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Abstract

Hypovigilance represents a major contributor to accidents. In operational
contexts, the burden of monitoring/managing vigilance often rests on op-
erators. Recent advances in sensing technologies allow for the development of
psychophysiology-based (hypo)vigilance prediction models. Still, these models
remain scarcely applied to operational situations and need better understand-
ing. The current scoping review provides a state of knowledge regarding psycho-
physiological models of hypovigilance detection. Records evaluating vigilance
measuring tools with gold standard comparisons and hypovigilance prediction
performances were extracted from MEDLINE, PsychInfo, and Inspec. Exclusion
criteria comprised aspects related to language, non-empirical papers, and sleep
studies. The Quality Assessment tool for Diagnostic Accuracy Studies (QUADAS)
and the Prediction model Risk Of Bias ASsessment Tool (PROBAST) were used
for bias evaluation. Twenty-one records were reviewed. They were mainly char-
acterized by participant selection and analysis biases. Papers predominantly fo-
cused on driving and employed several common psychophysiological techniques.
Yet, prediction methods and gold standards varied widely. Overall, we outline the
main strategies used to assess hypovigilance, their principal limitations, and we
discuss applications of these models.
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Sleepiness is a major contributor to many accidents and haz-
ardous situations in several domains (e.g., Lyznicki et al., 1998;
Philip & Akerstedt, 2006; Tefft, 2010). Estimations point out
that it is involved in at least 15%-20% of all accidents in trans-
port operations (Akerstedt, 2000; Connor et al., 2002; Horne
& Reyner, 1999). As such, mental fatigue and sleepiness can
importantly compromise safety and integrity of individuals
and infrastructures, especially in high-stake situations such as
in complex and safety-critical environments. This can be ex-
plained by the consequences of sleepiness and mental fatigue
on human performance. In fact, mental fatigue and sleepiness
have important impacts on perception, attention, decision-
making, and judgment, and can lead to slower reaction times,
misjudgments, and inferior detection of critical elements
within one's environment (e.g., Carretta & French, 2012;
Gunzelmann & Gluck, 2009; Guo et al., 2016; Lopez de la O
et al., 2012; see Abd-Elfattah et al., 2015, for a review).
Although fatigue and sleepiness are sometimes consid-
ered the same phenomenon, some distinctions exist. As out-
lined by Salvati et al. (2021), sleepiness (or drowsiness)
represents an intermediate progressive state between an
awakening state and sleep, which is related to altered aware-
ness and to a desire to sleep (Mehreen et al., 2019; Slater, 2008).
It is a normal transitional state but it can also be caused by
sleep-related problems such as lack of sleep, poor sleep qual-
ity, or circadian rhythm disequilibrium (May & Baldwin, 2009).
Fatigue rather represents a larger phenomenon. It is a conse-
quence of either physical or mental work, and is construed as
a reluctance—and a difficulty—to pursue and focus on a
given task (Boksem & Tops, 2008; Brown, 1982). Vigilance is
“the capability to be aware of relevant, unpredictable changes
in one's environment, irrespective of whether or not such
changes occur” (van Schie et al., 2021, p. 178). This scoping
review aims at providing a portrait of the literature related to
hypovigilance and, more particularly, on sensing methods to
assess this phenomenon for operational applications. For the
sake of parsimony and because the current paper is mainly
interested in the observable effects of mental fatigue, we here-
after focus on the concept of hypovigilance as an integrative
concept at the center of fatigue, drowsiness, and sleepiness."

'One could argue that referring to hypovigilance to discuss a large variety of
phenomena such as fatigue, drowsiness, and sleepiness may represent an
important generalization. Literature on these subjects is vast and we
acknowledge that distinctions indeed exist between hypovigilance-related
phenomena induced, for example, by cognitive resource depletion, circadian
rhythm, boredom, or sedation. Yet, it still remains unclear how all of these
concepts are related to each other and to what extent they can be assessed
using common methods in a real-world setting. Here, the scoping review
approach allows to address this question without any a priori from a larger
perspective in order to draw the lines around common observations and gaps
in the literature on hypovigilance. Since the literature on the subject is broad,
this allows us to cover a broader initial scope as a first step toward identifying
best ways to monitor vigilance in several real-world applied situations.

It allows increasing the scope to not only discuss biological
effects induced by homeostatic- and circadian-related phe-
nomena, but also situational consequences of mental effort,
monotony, and time on task.

In operational contexts, effects of hypovigilance (ei-
ther induced by sleepiness or fatigued mental/physical
states) can be observed via key domain-specific perfor-
mance indicators. In aviation, studies have outlined that
hypovigilance can lead to in-flight error-making (Aljurf
et al., 2018; Gregory et al., 2010), inferior situation aware-
ness, longer reaction times and increased distractibility
(Miller & Melfi, 2006), visual and auditory perception im-
pairment (Dehais et al., 2014; Previc et al., 2009; Russo
et al., 2005), and to reduced cognitive flexibility and hand-
eye coordination (O'Hagan et al., 2018). In driving stud-
ies, evidence of increase in reaction time (Guo et al., 2016;
Liu et al., 2012), reduced time headway (i.e., between-
vehicles duration; Fuller, 1983; Zhang et al., 2016), and in-
creased lateral deviation errors and variability (Brookhuis
& De Waard, 1993; Matthews & Desmond, 2002; Philip
et al., 2003) among hypovigilant drivers were also largely
reported. Hypovigilance is even associated with difficul-
ties in takeover performance in automated driving sit-
uations (Jarosch et al., 2019; Matthews et al., 2019). The
consequences of hypovigilance can also be observed in
non-driving domains such as command and control oper-
ations, i.e., occupations entailing providing key informa-
tion and orders for security operations such as emergency
management, police or firefighting operations, and sur-
veillance (e.g., Carretta & French, 2012). In the last few de-
cades, the role of human operators has constantly evolved
with the emergence of automation, shifting toward sys-
tems supervision and the management of malfunctions
and unusual events (Parasuraman, 1986; Sheridan, 1987).
Consequently, vigilance still remains a key asset for many
operational domains including but not limited to military
surveillance, industrial quality control, robot manufac-
turing, seaboard navigation, and transportation (Warm
et al., 1996). Vigilance is also a key capacity that can be al-
tered by many organic brain syndromes, such as delirium
(American Psychiatric Association, 2013).

1.1 | Measuring hypovigilance

Currently, one of the key strategies in the management
of hypovigilance in operational contexts is sleep (Petrilli
et al., 2006). An important part of the accountability re-
mains with the operators, which typically have to report—
and manage their performance on task—when they find
themselves in a hypovigilant state. Nevertheless, this phe-
nomenon is still highly prevalent (e.g., between 68% and
91% of commercial airline pilots still experience fatigue;
Aljurf et al., 2018; Jackson & Earl, 2006). To counter this
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problem, alternative methods must be developed to help
individuals better monitor their own vigilance level and,
ultimately, to reduce potential consequences for the safety
and integrity of populations and infrastructures. In fact,
there have been calls for the development of new strat-
egies to better monitor vigilance, such as the European
New Car Assessment Programme (EuroNCAP). In its
2025 Roadmap, EuroNCAP recommends that driver-
state monitoring is a key and priority part of safety as-
sessments (EuroNCAP, 2017). According to Schwarz and
Fuchs (2018), adaptive systems are also essential in better-
supporting operators in human-machine systems to miti-
gate high-risk user states and performance decrements.
From their standpoint, the different user states useful
to monitor in complex and safety-critical work environ-
ments include, among others, attention and fatigue.
Different approaches can be taken to monitor human
states, and more particularly hypovigilance (see, e.g.,
Kerick et al., 2013; Oken et al., 2006). First, measures of
task performance can be used. This approach relies on
the identification of signs of hypovigilance, that is, the be-
havioral manifestation of a reduced ability to focus on the
main task. For instance, in a driving context, missing traf-
fic signals, tailgating, swerving and crossing lanes can be
used to assess a driver's hypovigilant and distracted state
(Kashevnik et al., 2021). Second, performance on a sec-
ondary task can also be used to evaluate hypovigilance lev-
els while performing a primary task (either concurrently
or in alternation, at given intervals). The Psychomotor
Vigilance Task (PVT; Dinges et al., 1997; Dinges &
Powell, 1985; Doran et al., 2001; Lim & Dinges, 2008) is
a common way to measure behavioral alertness wherein
one must react as quickly as possible to the simple pre-
sentation of a stimulus occurring at random interstimulus
intervals. It is used in laboratory settings but has also real-
life applications (e.g., letters attention test for diagnosing
delirium; Ely, Gautam, et al., 2001). This task can be used
as a unique test or added while a person is performing
another task, hence providing information on how sim-
ple reaction time to the stimulus evolves as a function of
time/effort on the primary task (e.g., Buckley et al., 2016;
Dinges et al., 1998). Third, subjective measures have also
been used in certain contexts, wherein operators report
their own (self-perceived) level of drowsiness or vigilance
(e.g., Dorrian et al., 2008; Luna et al., 2022). However,
one of the limitations of these preceding techniques (i.e.,
behavioral and self-reported subjective measures) is that
they are not specific to hypovigilance. Indeed, behavioral
measures (e.g., performance disruption from a given task)
represent the product of processing neural networks from
task stimulus detection to motor reaction (e.g., Hughes &
Marsh, 2017). During this process, factors such as motiva-
tion and emotional states can have an impact on behavior
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(Pessoa, 2009). Consequently, although they do relate
to one's hypovigilance level, both behavioral and self-
reported measures of hypovigilance can lack validity and
specificity because of the different confounding variables
that might modulate them.

A fourth strategy to measure hypovigilance concerns
the collection and analysis of psychophysiological prox-
ies (e.g., Boudaya et al., 2020; Parasuraman et al., 1998;
Rush et al., 2019; Sahayadhas et al., 2015). This tech-
nique relies on measures of the physiological activity of
an operator—either of the central or the peripheral ner-
vous systems—to estimate one's level of sustained atten-
tion (vigilance) deployment. The rationale behind this
approach lies in the significant implication of the locus
coeruleus-norepinephrine (LC-NE) system for attention-
related activities. Activity of this system has been largely
related to vigilance, attention orienting, arousal, and to
the sleep-wake cycle (e.g., Aston-Jones & Cohen, 2005;
Bouret & Sara, 2004; Nieuwenhuis et al., 2011; Rajkowski
et al., 2004; Southwick et al., 1999). NE is secreted across
the brain in multiple areas including cerebral cortex, lim-
bic structures, diencephalon, midbrain, and spinal cord
(e.g., Miller & Cohen, 2001; Nieuwenhuis et al., 2005;
Sara & Bouret, 2012). Its secretion from the pons-located
LC in these brain structures makes synapse appositions
with postsynaptic specializations on target neurons,
hence generating further electric activity in the brain
(Marzo et al., 2014; Papadopoulos & Parnavelas, 1990).
Consequences of such specialized activity enhance the se-
lectivity of certain neurons to specific targets and increase
the signal-to-noise ratio to allow preferential processing
of the stimuli presented to the system (Foote et al., 1975;
Waterhouse et al., 1998). Peripheral sympathetic activity
increase (and concurrent parasympathetic activity de-
crease) has also been reported (e.g., Elam et al., 1986; Sara
& Bouret, 2012; Wang & Munoz, 2015), ensuing from the
multiple efferent projections of the LC-NE system in the
brain. Taken together, this means that multiple psycho-
physiological proxies of the (hypo)vigilant state can be
collected via measures of the central nervous system and
of the peripheral nervous system.

Multiple models for quantifying hypovigilance or as-
sociated concepts (e.g., drowsiness and fatigue) have been
developed over the years in laboratory conditions using
behavioral and/or physiological correlates of the vigilance
level (e.g., Oken et al., 2006). In fact, as outlined above, it is
known that a decrease in vigilance is associated with mul-
tiple physiological and behavioral manifestations and that
measuring such manifestations can provide information on
the level of vigilance. Drowsiness and vigilance have, for
example, been assessed by measuring the PERCLOS (per-
centage of eyelid closure over the pupil; e.g., Lin et al., 2012;
Sommer & Golz, 2010). Heart rate and respiration rate are
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also associated with the sleep onset period. These phys-
iological responses can thus be integrated into predic-
tive models to detect hypovigilance for safety purposes
(EuroNCAP, 2017; Schwarz & Fuchs, 2018). Multiple re-
views have been published to summarize methods for assess-
ing hypovigilance and other related concepts from multiple
perspectives (e.g., Arun et al., 2011; Bafna & Hansen, 2021;
Bier et al., 2020; Duffy & Feltman, 2022; Larue et al., 2010;
Mogilever et al., 2018; Mohanavelu et al., 2017; Sahayadhas
et al., 2012). For instance, Bendak and Rashid (2020) pro-
vide a systematic review of the causes of fatigue observed in
the aviation industry and the ways to measure it. As a result,
they outlined many different objective metrics (e.g., fitness-
for-duty tests, physiological monitoring, performance moni-
toring, flight data monitoring) and subjective measures (e.g.,
self-rating scales, air safety reports, and fatigue prediction).
Literature on the different measures of hypovigilance, how-
ever, is scattered through different approaches (e.g., ergo-
nomics, engineering, cognitive neuroscience) and research
is thus difficult to reconcile.

1.2 | The current study

The goal of this review is to map the state of the current
knowledge about the psychophysiological methods for
hypovigilance detection. We aim to identify relevant lit-
erature regarding the psychophysiological responses iden-
tified as proxies for human hypovigilance from a broader
perspective, regardless of the specific domain of applica-
tion, in order to provide the scientific community with a
better sense of possible ways for investigating/monitor-
ing hypovigilance. To reach this goal, we performed a
systematic scoping review of empirical studies found on
several databases that included both diagnostic and pre-
diction studies (with respective detection of hypovigilant
state on a given dataset/context vs. prediction of hypovigi-
lant levels with measures that could be generalizable to
other datasets/contexts). We chose to conduct a scoping
review because of the potentially large scope of the lit-
erature emerging from heterogeneous but interconnected
disciplines such as medicine, psychology, and engineer-
ing. Also, the key concepts underpinning hypovigilance
detection from psychophysiological responses remain a
rapidly emerging area of study (Munn et al., 2018; Peters
et al., 2015) that would benefit from a scoping review to
guide future research and development.

2 | METHOD

We conducted our review using the Levac et al. scop-
ing review methodology (Levac et al., 2010) and report

our findings using the Preferred Reporting Items for
Systematic reviews and Meta-Analyses extension for
Scoping Reviews (PRISMA-ScR) framework (Tricco
et al., 2018; see Appendix S1 for the PRISMA-ScR check-
list). We did not register our review protocol.

2.1 | Eligibility criteria

Inclusion and exclusion criteria were pre-specified for each
step of the selection of sources of evidence. Inclusion cri-
teria were: (1) studies evaluating vigilance measurement
tool(s) compared to a gold standard, and (2) studies had to
report data about either the accuracy, sensitivity, or speci-
ficity of their measurement tools. We had defined a priori
a list of accepted gold standards prior to the screening of
titles and abstracts. These gold standards were associated
with a variety of concepts that are related to hypovigi-
lance. The gold standards were: the Attention Network
Test, the AVPU scale, the Fatigue Scale, the SAFTE
Model, the Confusion Assessment Method, the Delirium
Severity Scale, the Glasgow Coma Scale, the Intensive Care
Delirium Screening Checklist, the Karolinska Sleepiness
Scale, the PERCLOS, the Psychomotor Vigilance Task, the
Psychomotor Vigilance Test, the Ramsay Sedation Scale,
the Richmond Agitation-Sedation Scale, the Sour Seven
Questionnaire, the Stanford Sleepiness Scale, the Epworth
Sleepiness scale, the Maintenance of Wakefulness Test,
the Confusion Performance Test, the Recognizing Acute
Delirium as Part of Your Routine (RADAR) tool, and
electroencephalography studies. We did not a priori de-
termine a specific threshold for each of these gold stand-
ards because of the scoping nature of this review and
because of lack of consensus in this emerging field of
study. Besides, some gold standards may not necessarily
possess clear thresholds for determining episodes of hy-
povigilance (e.g., PERCLOS measures) and this allowed
us to include a larger set of studies to better scope current
practices in predicting vigilance levels. Moreover, consid-
ering the scoping nature of our review, we also allowed
additional new gold standards if the authors defined these
clearly in the methods of their published manuscripts.
For example, video recordings using the Wierwille scale
(Wierwille & Ellsworth, 1994) were accepted. The scoping
review methodology allows researchers to define post hoc
inclusion and exclusion criteria based on new familiar-
ity with the subject matter through reading the identified
studies (Levac et al., 2010).

Exclusion criteria were also determined before the
research strategy was initiated. Studies that were not in
English nor French, that involved irrelevant populations
(e.g., animal studies or children), editorials, letters to edi-
tor, concepts only, clinical image pieces, and non-scientific
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publications were excluded. Studies that did not compare a
new measurement tool to an accepted gold standard were
also excluded for lack of evidence. Sleep and anesthesia
studies were also excluded because the subject of interest
was rather the variation of vigilance in relation to a task.
Studies evaluating mental workload, muscle fatigue, and
use of pharmacologic psychostimulants without any mea-
sure of vigilance were also rejected. Non-peer-reviewed
literature was also rejected. All duplicate publications
were removed.

2.2 | Information sources and
search strategies

In collaboration with two research librarians from
Université Laval, we selected three databases relevant to
our study: MEDLINE, PsychlInfo, and Inspec, specialized
in medicine, psychology, and engineering, respectively.
These domains constitute the three main areas of interest
for this project. We then built a research strategy with the
two information specialists. Our strategy had three main
axes: hypovigilance and associated concepts, gold stand-
ards for hypovigilance measurement, and potential new
physiological measures of hypovigilance (see an example
in Table 1). We created an exhaustive list of keywords for
each of these domains. The research librarians validated
our keywords and adapted our research strategy to the
three selected databases.

We thoroughly searched each database for relevant
articles published from the inception date of each data-
base (MEDLINE: 1966; PsycINFO: 1967; Inspec: 1967)
until April 22nd, 2021. We repeated the search strategy on
November 10th, 2021 to make sure our findings were up
to date. All the references figuring in the selected articles
were manually checked to make sure no additional article
was missed. We used the Covidence Systematic Review
Software to manage all the review steps (Veritas Health
Innovation, Melbourne, Australia). Table 1 presents the
full electronic search strategy used for MEDLINE. The
research strategies used for PsycINFO and Inspec can be
found in Appendix S2.

2.3 | Selection of sources of evidence

We proceeded in a three-step manner with the help of the
Covidence Systematic Review Software. First, two teams
of reviewers (MHL & AMartel, and MF & MK) indepen-
dently screened abstracts and titles based on inclusion
and exclusion criteria (first step on April 22, 2021; second
step on November 10, 2021). To ensure consistency in the
application of criteria screening, training sessions were
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conducted for a set of approximately 100 citations before
the reviewers started their independent work. The articles
had to be approved by the two reviewers to be included
in the next steps. If reviewers disagreed about sorting an
article, they met to discuss either in person, by phone, or
videoconference. If a consensus could not be reached be-
tween the two teams of reviewers, a third reviewer (PMA)
made the final decision. Second, reviewers proceeded to
another round of screening by applying exclusion criteria
to the full texts. The remaining selected studies were then
thoroughly analyzed for data extraction and risk of bias
assessment.

2.4 | Data charting and collation

Data charting was independently executed by two authors
(MF & MK), and reviewed by a third author (AMarois). A
calibrated worksheet was set before the data extraction.
The two researchers then compared their data extraction.
If reviewers disagreed on quality assessment, a third re-
viewer made the final decision, but this was unnecessary
in practice. We did not communicate with the authors to
collect missing data because the aim of the study was to
evaluate the accessible literature and not the raw data.

For each source, we sought the publication year, arti-
cle type, and source of funding. We identified which con-
cepts related to hypovigilance were studied in each paper
(e.g., drowsiness, sleepiness, or fatigue). We then looked
for a definition of the cognitive state studied when avail-
able. We extracted the following data from the included
studies: (a) number of participants, (b) sex, (c) age, (d)
health conditions, (e) study approach (either diagnostic or
prediction model); (f) physiological measuring approach
employed, (g) domain or context of study, (h) method
to induce hypovigilance, (i) experimental task, (j) differ-
ences between the two experimental groups, (k) selected
gold standard and its prespecified threshold(s) if available,
(1) the specific sensors used to collect physiological mea-
sures, (m) the specific diagnostic/prognostic physiological
measures, (n) statistical model used, and (0) a summary of
the main findings. Measures of sensitivity, specificity, and
accuracy were also collected. Information (a), (b), (e), (f),
and (g) were first reported for the overall description of
the records selected for the scoping review. Then, aspects
pertaining to points (h), (i), (k), (1), (m), (n), and (o) were
presented in a more specific discussion depending on the
approach used in each article (i.e., diagnostic vs. predic-
tion model).

Detailed information about the diagnostic/prediction
models (model/test type, predictors source, number of
classes, accuracy, sensitivity, and specificity) is reported in
Appendix S3. In order to summarize each paper with one
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TABLE 1 Research strategy for the MEDLINE database.

Search iteration number

1

Gold standard MeSH—5

New tech MeSH 8

10
11
12

13
14
15

MEDLINE research request

(Drowsiness* or Fatigue or Hypovigilance or “Hypo vigilance” or “Loss
of alertness*” or Tiredness* or Vigilan* or Sleepiness or lassitude or
Wakefulness* or Arousal* or “Sustained attention” or Delirium).ab,kf,ti

Arousal/ or Sleepiness/ or exp Fatigue/ or Wakefulness/ or Delirium/
lor2

(4AT or “Attention Network Test*” or “AVPU Scal*” or “AVPU Scor*” or
(Fatigue adj2 Scal*) or “SAFTE Model*” or “Confusion Assessment
Method*” or “Delirium Severity Scal*” or “Glasgow Coma Scal*” or
“Intensive Care Delirium Screening Checklist*” or “Karolinska Sleepiness
Scal*” or “Percentage Eye Closure*” or PERCLOS or “Psychomotor Vigilance
Task*” or “Psychomotor Vigilance Test*” or “RAMSAY Sedation Scal” or
“Richmond Agitation-Sedation Scal*” or “Sour Seven Questionnaire*” or
“Stanford Sleepiness Scal*” or “Epworth Sleepiness scal*” or “Maintenance
of Wakefulness Test*” or “Continuous Performance Test*” or “Continuous
Performance Task*” or Electroencephalogram* or “Recognizing Acute
Delirium as Part of Your Routine”).ab,kf,ti

Glasgow Coma Scale/ or Electroencephalography/mt [Methods]
4or5

(“Consciousness Monitor*” or Electrocardiograph* or Electrodiagnosis or
Electroencephalogra* or Electromyograph* or EMG or Electrooculograph*
or “Electro Oculograph*” or EOG or FMRI or FNIRS or “Galvanic Skin
Response*” or “Heart rate variabilit*” or “Hemodynamic Monitoring”
or “Gordon Diagnostic System*” or Kinarm* or “Functional Magnetic
Resonance Imag*” or Magnetocardiograph* or Magnetoencephalograph*
or “Functional Near-Infrared Spectroscop*” or “Neurologic Examination*”
or “Neuromuscular Monitoring” or “Neurophysiological Monitoring” or
Polysomnograph* or “Skin conductance level*” or “Skin conductance
response*” or “Bispectral Index Monitor*” or ((“Blood Pressure” or
“Blood Glucose” or “Eye* Movement” or ((Eye* or Visual or Gaze*) adjl
track*) or “Facial Expression*” or Gait* or “Heart Rate*” or “Respiratory
rate*” or “Vital Sign*”) adj3 (Analysis or Determination or Monitoring or
Measurement* or Procedure* or Test*))).ab,kf,ti

Blood Glucose Self-Monitoring/ or Blood Glucose/ or Blood Pressure
Determination/ or Blood Pressure/ or exp Consciousness Monitors/
or Electrocardiography/ or Electrodiagnosis/ or Electromyography/ or
Electrooculography/ or Electroencephalography/ or Exp Eye Movement
Measurements/ or Exp Neurologic Examination/ or Exp Vital Signs/ or Eye
Movements/ or Facial Expression/ or Gait/ or Galvanic Skin Response/
or Heart Rate Determination/ or Hemodynamic Monitoring/ or Magnetic
Resonance Imaging/ or Magnetocardiography/ or Magnetoencephalography/
or Neuromuscular Monitoring/ or Neurophysiological Monitoring/ or
Polysomnography/ or Respiratory rate/ or Spectroscopy, Near-Infrared/

7o0r8
6and 9
3 and 10

(exp Child/ or exp Infant/) not ((exp Adult/ or exp Adolescent/) and (exp Child/
or exp Infant/))

11 not 12
(Animals/ NOT (Animals/ AND Humans/))
13 not 14

Number of
records found

186,311

85,774
225,160
81,125

29,405
99,399
332,553

1,543,386

1,634,829
77,985
9158
1,261,390

8772
4,658,904
7408
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score for each considered metric, the following rules were
followed. When the classification was not binary (three
classes and more), sensitivity and specificity were given for
the class where hypovigilance was prominent (i.e., if the
classes were “alert”, “slightly drowsy” and “drowsy”, the
scores are given for the “drowsy” class). When the paper
presented the performances of more than one model, the
reported scores are those of the best-performing model,
based on accuracy (or specificity if accuracy was not avail-
able). A short description and count of the other models
presented are given in the “Other candidate models” col-
umn. In the case where one metric was not available and
could not be inferred from the data presented in the paper,
the corresponding cell was filled with “NA”.

2.5 | Critical appraisal and risk of
bias analysis

We identified limitations and risk of bias for each ar-
ticle based on the PRISMA-ScR framework (see item
12, Liberati et al., 2009). The Quality Assessment Tool
for Diagnostic Accuracy Studies (QUADAS-2; Whiting
et al.,, 2011) or the Prediction Model Risk of Bias
ASsessment Tool (PROBAST; Wolff et al., 2019) were
used to evaluate the quality of each article depending on
the type of tool studied: a diagnostic tool vs. a prediction
model for the QUADAS-2 and PROBAST, respectively.
Critical appraisal was independently executed by two
authors (MF & MK), and reviewed by a third (AMarois).
Again, both reviewers compared their analysis and, if they
disagreed, a third reviewer made the final decision. The
QUADAS-2 method guided our analysis based on the fol-
lowing risk of bias domains: (a) patient selection, (b) index
test(s), (c) reference standard(s), and (d) flow and timing.
The PROBAST tool focused on the following domains: (a)
participants, (b) predictors, (c) outcome, and (d) analysis.

For each included study, an overall risk of bias evalua-
tion was added for both QUADAS-2 and PROBAST anal-
yses. This overall calculation was inspired by the Revised
Cochrane risk-of-bias tool for randomized trials (RoB2)
method (see Higgins et al., 2019; Sterne et al., 2019). For
the overall risk-of-bias judgment, the following rule was
used: (a) overall low risk of bias was attributed to stud-
ies with low risk of bias classification for all domains,
(b) “some concerns” about the overall risk of bias was at-
tributed to studies having either one or two domains for
which some concerns were found, but without high risks,
and (c) overall high risk of bias was assigned to studies
with some concerns found in multiple domains (three or
more) and for studies with at least one domain at high risk
of bias. The RoB2 Excel sheet (Higgins et al., 2019), com-
prised of different macros, was then used and adapted to

IPSYGHOPHYSIUI.OGY spr

collate and generate results to summarize the QUADAS-2
and PROBAST analyses. It allowed us to display and sum-
marize conclusions of our risk of bias analysis.

3 | RESULTS

The scoping review conducted in the three online data-
bases yielded a total of 13,686 records (MEDLINE = 7408;
PsycINFO =4170; Inspec=2108). In addition, we added
231 studies from other sources (total records from all
sources=13,917). After duplicate removal (n=2125),
11,792 records were kept for initial screening. This ini-
tial assessment removed 10,534 records, leading to 1258
records that were selected for eligibility analysis. Twenty-
four manuscripts could not be retrieved, therefore re-
sulting in 1234 records that were assessed for detailed
evaluation. Finally, the detailed assessment for eligibil-
ity removed 1213 records, identifying 21 studies to be in-
cluded for synthesis in the review (note that the 21 studies
included for synthesis are identified by an asterisk in the
reference list). Figure 1 presents the PRISMA flowchart of
the study selection process.

Among the 21 included studies, five were diagnos-
tic studies (i.e., studies aiming at presenting a hypovigi-
lance diagnostic tool) while the other 16 were prediction
studies (i.e., research on hypovigilance prediction tools
relying on artificial intelligence algorithms). Table 2
presents the generic information of each included study,
depending on the main approach employed (i.e., diag-
nostic vs. state prediction modeling). The main cognitive
state outcome varied between studies. Studies some-
times focused on sleepiness (n=1), vigilance (n=1),
drowsiness (n=13), alertness (n=1), fatigue (n=3),
mental fatigue (n=1), and somnolence (n=1). Sample
sizes varied across studies. Studies employing a diagnos-
tic approach had a mean sample size of 18.2 participants
(SD=5.9) while those related to state prediction mod-
els had a mean of 20.7 participants (SD=14.3). Sex and
gender of participants were sometimes omitted from the
prediction model studies. As depicted in Table 2, the
following psychophysiological techniques were stud-
ied: electroencephalography (EEG), electrooculography
(EOG), electromyography (EMG), electrocardiography
(ECG), respiration rate (RR) measures, oculometry
(OCM), pupillometry (PCM), photo-oculography (POG),
body movement (BM) measures, and near-infrared spec-
troscopy (NIRS). Among the diagnostic papers, three
(60%) were presented in the context of driving litera-
ture and vehicle accident mitigation while the other two
(40%) employed more generic approaches. Among the
prediction studies, 14 (87.5%) addressed hypovigilance
from a driving perspective while two (12.5%) discussed
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'3 database searching (7 = 13.686) through other sources (7 =231)
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L} (n=13,917)
={ Duplicates removed (7 =2,125)
v
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g Records deemed uneligible after initial screening
© (n=10,534)
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n
Records sought for retrieval
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:{ Manuscript unavailable (7 =24)
\ 4
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b (n=1234)
:'a - No sensitivity and specificity analysis of the vigilance diagnostic tool (7 = 355)
i - Book, editorial, letters to the editor, concepts only. thesis, clinical image piece.
= clinical study registration. non-scientific publication (17 = 263)
- No evaluation of a new measurement tool or comparison of different analyses with
| an existing tool (2= 179)
"] - No comparison with an established gold standard (» = 155)
- Principal topic nonspecific to vigilance and associated concepts (7 = 147)
- Language different than English or French (7 = 70)
- - Sleep studies without vigilance/fatigue analysis during waking period (7= 19)
S - Non-systematic literature review (2= 14)
4 4 - Irrelevant/clinical populations (2= 8)
— . . . . -~
< Studies included in synthesis - Questionnaire validation study (7 =3)
L (n=21)

FIGURE 1 PRISMA flowchart diagram of the study selection process.

hypovigilance in a more general, domain-agnostic
sense, and one (Zhang et al., 2017) studied the context
of rail transport. In other words, almost all studies were
related to transportation or a generic investigation of the
hypovigilant state. This supports the idea that although
distinctions exist between phenomena such as fatigue,
somnolence, sleepiness, drowsiness, and other concepts
related to hypovogilance, these concepts are applied to
common real-world use cases and analyzed through a
similar lens.

3.1 | Risk of bias analysis

3.1.1 | QUADAS-2 analysis

We analyzed five diagnostic studies with QUADAS-2
(Akerstedt et al, 2010; Chua et al, 2012; Frangois
et al.,, 2016; Maccora et al., 2018; Nguyen et al., 2017).
Figure 2 depicts the overall risk of bias evaluation (panel
a) as well as the detailed risk of bias analysis for each study
(panel b). Overall, there were risks of bias concerns about

the methods employed (with 60% considered concerning
and 40% with potentially high risk for bias).

Patient selection systematically raised some or high
concerns for all the studies given that it was unclear for
all studies whether patients were selected consecutively or
randomly. In general, insufficient information was given
about patient selection, such as the exclusion criteria or
case and control selection criteria. Chua et al. (2012) re-
ported having studied only male participants, hence repre-
senting high risks of bias. Index test(s) were categorized as
low risk for all studies. Reference standard(s) used raised
high concerns for bias in Akerstedt et al. (2010) because
the criterion of the gold standard for hypovigilance state
was high (i.e., KSS score>8, related to severe drowsiness).
Other studies had a low risk of bias for reference standards.
Finally, four studies out of five were considered as hav-
ing some concerns about bias regarding flow and timing.
Except for Nguyen et al. (2017), it was unclear for all other
studies whether flow and timing aspects were correctly
controlled for. For example, some papers did not pres-
ent any data management reasons such as the absence of
missing data management information (Chua et al., 2012),
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TABLE 2 Characteristics of the different included studies depending on their approach (diagnostic, n=>5; state prediction modeling,

n=16).

Reference

Diagnostic studies
Akerstedt et al. (2010)
Chua et al. (2012)
Frangois et al. (2016)

Maccora et al. (2018)
Nguyen et al. (2017)

Prediction model studies

Awais et al. (2017)
Choi et al. (2019)
Guo et al. (2016)

He et al. (2016)

Hu and Zheng (2009)

Kudinger et al. (2020)
Leng et al. (2015)

Li and Chung (2015)
Li et al. (2015)

Lopez de la O
et al. (2012)

Mehreen et al. (2019)
Mu et al. (2017)

Salvati et al. (2021)
Vicente et al. (2011)

Yamada and
Kobayashi (2018)

Zhang et al. (2017)

Abbreviations: BM, body movement measures; BR, breathing rate measures; ECG, electrocardiography; EDA, electrodermal activity; EEG,

Journal

Journal of Sleep Research

Sleep

International Journal
of Environmental
Research and Public
Health

Journal of Sleep Research

Scientific Reports

Sensors

IEEE Access

International Journal
of Environmental

Research and Public
Health

IET Intelligent Transport

Systems

Expert Systems with
Applications

Sensors
IEEE Sensors Journal
Sensors
IEEE Sensors Journal

Procedia—Social and
Behavioral Sciences

IEEE Sensors Journal

International Journal of
Pattern Recognition
and Artificial
Intelligence

Entropy

Computing in Cardiology

Artificial Intelligence in

Medicine

Sensors

Cognitive state

Sleepiness
Vigilance

Drowsiness

Alertness

Drowsiness

Drowsiness
Drowsiness

Fatigue

Drowsiness

Drowsiness/
sleepiness

Drowsiness
Drowsiness
Drowsiness
Drowsiness

Somnolence,
drowsiness,
and fatigue

Drowsiness

Fatigue

Drowsiness
Drowsiness

Mental fatigue

Fatigue and
vigilance

N (F/M)*

14.(7/7)
24 (0/24)
24 (13/11)

18 (8/10)
11 (1/10)

22 (unknown)
8 (4/4)
20 (8/12)

50 (unknown)

5(3/2)

30 (14/16)
20 (5/15)

6 (unknown)
20 (8/12)

23 (2/21)

50 (20/30)
15(7/8)

3(0/3)
21 (unknown)
31 (10/21)

10 (3/7)

Physiological measure

method"®

ECG, EEG, EMG, and EOG

EEG, ECG, and OCM
POG

PPM
EEG and NIRS

ECG and EEG
ECG, EEG, and EOG
ECG and EEG

BM, EEG, and OCM

EOG

ECG

EDA and PPG
BM and EEG
EEG

BR

BM, EEG, and EOG
EEG

ECG
ECG
OCM and PPM

EEG

Context of
study

Driving
Generic

Generic

Driving

Driving

Driving
Generic

Driving

Driving

Driving

Driving
Driving
Driving
Driving

Driving

Driving

Driving

Driving
Driving

Generic

(Train)
driving

electroencephalography; EMG, electromyography; EOG, electrooculography; NIRS, near-infrared spectroscopy; OCM, oculometry; POG, photo-oculography;
PPG, photoplethysmography; PPM, pupillometry.

*From the information available, all participants of these studies self-identified as either male or female, hence the absence of a third category for other
genders. The total N represents the number of subjects included for analysis.

"The methods indicated here represent the measures tested in the paper (which was compared with a physiological or non-physiological gold standard

method).

others only included a subset of participants in their analy-
sis (Maccora et al., 2018), and others had small sample sizes
(Akerstedt et al., 2010). Overall, Akerstedt et al. (2010) and

Chua et al. (2012) had high risks of bias while the other
studies were considered to have mild concerns (Frangois
et al., 2016; Maccora et al., 2018; Nguyen et al., 2017).
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FIGURE 2 QUADAS-2 bias analysis for the diagnostic studies (Panel a: Global overview; Panel b: Detailed analysis).

3.1.2 | PROBAST analysis
We analyzed the risk of bias for 16 prediction studies
(Awais et al., 2017; Choi et al., 2019; Guo et al., 2016;
He et al., 2016; Hu & Zheng, 2009; Kudinger et al., 2020;
Leng et al., 2015; Li et al., 2015; Li & Chung, 2015; Lopez
de la O et al., 2012; Mehreen et al., 2019; Mu et al., 2017;
Salvati et al.,, 2021; Vicente et al., 2011; Yamada &
Kobayashi, 2018; Zhang et al., 2017) using PROBAST.
Figure 3 displays the overall risk of bias evaluation for all
included studies (panel a) as well as the detailed analysis
for each of the 16 studies (panel b). Overall, the 16 stud-
ies had some concerns about bias or high risks of bias be-
cause of the methods used (with 43.8% considered with
high risks vs. 56.2% with some concerns).

The nature and selection of participants raised some
risk of bias concerns in 14 (87.5%) studies, except for Choi

et al. (2019) at low risk of bias for the participant domain,
and for Salvati et al. (2021) at high risk of bias. The main
limitations observed were related to the lack of details
regarding the participant's population and their risk for
bias (e.g., night shift workers or drivers). In the case of
Salvati et al. (2021), all participants were males, which
can represent an important bias for the generalization of
physiological prediction models. The predictors domain
yielded a low risk for bias in every study except for Salvati
et al. (2021). In this study, predictors were not defined a
priori, but rather post hoc as determined by variations in
PERCLOS. Most studies were at low risk of bias for the
outcome domain (n=11, 68.8%), but 4 (25%) still raised
some concerns (Hu & Zheng, 2009; Mu et al., 2017; Salvati
et al., 2021; Yamada & Kobayashi, 2018) and one was
at high risk of bias (6.2%; Choi et al., 2019). Some con-
cerns about risk of bias were due to lack of details about
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FIGURE 3 PROBAST bias analysis for the prediction studies (Panel a: Global overview; Panel b: Detailed analysis).

outcome determination and one study was at high risk of
bias (Choi et al., 2019) because the study outcome (drows-
iness) was determined post hoc based on the model used.
More concerns were found for the Analysis domain
with 43.7% of the papers ascribed to the high-risk category,
31.3% associated with some concerns, and a minority of
25% deemed to be at low risk of bias. In the case of papers
with “some concerns,” risks for bias were due to the fol-
lowing reasons: (a) only a limited number of participants

and/or a limited number of data points were included for
analysis (Awais et al., 2017; Mu et al., 2017; Yamada &
Kobayashi, 2018), (b) risks for overfitting were important
due to the testing approach (i.e., not using leave-one-out
approach; Kudinger et al., 2020), and (c) no performance
measure was reported on the test set (Vicente et al., 2011).
For the “high risk” papers, combinations of the preceding
reasons explained this classification (Li & Chung, 2015),
coupled sometimes with a lack of information on the
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analysis strategy, the absence of a clearly-defined test set,
or because the sample size was very low (Choi et al., 2019;
Heetal., 2016; Hu & Zheng, 2009; Leng et al., 2015; Salvati
et al., 2021; Zhang et al., 2017). Overall, we categorized
nine papers to be at high risk of bias (Choi et al., 2019;
He et al., 2016; Hu & Zheng, 2009; Leng et al., 2015; Li &
Chung, 2015; Mu et al., 2017; Salvati et al., 2021; Yamada
& Kobayashi, 2018; Zhang et al., 2017) while all the others
were considered having “some concerns” for bias.

3.2 | Synthesis of included studies

3.2.1 | Diagnostic studies

Table 3 presents the summary of the five diagnostic stud-
ies, including their main findings. Hypovigilant states
were induced by various methods in the five studies.
Four of the studies relied on sleep deprivation/prolonged
wakefulness while the other one used a monotonous
driving task. Most of the studies relied on the same
hypovigilant state induction technique (i.e., fatigue-
induced hypovigilance). This improves our comparison
of studies, establishing common bases for hypovigilance
and, potentially, similar levels. However, the outstand-
ing study that relied on the monotonous driving task
differs from the other four studies, because it may have
produced a lower level of hypovigilance. One could in-
deed expect that being importantly sleep deprived (e.g.,
be awake for at least 28 h or having slept less than 4h)
may cause different types and ranges of biobehavioral
manifestations. Two of the studies used a driving simula-
tor as the focal task. Two others used a constant routine
task, i.e., a sequence of various daily tasks to perform,
and one study used a PVT repeated at standard testing
intervals over 2days. Here, the variability in focal tasks
can also induce differences in the ways that performance
on a task may be modulated by the hypovigilance inter-
ventions. Still, task performance did not represent a key
outcome for the study nor the diagnostic model, so the
impact of such a difference among the studies reviewed
may be relatively small. Of interest, however, is the fact
that only three of the studies were carried out in real-
life or simulation contexts close to real life (i.e., during a
simulation or during constant routine tasks) that would
be useful in operational situations.

Gold standards also varied importantly, both in their
nature and, across similar tools, with respect to the
thresholds for defining alert vs. hypovigilance states.
The Karolinska Sleepiness Scale (KSS) and PVT were
individually used in Akerstedt et al. (2010) and Chua
et al. (2012), respectively, while the other studies pro-
posed combinations of gold standards (e.g., EEG + slow

eye movements + PVT; Maccora et al., 2018). Thresholds
were determined by the research teams and varied im-
portantly (e.g., rater's subjective visual inspection of
EEG signal vs. standardized analysis of the EEG sig-
nal using Rechtschaffen and Kales' [1968] Karolinska
Drowsiness Test [KDS] classifications vs. subjective
evaluation of the variations in PERCLOS, EEG power
bands and heart rate). This divergence in the gold stan-
dard and thresholds chosen for hypovigilance diagnosis
complicates comparisons between the different measur-
ing tools. More precisely, this causes variability in the
classification of the main outcome (e.g., hypovigilant vs.
vigilant state) across the included studies. The drawback
of this variability is that some participants may have
been assigned as hypovigilant from the perspective of
a given gold standard while, from another, participants
would be considered vigilant. This variability affects the
external validity of the models (i.e., the capacity to gen-
eralize among new sets of individuals).

The different measurement tools used for hypovig-
ilance diagnostics were: ECG, EOG, EEG, EMG, HRYV,
PERCLOS, POG, PUI, and NIRS. One of the studies ex-
plored only the variation of the pupillographic sleepiness
test (Maccora et al., 2018), while the others proposed
combined measures (e.g., EOG+EEG+EMG + ECG,
EEG+PERCLOS + HRV frequency metrics + ECG
power density). Many of the possible physiological mea-
sures reflecting hypovigilance are characterized by im-
portant between-individual variation due to difficulty
to capture specific information on the state of the user,
of interference from confounding variables, and more.
Hence, combining multiple physiological measures
seems appropriate to enhance sensitivity and specificity
of diagnostic tools. However, the determined threshold
varied for the same measure and was frequently decided
empirically. This may have led to bias.

Different measures seemed to correlate with the level
of hypovigilance, including blink duration, blink ampli-
tude, peak closing velocity, and variability in lateral gaze
position. PVT, ECG power density, EEG power density,
NIRS oxyhemoglobin, POG, and PUI also had a good cor-
relation. Four out of five studies included oculographic
measures, whether it was pupillometric measures, per-
centage of eye closure, blink duration, lateral deviation of
gaze, etc. This is probably because oculographic measures
are relatively simple and cost-effective compared to EEG,
which necessitate a skilled individual to install electrodes
and can sometimes be invasive and/or uncomfortable.
The important range of physiological measures that can
be related to hypovigilance stresses the relevance of adopt-
ing a validated approach to detect this state. It also raises
the potential of not only varying measures among a single
technique (e.g., different spectral power bands of EEG),
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but also multiplying the sensors included in a diagnostic
model (e.g., combining measures of EEG and ECG).

3.2.2 | Prediction model studies

Table 4 presents the summary of the 16 prediction stud-
ies. Several techniques to induce a hypovigilant state
are found across the different studies. These techniques
comprised long time on task in a monotonous context,
sleep deprivation or prolonged wakefulness, manipula-
tion of the time of the day where testing occurred, re-
cruitment of sleep-deprived participants (i.e., night shift
workers after their shifts), and performing a cognitively-
demanding task. This variability in the techniques
chosen for inducing hypovigilance could have exerted
different hypovigilance levels and, consequently, dif-
ferent outcomes for its prediction. Some physiological
measures may be more or less sensitive than others and
so prediction could have been enhanced or worsened for
certain physiological responses if a different technique
was used. Important variability can also characterize
the hypovigilant vs. aroused participants across all stud-
ies. Records characterized by less severe hypovigilance-
inducing techniques (e.g., time on task on a driving
simulation) may incorrectly categorize alert individuals
as hypovigilant compared to studies employing more se-
vere manipulations (e.g., with subjects sleep deprived for
26 h). This limitation can, however, be mitigated by hav-
ing more than two hypovigilance levels (e.g., fully awake
vs. drowsiness vs. fatigue; cf. Lopez de la O et al., 2012).
Here, having a third category may allow more precision
in the categories and more important homogeneity in
the cases ascribed to each state. In turn, the reduced
variability can lead to better state prediction.

The ongoing task during which hypovigilance was
measured varied to a lesser extent, the majority focusing
on driving (10 studies employed a driving simulation and
four a real driving task). Other studies relied on a series
of recurring and continued routine tasks, on monotonous
single-object tracking, and an alternation between video
watching and cognitive tasks. The fact that most of the
studies discussed and evaluated hypovigilance under a
transportation/driving perspective speaks to the impor-
tance of such a cognitive limitation for this specific con-
text. This also means that most of the studies aimed at
developing a hypovigilance prediction model that would
be applicable to/deployable in real-life settings such as in
acar or on a train. In that regard, most of the sensors used
to measure the physiological responses and in turn pro-
vide data to the hypovigilance state prediction model were
mobile (commercial-off-the-shelf or homemade) sensing
technologies.

The gold standard used varied between several phys-
iological and behavioral outcomes. Physiological out-
comes comprised measures of facial features, EOG, eye
movements, ECG, body movements, and mostly, EEG
spectral bands. The thresholds to label vigilance levels
from these metrics often changed across studies, even
when a common physiological signal was analyzed (e.g.,
PERCLOS evaluation in Li et al. [2014] and Lopez de 1a O
et al. [2012]; or EEG power bands assessment based either
on Rechtschaffen and Kales' [1968] KDS classifications or
not in He et al. [2016], Hu and Zheng [2009] and Lopez de
la O et al. [2012]). Behavioral outcomes included results
on self-rated scales (e.g., Borg's CR-10 scale, Karolinska
Sleepiness Scale, Li's Subjective Fatigue Scale, Stanford
Sleepiness Scale, or homemade mental fatigue, physical
fatigue, sleepiness, and motivation numerical scales),
performance on a task to measure fatigue (e.g., PVT, and
reaction time on a simple task), and performance on the
focal task (steering wheel adjustments on the driving sim-
ulation). Sometimes information on the thresholds used
to label vigilance was absent (Mu et al., 2017; Vicente
et al., 2011; Yamada & Kobayashi, 2018) and, in other sit-
uations, label derived only from experimental manipula-
tions (Mehreen et al., 2019; Zhang et al., 2017). Here, the
diversity in gold standard measures and thresholds com-
promises between-studies comparisons. In fact, having
different gold standard measures necessarily leads to hav-
ing different thresholds for determining the hypovigilance
state of a user. For example, some studies employed the KSS
and used several threshold points for identifying different
hypovigilance levels (e.g., KSS classes 0-4: Alertness; KSS
classes 5-8: Hypovigilance; KSS classes 9-12: Drowsiness;
Salvati et al., 2021). Yet, these categories can be difficult
to compare with physiological-based thresholds, e.g., on
measures of PERCLOS (e.g., Li et al., 2015; Lopez de la
O et al., 2012) or variations in the PVT performance (e.g.,
Choi et al., 2019).

Common information on the measure of hypovig-
ilance can be deduced from the main findings of the
studies concerned with prediction models. Mainly, the
studies relied on EEG-related measures (50% of the
studies) and on ECG features (43.8% of the studies) to
predict the hypovigilance level of participants. EEG fea-
tures mainly reported spectral power bands (a, 3, v, 6, 6,
and ¢) and power density. Regarding the ECG features,
frequency bands of the HRV were mainly used, but also
some time-domain features such as raw HR, HRV, or RR
intervals. Some papers were also interested in predicting
a hypovigilant state with measures of body movement,
including aspects related to the adjustments of the body
and to head movements/nodding. These latter aspects
can be processed and interpreted through many out-
comes, as shown by the 21 features of head movement
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collected by Mehreen et al. (2019). Some authors also
relied on eye movement/behavior features leading to
multiple types of measures including pupillometric
data, eye fixations and saccades, and blink data. Again,
all these types of measures could be processed into sev-
eral outcomes of time and frequency domains (see, e.g.,
Hu & Zheng, 2009; Mehreen et al., 2019; Yamada &
Kobayashi, 2018). Measures related to breathing were,
however, scarcely used (only in two studies). Taken to-
gether, these results outline that hypovigilance can be
successfully predicted using a wide range of physiologi-
cal measure techniques and features.

The data originating from these outcomes can be
processed using different machine learning algorithms.
Techniques such as support vector machines (SVM), ar-
tificial neural network, genetic algorithms, decision trees,
K-nearest neighbor, linear discriminant analysis, and ex-
treme gradient boosting were used for the prediction of
the hypovigilant state using ensembles of psychophysio-
logical and behavioral features. While most of the studies
used SVM models, the variability in modeling techniques
is consistent with the variability already reported be-
tween studies for the selection of the gold standard, the
hypovigilance-inducing techniques and the predictors.
The nature of the technique may vary, among other
things, depending on the type of predictor included in the
models, but also according to the number of outcomes to
predict (i.e., hypovigilance classes). Appendix S3 provides
more details on the different models used in the 16 hypo-
vigilance prognostic studies, and on the performance they
reached with their sample.

4 | DISCUSSION

The goal of this scoping review was to map the current
knowledge about the psychophysiological methods to de-
tect human hypovigilance and to highlight strengths and
gaps in the literature. The selection process and analysis
of the 21 studies selected for the current scoping review
highlight important trends for the scientific community
interested in the detection of impaired cognitive states
such as hypovigilance. First, the large number of papers
assessed for eligibility (1234) confirms that this topic is in-
deed of interest for many researchers and that synthesis
efforts such as our scoping review are needed to better un-
derstand the current state of the literature. The important
diversity in journal scopes from which the papers were se-
lected (including neuroscience, behavioral sciences, sleep
research, transport systems, and sensors journals) reflects
the overall interest of many different scientific communi-
ties. Interestingly, the detection of hypovigilance does not
only apply to the medical or psychological domains, but

also to applied sciences such as transport and engineer-
ing journals. The selection criteria chosen for the current
scoping review were purposely focused on the cognitive
aspect of hypovigilance detection. As a result, an impor-
tant number of papers focused on the engineering side
were excluded: most of them did not necessarily include
an established gold standard (155 out of 1213) or focused
on signal processing technologies. Although the technolo-
gies presented in these papers are necessary to develop ro-
bust systems in real situations, they were not the objective
of our research and did not meet the inclusion criteria.
The automobile industry is at the heart of the research for
hypovigilance detection. Not all of the selected papers re-
lied on a driving-related task, but they almost all aimed
to be applied to the transport industry. As a result, most
of the experiments conducted, either inside or outside the
lab, investigated embedded or at least portable systems
with low invasiveness (wearables such as wrist bands,
contactless cameras for eye tracking, or sensors integrated
in the driver's seat).

Throughout the selected papers, the physiological mea-
sures used to detect hypovigilance were relatively con-
sistent. Indeed, out of the 21 studies considered, almost
all papers relied on at least one of the following signals:
ECG/PPG, EEG, EOG, and eye tracking. This conclusion
is interesting given the small diversity observed in the
specific phenomena assessed in these papers (vigilance
vs. drowsiness vs. fatigue and so forth). This outlines that
hypovigilance-related measures found in these studies
may be underpinned by common mechanisms even if,
from a semantic point of view, studies may have referred
to this concept in different ways. Interestingly, other
measures were also used, including body temperature,
breathing rate, NIRS, body movement-based data, and,
sometimes, behavioral measures. The combination of
techniques may be motivated by the idea that physiologi-
cal monitoring devices (e.g., heart rate monitors) are sub-
ject to several artifacts such as movement noise (Kranjec
et al., 2014). Therefore, combinations allow for the possi-
bility to collect state information when data from a given
sensor or a group of sensors may comprise too much
noise. Considering that hypovigilance measures of the
central nervous system seem important, a great challenge
is to transfer the usually bulky and sensitive sensors out of
the laboratory (e.g., Awais et al., 2017; Choi et al., 2019; Li
et al., 2015), but also to pinpoint proper cerebral indices of
the (hypo)vigilant state.

The important diversity of gold standards (and some-
times thresholds) observed across studies is also notewor-
thy. Although common assessment measures were found
across studies, gold standards were not used in the same
way. The KSS was often used, but could be interpreted
differently using, e.g., different number of categories.
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Measures focused on observable behaviors or on physio-
logical signals (e.g., PERCLOS, EEG power bands, heart
rate variations, or body movements) that were analyzed
differently. Sometimes, these measures relied on stan-
dardized/a priori-defined techniques (e.g., Rechtschaffen
and Kales' [1968] KDS classifications, Wierwille and
Ellsworth's [1994] video-based criteria, or PERCLOS
percentage categories). Yet, in other situations, raters
provided subjective evaluations based on their own obser-
vations, and the criteria they relied on were not explicitly
discussed. This outlines that literature on hypovigilance is
highly scattered and that, although common techniques
can be pinpointed, between-studies comparisons are diffi-
cult to perform. Nevertheless, this information can still be
of high use to help defining better ways to predict hypovig-
ilance and guide future studies to compare different diag-
nostic tools and thresholds. Our results will be helpful in
guiding standardized approaches to define proper ground
truth labels to use to develop new prediction models.
These approaches should ultimately all rely on common
gold standards and thresholds to ensure that prediction
models all rely on a common view of hypovigilance and to
make between-model comparisons feasible.

Petersen and Posner (2012) suggest that the brain has
three distinct attentional networks: alerting, orienting,
and executive control. The alerting system is deemed to
condition the general level of arousal and is influenced
among other things by subcortical activity of the locus
coeruleus (LC) (Foote et al., 1991). The LC generates
norepineprhine (NE) and spreads it through the brain,
in particular in the right thalamic, frontal, and parietal
regions. Many papers used EEG or NIRS to measure ac-
tivity in these cortical regions as downstream cortical in-
dicators of the LC-NE system activity. Some focused on a
generic approach with electrodes in every region of the
brain, whereas others reduced the number and locations
of electrodes (e.g., the frontal and temporal lobes or over
the occipital lobe). Overall, the best cerebral locations
from which to collect brain activity do not seem to have
reached consensus in the studies we included. The neural
pathways associated with hypovigilance still seem under-
investigated (Li & Chung, 2022) and rarely corresponded
with attention-related brain areas. Moreover, the place-
ment of the electrodes was rarely justified. This could ex-
plain why several—rather than a single—regions of the
brain were used to detect hypovigilance.

The approaches used to process and aggregate data
are manifold, although the use of the spectral domain
to process EEG and ECG is dominant. The level of de-
tails provided by each paper varies greatly, and it is not
always stated: (a) how the data was processed, (b) which
features were actually used as predictors for the detection
of hypovigilance; and (c) what thresholds have been used
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specifically for labeling the vigilance level. Among others,
the lack of transparency increased the concerns for some
papers during the bias assessment, and more precisely the
Outcome domain with PROBAST. Moreover, since the
majority of the models investigated used machine learn-
ing techniques, the “black box” effect remains important,
as the models and the between-variables relationships
can be either difficult or impossible to fully interpret (e.g.,
Lipton, 2018). More precisely, the effect of each predictor
on the target metric and their interactions were not neces-
sarily explained. Unlike statistical analyses, the direction
and values of one physiological parameter cannot be di-
rectly associated with specific variations of hypovigilance,
which affects the interpretability of the models. Work fo-
cusing on predicting hypovigilance states with large va-
rieties of psychophysiological features should integrate
techniques to understand such a black box effect. Machine
learning techniques exist to increase the explainability of
models (i.e., methods of explainable artificial intelligence
[XAI]; e.g., Antoniadi et al., 2021; Gunning et al., 2019;
Tjoa & Guan, 2021), and efforts should be deployed to
make use of them to better understand the mechanisms
underlying hypovigilance detection.

In terms of algorithms, the selected papers reflect the
recent advances of machine learning and its potential for
human-centered applications (many prediction models
were based on machine learning). The use of deep learn-
ing was not found to be dominant. Different techniques
were utilized using algorithms that are well-established
in the machine learning community for supervised learn-
ing such as Random Forest, XGBoost, LDA, and SVM.
Interestingly, all of the proposed models were classifiers,
discriminating between two and sometimes three classes
(increasing levels of hypovigilance). None of the papers
seem to have considered regression to infer vigilance lev-
els (prediction of a continuous output such as an interpo-
lated KSS score). At this stage, it is unclear whether using
regressors is not efficient, or if it has not yet been consid-
ered sufficiently. This approach, if proven efficient, could
be a way to introduce more granularity in the predictions.
Moreover, a continuous prediction might make more
sense than simply classification given that hypovigilance
is not a binary state and progressively grows as time on
task/difficulty increases (Robertson & O'Connell, 2010).
Such an approach would however require defining and
operationalizing a continuous ground truth equivalent,
i.e. a measure representative of the normal level of vigi-
lance over a certain time window, to ensure the constant
validity of the new continuous physiological models.

Modeling a cognitive state based on psychophysiologi-
cal data requires training a model that is sensitive enough
to take into account intra-individual variability. Moreover,
in order to be used in a large variety of applied situations,
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prediction models should ideally run in real time, and fol-
low a “one size fits all” approach. This suggests that mod-
els must be robust enough to provide relevant predictions
on different individuals, even if no prior information is
available on specific individuals. Several methods in the
training, validation, and testing phases of a machine-
learning model can be used to quantify its generalization
capacity. It is the case of the “leave-one-participant-out”
cross-validation approach (de Rooij & Weeda, 2020),
with which the validation phase happens on unknown
participants’ data. Similarly, performances of models on
the test set should be evaluated on independent, isolated
individuals. These methods usually lead to models that
generalize better, but might show lower cross-validation
performances (Drew et al., 2014; Suresh & Guttag, 2019;
see also Gronau & Wagenmakers, 2019, for considerations
of “leave-one-participant-out” cross-validation models).
In the current state of the literature, the methods of train-
ing and evaluation of the models are manifold and het-
erogeneous. More generally, the differences in evaluations
and hypotheses resulted in certain papers having higher
bias estimations than others, more particularly in the
Analysis domain of the PROBAST. Performances as re-
ported by the authors are given in Appendix S3. However,
they should be interpreted with caution, rather than used
for comparison between two systems. Indeed, the variabil-
ity of the techniques used to train and evaluate the mod-
els, as well as the discrepancies observed between papers
during the bias assessment, would not lead to a fair and
objective comparison.

4.1 | Practical implications

The aim of this scoping review was to describe the vari-
ous tools available to detect and predict hypovigilance.
As it was previously stated, this is of great importance in
the transport industry, but also in aerospace, command
and control, and other such complex and dynamic do-
mains. Many attention-demanding tasks (such as traffic
control, supervising military operations, vehicle driving,
or piloting) with critical outcomes could eventually be as-
sisted by a device designed to detect hypovigilance, with
the aim of preventing hazardous events (see, e.g., Bendak
& Rashid, 2020; Bier et al., 2020; Duffy & Feltman, 2022;
Mogilever et al., 2018).

The ability to monitor the physiology of individuals to
infer their mental states is already seen as highly valuable
in a variety of contexts such as the monitoring of soldiers
in military operations (Friedl, 2018; Salvan et al., 2022)
and different kinds of adaptive systems have been devel-
oped for such purpose (Blackhurst et al., 2012; Marois
et al.,, 2020; Parnandi et al., 2013; Zhao et al., 2020).

Consequently, the potential uses of hypovigilance detec-
tion technologies are extensive. Industries like automobile
and aerospace are evidently involved in this research field
to prevent accidents, as inattention is a key human factor
that can be monitored and supported to prevent casual-
ties. Moreover, isolated, confined, and extreme environ-
ments (often referred to as ICE; Mogilever et al., 2018;
Palinkas, 2003) could also benefit from such technologies,
since they are known to induce mental health challenges
with attention-related symptoms evolving into vigilance
challenges (e.g., depressive states, anger, and anxiety; see,
e.g., Haney, 2003; Palinkas et al., 2004). For all those cases,
the information extracted from the literature reviewed in
the current paper can represent a great asset from both re-
searchers' and decision makers' point of view. The different
physiological techniques identified (with their advantages
and drawbacks) as well as the prediction/modeling ap-
proaches raised could contribute to the development and
integration of such systems for real-life applications.
Another interesting field of research is the detection
of hypovigilance in hospitalized patients. Artificial in-
telligence opens wide possibilities in the medical field,
where multiple clinicians' decisions could be supported
by machine learning (e.g., radiologic automated analy-
sis). One of the main challenges in medicine is identify-
ing patients at risk for and with actual delirium, especially
for hypoactive-type delirium characterized by reduced
vigilance (e.g., Gual et al., 2019; Hosker & Ward, 2017;
Inouye, 1994). Delirium is defined in the DSM-5 as a state
of “disturbance in attention (i.e., reduced ability to direct,
focus, sustain, and shift attention) and awareness (reduced
orientation to the environment)” (American Psychiatric
Association, 2013, p. 596). Clinical diagnostic criteria
are well-defined and helped develop a clinical tool used
at the bedside by clinicians to diagnose delirium, called
the Confusion Assessment Method (CAM). Its applica-
tion in the intensive care unit (ICU) is possible through
the CAM-ICU (Ely, Margolin, et al., 2001). The diagnosis
requires both acute onset and fluctuating course, and the
presence of either disorganized thinking or altered level
of consciousness. While the CAM-ICU administration
can take less than 1 min (Guenther et al., 2010), it needs
to be carried out frequently while a patient is hospital-
ized. Consequently, efforts must be invested to integrate
this tool into the patient's follow-up workflow and into
the routine of the busy and overburdened ICU personnel.
Developing automated tools that would help identify hy-
povigilant situations for the diagnostic of delirium and/or
identify patients more at risk could be a way to increase
delirium detection in understaffed ICUs. Such tools would
be useful given that ICU delirium is associated with worse
patient-oriented outcomes, including increased ICU/hos-
pital length of stay, more frequent mortality, and worse
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cognitive outcomes among ICU survivors (see, e.g., Ely,
Margolin, et al., 2001; Fiest et al., 2021; Salluh et al., 2015).

Of all the studies screened, only one concerning de-
lirtum met all the inclusion criteria in the first steps of
inclusion assessment, but it was later removed. This study
by Oh et al. (2018) was not included in the scoping review
because it focused only on the hypovigilance experienced
by ICU patients diagnosed with delirium and did not fit
well with the scope of the other selected papers. Other
studies are currently in progress to evaluate EEG vari-
ation analysis to identify delirium in ICU patients (e.g.,
Ducharme-Crevier, 2021). One could also suggest that
automated measures with machine learning could open
doors to diagnose many medical conditions, for example,
sepsis and psychosis. This could represent a great asset
for health systems, given that human factors and lack of
time represent important practical limitations (Goodie &
Crooks, 2004; Weinger & Slagle, 2002).

4.2 | Limitations

While the current review provides a comprehensive
portrait of the literature on hypovigilance detection
and prediction models, it still possesses some caveats
that must be addressed. First, the imposition of a finite
list of gold standards might have reduced the number
of papers selected for review. Although this list was
flexible through the source selection step, it still ex-
cluded potentially relevant papers that presented other
(unique or sets of) psychophysiological proxies related
to hypovigilance. While imposing the presence of a gold
standard can help to ensure better validity of the mod-
els presented, some models that we missed could still
be highly relevant. Yet, to prevent reducing, even more,
our capacity to include papers in the review, we did not
include preimposed thresholds for these gold standards.
Second, the fact that all the studies selected raised con-
cerns for bias—and sometimes high concerns—reduces
the scope of interpretation and, potentially, the gener-
alizability of the conclusions reached by these studies.
Indeed, the results discussed herein might only be ap-
plicable to certain groups of persons, or specific to given
contexts, tasks, or vigilance level states. This might be
especially true for studies characterized by training/
test approach limitations. As indicated earlier, optimal
generalizability should subtend a “one size fits all” ap-
proach as much as possible, but this was not necessar-
ily achieved by the studies selected for review. Third,
we did not attempt to distinguish the different sub-
conditions under the general term hypovigilance (e.g.,
such as fatigue vs. sleepiness) that may have different
physiological manifestations. These different states

IPSYCHUPHYSIOI.OGY sp

may potentially need different diagnostic or prediction
models given that their mechanisms of origin may vary
(e.g., circadian rhythm vs. cognitive resource depletion
vs. homeostasis). Having considered all the models to-
gether to investigate for potential methods to measure
hypovigilance was relevant for the context of this scop-
ing review, which aimed at defining the general state
of the literature regarding hypovigilance and outlining
existing gaps. Still, before providing more specific sug-
gestions as to the best ways to measure hypovigilance
induced by, for example, fatigue, sedation, and cogni-
tive overload, a more granular analysis of the literature
is needed. Finally, more detailed information about the
performances of the models would have been useful
to collect. Indeed, understanding whether the models
found here can outperform gold standard prediction
and diagnostic models could represent a key tool for
researchers and developers interested in applying the
techniques reviewed in real-life settings. However, be-
cause of the heterogeneity in the studies, this informa-
tion was not always available and/or comprehensively
collected. Parts of this information can be found in
Appendix S3, but it must be regarded with caution given
the lack of consensus about defining hypovigilance and
the heterogeneity in the choice of performance metrics
and ways to measure them.

5 | CONCLUSION

Hypovigilance is considered an important cause of many
accidents and hazardous situations in several fields.
Therefore, improved hypovigilance detection capacities
could help to facilitate how it is managed and, in turn, to
increase safety and security of people and infrastructures.
In the current scoping review, we identified the main
techniques used to assess hypovigilance using sensor-
based models. As outlined, the choice of sensors to infer
hypovigilance was relatively similar between all papers.
Indeed, many focused on the central nervous system via
EEG (or NIRS) and/or the peripheral nervous system with
eye-tracking technologies and/or ECG/PPG-based meas-
ures. Among the selected papers, a majority relied on a
prediction approach and used machine learning, rather
than a diagnostic approach. Although the training and
feature computing methods remained unclear in most
of the papers, some common methods such as the use
of SVM for model training were highlighted. However,
certain gaps remain, in particular concerning the differ-
ent training and performance evaluation methods used.
For example, some models were trained using a leave-
one-out approach, whereas other models were trained for
each participant individually. Overall, the ability to infer
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hypovigilance (possibly in real time) with a reduced inva-
siveness has great potential in many contexts from mili-
tary to medical, and the current state of the literature on
this topic is likely to show important progress in the up-
coming years.
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