interpretation of pulsed inhibition exerted by 

alpha-band oscillations (Jensen & Mazaheri, 2010; Mathewson et al., 2011). In terms of brain sources, 

our POS results revealed the involvement of left occipital areas but also of right frontal regions. 

Intriguingly, our finding on pre-stimulus alpha phase match the results of a previous EEG study 

(Dugué et al., 2011), in which pre-stimulus alpha-band activity in both posterior and frontal-central 

electrodes predicted phosphene perception evoked by near-threshold transcranial magnetic 

stimulation. The relevance of a “frontal alpha” for visual attention and perception, in addition to the 

more classical “occipital alpha”, has been proposed previously, although it was mostly based on EEG 

topographies (Busch, Dubois, & Vanrullen, 2009; Zoefel & VanRullen, 2017). Our findings support 

this hypothesis by providing evidence at the brain source level. 

Pre-stimulus alpha power – but not phase – boosts post-stimulus visual-evoked response 

The repeated presentation of identical near-threshold stimuli gave rise to different neural responses, 

which strongly depended on conscious report: Whereas the evoked response in the ERFs was almost 

absent on Miss-trials, we observed a clear evoked response for Hits, peaking at 0.24 s and 0.36 s after 

stimulus onset. These latencies are consistent with event-related potential components reported by 

(Busch, Dubois, & Vanrullen, 2009), which employed a similar near-threshold visual detection task, 

and more generally with the timing of the neural response commonly associated to perceptual 

awareness (Sergent et al., 2005; Fisch et al., 2009). The opposite pattern for the Hits vs. Misses 

contrast observed in ERF amplitude (i.e., Hits > Misses) and in post-stimulus alpha power (i.e., 
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Misses > Hits) suggest that the two phenomena are subtended by different mechanisms. At the brain 

source level, the contrast between Hits and Misses revealed a first peak mainly located in occipital 

areas of the left hemisphere. The lateralization of this early response is consistent with the lateralized 

presentation of the stimuli, which were always on the right side of the screen, suggesting that the first 

peak may reflect aspects related to sensory processing. At the latency of the second peak, neural 

activity extensively spread also into temporal and parietal areas of the right hemisphere, with a peak 

in the supramarginal gyrus in parietal cortex. Taken together, both temporal and spatial features of 

our results on the stimulus-evoked response are in line with the well-established neural signature of 

conscious perception after stimulus onset, which involves several stages along the visual pathway, 

from early sensory areas to higher-order prefrontal cortex (Lamme, 2006; Dehaene & Changeux, 

2011; Van Vugt et al., 2018; Sanchez et al., 2020).  

Considering that the effects of both features of pre-stimulus alpha oscillations (i.e., power and phase) 

significantly shaped perceptual outcome, we expect them to impact also the post-stimulus evoked 

response. Importantly, we report evidence that the visual-evoked response is boosted by pre-stimulus 

alpha-band power. When the effect of pre-stimulus alpha-band power is strong, i.e., when selecting 

Hit-trials with low pre-stimulus alpha power and Miss-trials with high pre-stimulus alpha power, we 

observed a greater difference between Hits and Misses in the ERFs than when the same effect was 

minimized. The similar results obtained when sorting trials by averaging over all significant virtual 

sensors, instead of the single one showing the strongest effect, indicates that the effect of pre-stimulus 

alpha power on the evoked response was robust, and not dependent on the trial sorting procedure. 

The latency of the effects suggests that pre-stimulus alpha power mainly contributes to the first peak 

of the ERFs, i.e., around 0.24 s after stimulus onset, and involves higher-order neural activations in 

parietal and frontal areas. This result is in line with a large body of evidence indicating a link between 

pre-stimulus oscillations and post-stimulus evoked potentials (Mazaheri & Jensen, 2008), starting 

with pioneering work in the early 90s (Ba̧sar et al., 1998). Specifically, a relationship between pre-
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stimulus EEG alpha power and event-related potential has been described both at early (e.g., N1 

component, Roberts et al., 2014; P1 component, Fellinger et al., 2011) as well as at later latencies 

(e.g., P3 component; Ergenoglu et al., 2004; Min & Herrmann, 2007), not only in the visual but also 

in the somatosensory domain (Zhang & Ding, 2010). Importantly, our approach which aims to 

maximize and minimize the effect of alpha power on the hits/misses contrast underscores the 

functional relevance of source-level pre-stimulus alpha power for perceptual awareness, extending 

previous reports limited to detecting its effect on trial outcome (Busch, Dubois, & Vanrullen, 2009; 

Limbach & Corballis, 2016; Benwell, Keitel, et al., 2017; Benwell, Tagliabue, et al., 2017; Iemi et 

al., 2017; Samaha et al., 2017; Iemi & Busch, 2018). 

The same analysis conducted on the effects of pre-stimulus alpha phase on ERFs led to no significant 

post-stimulus modulations. We detected no difference between ERFs computed when the phase 

opposition was maximal or minimal. One hypothesis is that alpha phase effects on the evoked 

response have been underestimated due to the reduction of a great amount of data to specific 

spatial-spectral-temporal points of interest. Nevertheless, we accounted for this possible 

concern by running additional analyses with different trial sorting methods that considered the 

entire time-frequency range of interest as well as the whole cluster of significant virtual sensors; 

the negative results further support that there is no significant effect of pre-stimulus alpha phase on 

the stimulus-evoked response. This indicates that, although pre-stimulus alpha-band phase can 

account for variability in perceptual outcome, it does not seem to affect the stimulus-evoked response. 

This result suggests a distinct role of pre-stimulus alpha phase as compared to alpha power, yet, it 

challenges its functional relevance for conscious perception. Indeed, the role of pre-stimulus alpha-

band phase has been recently questioned by several studies leaving an open issue on whether such 

inconsistency may be due to variability in methodological approaches, experimental factors or 

physiological reasons (Benwell, Keitel, et al., 2017; Benwell, Tagliabue, et al., 2017; Ruzzoli et al., 

2019). Here, however, we did observe a significant effect of pre-stimulus alpha-band phase on 
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perceptual outcome: the employment of a detection paradigm similar to the one by (Busch, Dubois, 

& Vanrullen, 2009), which led to significant alpha-band phase effects also in subsequent studies 

(Busch & Van Rullen, 2010; Chaumon & Busch, 2014), may suggest that at least a portion of the 

variability in the literature in detecting pre-stimulus phase effects could be due to experimental 

factors, such as the eccentricity of the target stimulus in the visual field (as already pointed out by 

(Ruzzoli et al., 2019)) or stimulus duration (Benwell, Tagliabue, et al., 2017).  

Conclusions 

We provide evidence of non-overlapping, distinct brain sources accounting for the effects of pre-

stimulus alpha-band power and phase on perceptual outcome. Moreover, alpha-band power and phase 

had distinct impact on the stimulus-evoked response. Taken together, our findings suggest that the 

two features of alpha oscillations – power and phase – may reflect distinct mechanisms of perceptual 

modulation in the visual domain, highlighting the functional relevance of pre-stimulus alpha power 

for conscious access while questioning the functional role of alpha phase. 
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Figure captions 

Fig. 1 Visual detection task and evoked response. a) Trial structure: while keeping eye fixation on the 

cross located in the center of the screen, participants were asked to detect a small dot that could appear 

in 80% of the trials between two markers, located on the right side of the screen. b) Detection 

performance at chance level for Hits and Misses; other responses included False alarms and no-

response trials (e.g., within-subject SE in error bars (Morey, 2008). c) Time course of ERFs (baseline 

corrected for visualization purpose) showing a significantly larger response for Hits than Misses, 

averaged over significant virtual sensors in the cluster at the two peaks; within-subjects SE in shaded 

error bars (Morey, 2008). d) Source plots of significant t values in the cluster at the two ERF peaks. 

For visualization purposes, data has been interpolated over virtual sensors and the threshold for 

significance was set at t = 4.2, p < 0.001. 

Fig. 2 Hits vs. Misses in pre-stimulus alpha oscillations. a) Time-frequency plot of t values comparing 

power between Hits and Misses in the pre-stimulus window (time 0 = stimulus onset), averaged over 

significant virtual sensors in the cluster, at the time-frequency range highlighted by the white 

rectangle (i.e., from -0.45 to -0.3 s, from 9 to 13 Hz). b) Source plot of significant t values with a 

threshold at p = 0.01 averaged over the alpha band (9-13 Hz) and the pre-stimulus time window from 

-0.45 and -0.3 s. The white rectangle indicates the time-frequency range of interest represented in 

source plots. c) Time-frequency plot of POS values, averaged over significant virtual sensors (FDR 

corrected; Benjamini & Hochberg, 1995). The white rectangle indicates the time-frequency range of 

interest considered in the statistical analysis and represented in d). d) Source plots of significant POS 

values averaged over the alpha frequency band (9-13 Hz) and a pre-stimulus time window from -0.3 

to -0.1 s In b) and d), for visualization purposes, data has been interpolated over virtual sensors.  

Fig. 3 Effect of pre-stimulus alpha power on stimulus-evoked response. a) Time course of ERFs for 

Hits-Misses difference (baseline corrected for visualization purpose), significantly larger for 

POWMAX-EFFECT than POWMIN-EFFECT from ~0.17 to 0.25 s, averaged over significant virtual sensors 
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represented in source plot (inset). Within-subject SE in shaded error bars (Morey, 2008). b) Results 

of 2x2 rm-ANOVA with factors Response (Hits, Misses) and Power (POWMAX-EFFECT, POWMIN-

EFFECT), on ERF Peak 1 (top) and Peak 2 (bottom), indicating a main effect of Response (Hits > 

Misses) and a Response x Power interaction (Peak 1: Hits in POWMAX-EFFECT > POWMIN-EFFECT). 

Significant post-hoc comparisons are indicated by p values (Bonferroni corrected). Within-subject 

SE in error bars (Morey, 2008). 
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Figures 
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Fig. 2 
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Fig. 3 

 

 


