N
P University of

Central Lancashire
UCLan

Central Lancashire Online Knowledge (CLoK)

Title IDS-MA: Intrusion Detection System for loT MQTT Attacks Using Centralized
and Federated Learning

Type Article

URL https://clok.uclan.ac.uk/id/eprint/48404/

DOI https://doi.org/10.1109/COMPSAC57700.2023.00093

Date 2023

Citation | Omotosho, Adebayo, Qendah, Yaman and Hammer, Christian (2023) IDS-
MA: Intrusion Detection System for loT MQTT Attacks Using Centralized and
Federated Learning. 2023 IEEE 47th Annual Computers, Software, and
Applications Conference (COMPSAC). pp. 678-688. ISSN 0730-3157
Creators | Omotosho, Adebayo, Qendah, Yaman and Hammer, Christian

It is advisable to refer to the publisher’s version if you intend to cite from the work.
https://doi.org/10.1109/COMPSAC57700.2023.00093

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

IDS-MA: Intrusion Detection System for IoT

MQTT Attacks Using Centralized and Federated
Learning

Adebayo Omotosho
University of Central Lancashire
Preston, United Kingdom
aomotosho@uclan.ac.uk

Abstract—Yearly, the number of connected Internet of Things
(IoT) devices is growing. The attack surface is also increasing
because IoT is generally functionality-centric and security is
usually an after-thought. Therefore, memory corruption attacks,
man-in-the-middle attacks, and distributed denial of service
attacks are a few of the attacks that have been widely exploited
on these devices communicating via Message Queue Telemetry
Transport (MQTT), which is the most commonly used messaging
protocol in IoT. However, much of the research on MQTT
intrusion detection has either covered a smaller number of
attacks, completely ignored memory attacks, or used inadequate
classification evaluation metrics (e.g., only accuracy). In this
paper, we design and simulate an MQTT IoT network and
present IDS-MA, an intrusion detection system for MQTT attacks
by training both centralized and federated learning models. Seven
different MQTT attacks were implemented with the models
evaluated with metrics such as accuracy, precision, and recall.
QOur evaluation results show high detection scores on MQTT
attacks (including memory attacks). We also obtain an average
model detection accuracy of over 80% on 2,210,797 real attacks
from the MQTT-IoT-IDS2020 benchmark for both centralized
and federated models.

Index Terms—Message Queue Telemetry Transport proto-
col (MQTT), Internet of Things (IoT), intrusion detection, fed-
erated learning, centralized learning

I. INTRODUCTION

Nowadays, Internet of Things devices are ubiquitous
and have tremendously impacted businesses and our daily
lifestyles. For example, in 2020 alone, close to 1 billion IoT
home devices were shipped worldwide [1] and the interna-
tional data corporation forecasted that there will be about 56
billion connected IoT devices by 2025 [2].

IoT devices are generally resource-constrained [3], [4] when
compared to conventional PCs, therefore traditional security
tools, techniques, and software cannot be directly applied to
them [5]. Initially, security features were not usually the pri-
ority of IoT product design considerations, which conversely
focused on device functionalities [6], [7]. The change in the
landscape of attackers that have continually targeted these
devices and their networks has called for the prioritization
of security. In addition, because attackers and attacks are also
evolving, it is increasingly difficult to have a reliable attack
mitigation solution [8]. For example, distributed denial of

Yaman Qendah
University of Passau
Passau, Germany
gendahO1 @ads.uni-passau.de

Christian Hammer
University of Passau
Passau, Germany
christian.hammer @uni-passau.de

service, man-in-the-middle, and memory corruption attacks are
among the top leading threats to [oT devices and networks [9],
[10]. These attacks have been exploited on a large scale in
the IoT because they are difficult to detect especially when
a rogue device masquerades as a benign device. Successful
attacks could result in a breach of privacy that could affect
both the users and the devices [11].

The Message Queue Telemetry Transport protocol (MQTT)
is one of the most popular and widely used data commu-
nication protocols by IoT devices in homes and business
networks because it is designed to conserve bandwidth and
transmits a relatively low number of messages [10], [12],
[13]. As a de facto standard for IoT device communication,
there have been numerous attacks targeting devices using
MQTT [9]. Additionally, the protocol itself has design flaws
that allow an attacker to send variable length data and exploit
memory corruption attacks [10]. This also supports the argu-
ment that security concerns were an afterthought in the IoT
world. However, IoT devices generate an enormous amount of
data while interacting either in device-to-device or device-to-
human mode and machine learning has been used successfully
to develop solutions in several fields where there is continuous
generation of data [14], [15]. Machine learning has likewise
shown some promises in general intrusion detection [8], [16].
Hence, machine learning could serve as a go-to alternative
for detecting malicious intrusion of IoT devices because it
can recognize patterns from previous and similar attack data.
The scope of this paper does not cover redesigning MQTT
but improving, implementing, and validating machine learning
techniques to detect multiple categories of attacks on MQTT.

A. Motivation

The Internet of Things network is one of the most vulnerable
networks to external threats resulting from, e.g., a brute
force attack, aggressive scan, user datagram protocol (UDP)
scan, Sparta SSH attack, denial of service (DoS), man in the
middle (MitM), or buffer overflow attack because it allows
communication between devices over the Internet [17]. MQTT
is a simple, lightweight, message-based, publish/subscribe pro-
tocol for transmitting data between IoT devices. It is a client-

server messaging protocol that delivers messages with mini-
mized transport overhead [18]. Being lightweight makes the
protocol portable while sacrificing security-related overhead,
for example, it disables data encryption by default [9], [18],
[19]. Even though there are alternative messaging protocols
to MQTT in terms of security, MQTT is preferred because
it has the benefits of excelling when there is high latency,
and low bandwidth [20]. Technically, the major weakness of
the protocol is that it has extraneous fields that are rarely
used during communication and this serves as an attractive
attack surface, e.g., CVE-2018-8531, CVE-2021-41036, CVE-
2020-10071, and CVE-2020-10070 led to buffer overflow
exploitation due to MQTT’s support for optional and varying
packet length [10]. A more renowned real-life example of the
attack on connected devices is the Mirai bot which exploited
port scanning and authentication attacks to hijack and convert
thousands of IoT devices running Linux into attack bots [19].
Since 2016, there have been several variants of Mirai that
could exploit different kinds of vulnerabilities in MQTT
brokers [9], [21]-[23] such as brokers with no authentication.
It is important to develop a mechanism to make the IoT
MQTT network more secure, fortunately, IoT security is an
open research area currently being addressed by researchers.
Nevertheless, whatever the security mechanism that is being
adopted, because 10T devices do not receive regular security
updates [24], IoT devices’ security should be proactive and
guaranteed, without having to modify the device. Therefore in
this research, the development of intrusion detection systems
for detecting different MQTT-related attacks using centralized
machine learning and federated learning is investigated. The
contributions of our paper are:

o We perform a detailed experiment using data collected
from our simulated network and introduced three ad-
ditional MQTT attacks (MitM, DoS, Buffer Overflow)
to the four attacks contained in MQTT-IoT-IDS2020 to
develop more robust models for MQTT attack detection.

« We show the capability of binary and multi-class clas-
sifiers to detect MQTT attacks with precision and recall
scores of about 80%. Unlike many of the existing MQTT
attack papers which report only general model accuracy
(e.g., [25], [26]), we further show the accuracy, precision,
and recall for detecting individual attacks. Our model per-
formance is significant in both the majority and minority
classes.

« The results we obtained from both federated and cen-
tralized models’ performance on the MQTT-IoT-IDS2020
benchmark dataset show that our models learn and can
generalize on a different dataset. On the MQTT-IoT-
IDS2020 dataset, we obtained precision and recall scores
up to 85% and 87% respectively in federated learning,
and the highest score for the centralized models is 100%.

e Our model evaluation result using 10-fold cross-
validation showed that buffer overflow memory corruption
attacks in IoT MQTT communication could be detected
with precision and recall of about 87%. Existing works

TABLE I
COMPARSION WITH EXISTING MQTT WORKS (A)

Attacks this paper [29] [30] [31] [32] 171 [33]
Bruteforce v X X X X v v
Aggressive scan v X X X v v v
UDP scan v X X X v v v
Sparta ssh scan v X X X v v v
DoS v X v 4 X X X
MitM v v X X X X X
Bufferoverflow v X X X X X X
TABLE II

COMPARSION WITH EXISTING MQTT WORKS (B)

Author Evaluation score ML Method Training set Benchmark set

this paper individual federated and centralized learning Experiment MQTT-IoT-IDS2020

[29] cumulative centralized learning Experiment

[30] cumulative centralized learning Experiment

[31] cumulative Experiment
MQTT-I0T-IDS2020
MQTT-IoT-IDS2020

MQTT-I0oT-IDS2020

[32] cumulative MQTT-IoT-IDS2020
MQTT-IoT-IDS2020

MQTT-I0T-IDS2020

centralized learning

07 cumulative centralized learning

[33] cumulative federated learning

using network traffic data have average detection preci-
sion and recall of 50% and 22%, respectively for this
category of attacks [27], [28].

o The comparison of federated machine learning (using
random forest) with federated deep learning showed that
both can perform well in detecting MQTT attacks albeit
federated deep learning converges faster, has lower over-
head, and is capable of continuous learning.

Threat model: Our system is targeted at detecting different
MQTT attacks using network traffic data. It is assumed that at
least one of the MQTT publisher-subscriber network devices
such as the broker or subscriber has exploitable weaknesses
like opened ports, weak authentication, or vulnerable C lan-
guage codebase. When the federated model converges, all the
devices have an updated shared model. Then, if one of the
devices that has access to MQTT topic(s) becomes malicious
and is masquerading as a legitimate publisher or subscriber
to compromise other clients (e.g., by sending a memory
bug payload), the network traffic data fed into our model
can automatically detect the attack on-device. This results in
classifying a communication as either an attack (1) or benign
(0). Because learning is continuous, knowledge of the threat
is updated on the devices and shared globally for up-to-date
network protection.

II. RELATED WORK

This section briefly summarizes the state of the art concern-
ing MQTT attacks.Table I and II summarize how our work is
different from existing works.

Communication Protocols: The MQTT protocol is the
most used communication protocol in resource-constrained
devices [31] because it has superior energy efficiency, re-
source usage, and Quality of Service (QoS) when compared
to alternative IoT communication protocols like Hypertext
Transfer Protocol, Constrained Application Protocol, Extensi-

ble Messaging and Presence Protocol, and Advanced Message
Queuing Protocol [18], [20], [34], [35]. However, in the last
8 years, at least 81 MQTT protocol-related vulnerabilities
relating to memory attack and DoS, were reported in the
National Vulnerability Database and Common Vulnerabilities
and Exposures database [10]. Therefore in this paper, the focus
is on attack detection in IoT interactions using the MQTT
protocol.

Attack Detection on MQTT: The DoS attack detection
mechanism for MQTT protocol was proposed in [31] but our
IDS-MA contains seven different categories of attacks. To
mitigate attacks, [10] addresses MQTT protocol modifica-
tion, our approach does not involve making changes to how
MQTT processes information but uses artificial intelligence
algorithms to learn and detect attacks without a protocol
modification. [18] identified only the MQTT attack scenario,
our work includes the presentation of the detection of attacks
and not just identification. [32] used MQTT-IoT-IDS2020 to
test their approach without any simulation or data collection,
in our work, we created an experimental testbed and use
data from communicating devices to develop our models. We
only use the MQTT-IoT-IDS2020 dataset for validating our
result. [30] also developed an intrusion detection system
called ARTEMIS for MQTT attacks by comparing six ma-
chine learning algorithms. The evaluation was only based on
accuracy metrics on a smaller dataset. Many machine learning
models are built on the assumption that classification data is
balanced but in reality, classes often imbalance as attack traffic
could be less than normal traffic. Therefore an exaggerated
high accuracy score based on the majority class would lead to
a poor classification of other classes. For example, a classifier
with an accuracy of 99% may not perform better than a purely
random classifier. In addition, there was no information on
the kind of attacks detected. In our work, we evaluated our
classifier not just on accuracy but the precision and recall
metrics which reflect the true capabilities of the classifiers. We
also clearly showed the detection scores of individual attacks
that were detected by our models.

An approach similar to ours, but only focused on deep
learning, was by [17] which provided general detection scores
of different models on four attacks without providing the
details on the detection of individual attacks. No experiment
or simulation of the MQTT network was done but only
an evaluation of models built on the existing MQTT-IoT-
IDS2020 dataset. In our work, we performed experiments on
our simulated IoT network and collected data in the process
which were used to develop centralized and federated learning
models. [33] uses federated learning but presented only simple
results from the MQTT-IoT-IDS2020 evaluation. Our paper
presents centralized and federated models (federated ML and
federated DL), attacks, and detailed performance of the model
as well as MQTT-IoT-IDS2020 validation scores.

One of the challenges that we highlighted earlier was the
misleading performance of the existing model which does
not usually generalize well on all attacks used in training,
resulting in the minority classes either poorly detected or

undetected [25], [36], [37]. In our work, we showed the
precision, recall, and accuracy of our model on each of the
seven attacks we considered.

Centralized vs. Federated Learning: The centralized ma-
chine learning approach is the costly traditional approach
where data from multiple IoT devices is aggregated and
then used to train a single model once [38]. Because the
volume of the aggregated data is typically large, model training
usually takes more time, and dedicated storage/servers might
be required to reduce the interval between the training time
and the release of an updated model. Another challenge of this
approach is privacy because confidential data could be moved
between devices. Data could be exposed to different kinds
of attacks in transit, especially when using the cloud [39]. In
federated learning, training is decentralized and is done on the
IoT devices which collaboratively learn a shared prediction
model while each IoT device keeps its training data [40].
Typically, each device continually trains a model and sends
small incremental updates or parameters (instead of huge
data) to the server for aggregation which is then used to
create a shared consolidated model. Federated learning has
the advantage of having a realistically up-to-date model while
maintaining data privacy [41]. In this paper, we employed the
federated learning approach to train a decentralized model for
detecting multiple attacks on the MQTT protocol.

III. PLANNING AND EXECUTION METHOD

This section presents the development of the MQTT pro-
tocol intrusion detection system (IDS), the attack techniques,
data processing and model development, and the evaluation
strategy.

Fig. 1 is a simplified workflow of our IDS-MA that depicts
the different stages of our methodology, e.g., the IoT network,
different forms of packets, packets processing, model devel-
opment, deployments, and evaluation.

To collect the data needed for building our IDS, we con-
structed the IoT communication network described in Fig. 2
consisting of a broker, seven sets of sensors/clients (publishers
and subscribers) where one of the clients is malicious. An
MQTT client act as either a subscriber (receiver) or a publisher
(sender). The broker is a central server that handles the
published and subscribed messages. Normally, each subscribed
or published message has to be under a specific topic and
every subscriber or publisher has to either subscribe or publish
to a specific topic to be able to receive or send messages
to the MQTT broker. The IoT devices were simulated using
virtual machines running Linux operating systems. The MQTT
broker device is based on Mosquitto v3.1.1 with activated
authentication, which means that whenever a client wants to
connect to the broker, a username and password are required.

In a real-life scenario, data generated by sensors is sent
from the publisher to the subscriber(s). To satisfy this in
our simulation, the client devices continuously exchange data
received from temperature and humidity sensors! , smartphone

Uhttps://www.kaggle.com/datasets/edotfs/dht1 1 -temperature- and-humidity-
sensor- 1-day

Data Preprocessing

Detection and Evaluation
Approaches

Features
Extraction

normal
packets

Packets
Filtering

Brute Force

e Centralized Approach
Features
Encoding

Aggressive
scan packets
o
) UDF scan
*—b packe

Features

|".-S|mlllaled loT
5 Engineering

network

(
— e

Sparta SSH
packel

Combining
Datasel

Federated Approach

DoS packets

B
-]

3

=S

@ o) @ g

& @ & E]

a

)

&

MitM packets

Buffer
overflow
packeis

Fig. 1. IDS-MA workflow

.\o@a
*o‘-‘g(\
&% -

T e
. p‘Cr
o
&

" subscribe
MQTT Broker

Publish

Client 6

Fig. 2. Our IoT MQTT Network

motion sensors” , and the temperature and light sensors® . The
malicious device injects seven different classes of attacks into
the network to compromise communication. These attacks are
listed in Table III alongside their affected security goals.

A. Attacks description

A brief description of the attacks used in our study is as
follows:

MQTT Brute Force: MQTT protocol uses a centralized
broker to communicate between clients. Those brokers can
define a basic authentication mechanism in the form of a
username/password pair. The authentication in our simulated
broker is active and the Static Program Analysis for Reliable
Trusted Apps sparta tool was used to perform credential
brute forcing on the broker e.g., via a set of compromised
usernames and passwords.

Aggressive Scan: Network Mapper (Nmap) tools can be
used for network discovery security auditing. It has a special

Zhttps://www.kaggle.com/datasets/malekzadeh/motionsense-dataset
3https://www.kaggle.com/datasets/bjoernjostein/temperature-and-light-data

TABLE III
ATTACKS SECURITY GOALS

Attack Affected security goals
MQTT Brute Force Confidentiality
Aggressive scan Confidentiality
UDP scan Confidentiality

Sparta SSH brute-force
Man in the middle

Confidentiality

Confidentiality, Integrity and
Availability

Denial of Service (DoS), Availability

Distributed Denial of Service

(DDoS) and Syn flooding DoS

Buffer overflow Confidentiality, Integrity and

Availability

flag to activate aggressive discovery, namely -A. Aggressive

mode enables OS discovery (-O), version detection (-sV),

script scanning (-sC), and traceroute (—traceroute). This attack

generates only few packets, so a bash script was written to

execute the attack multiple and random times to get more

packets for the IDS. The command used to execute attack:
nmap —A victim-ip-address

User Datagram Protocol (UDP) scan: This attack works
by sending UDP packets to the victim’s port to check if the
service is running. This was accomplished using the Nmap
command with the flag -U activated. Also, this attack generates
few packets, so a bash script is written, to execute this attack
multiple times. The command used is as follows:

nmap -U victim-ip-address

Sparta SSH brute-force: It is also possible that brokers
have the SSH service activated (e.g., with an open port 22)
to allow remote access. An attacker could exploit this and
sparta is one of the tools that could be used to scan, check,
brute force and attack the broker if the SSH service is running.

Man in the Middle: Eavesdropping was achieved using
Ettercap tool which is capable of sniffing live connections
and content filtering on the fly. It supports active and passive
dissection of many protocols and includes many features for
network and host analysis. The command used to execute
attack:

sudo timeout 15 ettercap -T -i ens33 -M arp:
remote /first-victim// /secondvictim//

Denial of Service (DoS): DoS attacks aim to send a huge
number of packets to the victim, which cause the victim’s
device to get overwhelmed by received packets while prevent-
ing the victim from being able to deliver its intended service
correctly

Distributed Denial of Service (DDoS): This attack is very
similar to the DoS attack, but instead of using one machine
to send the packets, the attacker could use multiple machines.
In this work, the Dos attack was executed using multiple fake
IP addresses.

Syn flooding DoS: This is a type of DoS attack, that aims to
make a server unavailable to legitimate traffic by consuming
all available server resources. By repeatedly sending initial
connection request (SYN) packets, the attacker can overwhelm

TABLE IV
TARGET FEATURES CATEGORIES

Target Feature Classification Categories

is_attack Not an attack= 0, An attack = 1
Normal=0, MQTT brute force=1, Agressive
scan=2, UDP scan=3, SPARTA scan=4,

DoS=5, MitM=6

Binary

attack_type Multi

all available ports on a targeted server machine, causing the
targeted device to respond to legitimate traffic sluggishly or
not at all. DoS, DDoS, and Syn flooding are all implemented
but since the base behavior is similar, the data for the three
are combined into one category as DoS attack. hping3 tool
was used to execute the attack as follows:

hping3 -d 50 -p 1883 -S —flood victim-ip-address

Buffer overflow: IoT devices’ firmware is largely written in
the C language and this attack exploits the inherent weakness
of the language. As stated in the motivation section, MQTT is
highly susceptible to this kind of attack but existing works on
MQTT excluded detection of this kind of attack. By sending
an input that writes beyond the boundary of a variable and
then hijacking the control flow, an attacker could send new
commands to devices in the network or run a shell script and
can even gain root access to the broker or subscriber. Examples
of exploits to maliciously call a vulnerable_function function
in the broker or subscriber from a rogue device is:

(python3 -c "print (B’*88+ \x1e\x55\x55\x55\x55\x55
\x00\x00*)") | ./vulnerable_function

where \x1e \x55 \x55 \x55 \x55 \x55 \x00 \x00 is the address
of the new instructions an exploited device is redirected to.

In another scenario, the rogue device corrupts the memory
to run a shell script to gain root access e.g.,

(python3 -¢ "print(’B’*63+\x31\xcO\x50\x68\x2A\x2f
\x73\x68\x68\x2A\x62\x69\x 6e\x89\xe3\x 50\x89\xe2\x 53\x 89
\xe 1\xbO\xOb\xcd\x80’+ "\x 1e\x55\x55\x55\x55\x55\x00\x00")
") | ./vulnerable_function

Each of these attacks was executed at different times from
the rogue device, and the packets generated were collected,
filtered, and saved in a CSV file using the Wireshark* network
protocol analyzer. The network traffic is observed during
normal communication and the traffic data is collected. When
each attack is triggered the corresponding traffic data was
equally collected and analyzed. The Wireshark network tool
was used to gather the packets communicate in the network.

B. Data Pre-Processing

The packet data associated with the described attacks was
collected using the Wireshark network tool while the different
components of the system communicate. The network traffic
is observed live during normal communication and the traffic
data is collected. When each attack is triggered the corre-
sponding traffic data were equally collected and analyzed. The
collected packet features were preprocessed and engineered
to remove redundant fields and select relevant features e.g.,
features such as Time stamp timestamp, Source IP src_ip, and

“https://www.wireshark.org

TABLE V
SIZE OF THE DATA COLLECTED FOR EACH ATTACK
Attack Datasize
MQTT Brute Force attack 1,048,563
Aggressive scan attack 502,927
UDP scan attack 22,359
Sparta SSH brute-force attack 32,405
MitM attack 7,000
DoS 288,657
Buffer Overflow attack 9,235

Destination IP dst_ip were dropped because these features vary
from one attack to another and we do not want our model to be
tailored for a fixed scenario. The packet features were encoded,
as shown in Table VI. Two additional target features were
added to our dataset, one is used for the binary classification
and labeled is_attack, and the other is used for the multi-
classification and labeled attack_type. The categories of these
features are presented in Table IV.

The shapes of the data collected within the normal com-
munication and attack are 1,704,747 * 30 and 1,911,146 * 30
respectively. Table V shows the extracted data shape for each
attack type that was collected from our IoT MQTT network
that we want to correctly classify. After feature engineering,
we obtained a dataset with the shape 3,319,571 * 30.

C. Model validation dataset

There is a variety of datasets that have been proposed for
a intrusion detection system. A number of them, such as the
popular KDD-99, and NSL-KDD?, are for general computer
networks and do not target a specific IoT or network protocol,
whereas MQTT-IoT-IDS-2020 and MQTTset [26] are exam-
ples of datasets that represent specific types of specialized
devices, networks, or protocols that are not usually available
in the general network. In this paper, we validated our models
using the MQTT Internet of things intrusion detection dataset
(MQTT-I0oT-IDS2020), which is the first and the most detailed
special purpose dataset for MQTT attacks [17], [32], [42].
This benchmark data set was collected from an IoT MQTT
network consisting of 1 broker, 12 sensors, a camera, and a
rogue device [32]. It contains four categories of attacks such
as MQTT brute force, aggressive scan, UDP scan, Sparta ssh
Brute force. This paper collects and includes datasets from
three additional attacks. For the validation of DoS and MitM
attacks on MQTT protocol we merged another public MQTT
DoS/MitM © dataset. Our MQTT-I0oT-IDS2020 dataset also has
over 2 million records (shape - 2,210,797 * 30) of MQTT
attacks and our validation is only based on the packet features
abstraction level in the dataset.

Our captured packet features were also structured based
on the MQTT-IoT-IDS2020. The different attack categories
and how they were exploited have been discussed earlier in
Section III-A.

Shttps://www.unb.ca/cic/datasets/index.html
Ohttps://joseaveleira.es/dataset

TABLE VI
FEATURES ENCODING
Feature Encoding Categories
timestamp float -
scr_ip category -
dst_ip category -
protocol category TCP =1, MQTT =2, MP2T = 3, DATA =4,
UDP =5, DN =6 MPEG_PMT =7,
MPEG_PAT = 8, DVB_SDT = 9, SSH = 10,
RADIUS = 11, MDNS = 12, PORTMAP = 13,
Portmap = 13, NFS = 14, ECHO = 15,
NAT — PMP = 16, NTP = 17, NBNS = 18,
SNMP = 19, SRVLOC = 20, CLDAP =21,
ISAKMP = 22, DTLS = 23, RIP = 24,
XDMCP = 25, ARP = 26, None = -1
ttl category -
ip_len float -
ip_flag_df category Notset = 0, Set = 1, None = —1
ip_flag_mf category Notset = 0, Set = 1, None = —1
ip_flag_rb category Notset = 0, Set = 1, None = -1
src_port category -
dst_port category -
tep_flag_res category NotSet = 0, Set = 1, None = —1
tep_flag_ns category NotSet = 0, Set = 1, None = —1
tep_flag_cwr category NotSet = 0, Set = 1, None = —1
tep_flag_ecn category NotSet = 0, Set = 1, None = —1
tep_flag_urg category NotSet = 0, Set = 1, None = —1
tep_flag_ack category NotSet = 0, Set = 1, None = —1
tep_flag_push category NotSet = 0, Set = 1, None = —1
tep_flag_reset category NotSet = 0, Set = 1, None = —1
tep_flag_syn category NotSet = 0, Set = 1, None = —1
tep_flag_fin category NotSet = 0, Set = 1, None = —1
mqtt_messagetype category 0 =0, ConnectCommand = 1,
ConnectAck = 2, PublishMessage = 3,
SubscribeRequest = 12, SubscribeAck = 12,
DisconnectRequest = 13, PingRequest = 14,
PingResponse = 14, None = —1
mqtt_messagelength float -
mgqtt_flag_uname category NotSet = 0, Set = 1, None = —1
mqtt_flag_passwd category NotSet = 0, Set = 1, None = —1
mqtt_flag_retain category NotSet = 0, Set = 1, None = —1
mgqtt_flag_qos category NotSet = 0, Atmostoncedelivery = 1,
Atleastoncedelivery = 2,
Exactlyoncedelivery = 3
mqtt_flag_willflag category NotSet = 0, Set = 1, None = —1
mqtt_flag_clean category NotSet = 0, Set = 1, None = —1
mqtt_flag_reserved category NotSet = 0, Set = 1, None = —1

D. Model development

The primary languages used for our experiments are Python,
C, and bash. Model development was made using several
libraries such as Pandas (v1.3.5), NumPy (v1.19.5), Tensor-
Flow (v2.5.3), Tensorflow_federated (v0.19.0), Keras (v2.8.0),
Sklearn (v1.0.2), and Tensorflow_decision_forests (v1.0.1).
We implemented and evaluated both the centralized and de-
centralized (using federated learning) approach for detecting
MQTT attacks. Five conventional machine learning algorithms
and one deep learning algorithm were evaluated. These are
Decision Tree (DT), Random Forest (RF), Logistic Regression
(LR), Linear Discriminant Analysis (LDA), Gaussian Naive
Bayes (NB), and Deep Neural Network (DNN).

1) Centralized approach: In this approach, each model is
trained once and then deployed. We developed two variants of

each centralized model, in one form as a binary classifier and
the other as a multi-class classifier. For binary classification,
each target feature classifies the packet as an attack or not. The
target feature is 1s_attack. In the multi-class classification,
the models are trained to detect each attack individually, and
the encoding for each target feature is presented in Table IV.
Because the classes in our dataset were not balanced, and
to reduce model bias, we used the stratified shuffle split
resampling technique to ensure that each attack type is equally
present in each of our sampling corpora. We use 10-fold cross-
validation, that is, 10% of the data is used for testing, which
is a standard procedure to ensure the validity of the learned
classifiers.

2) Decentralized approach: In this approach, the model is
trained incrementally on each client and then consolidated into
a shared global model. This was developed using TensorFlow
Federated 7 TFF framework in Google Collab® .

In decentralized learning using federated learning, we want
to minimize the number of round trips for exchanging model
updates between our client and a central server. Therefore, we
implemented the federated averaging FedAvg algorithm that
minimizes the objective function f(w), such that:

K m
f(w) = Z n—ka(w) where Fy(w) = i Z filw) (1)
= Mk jepy

w is the weight of model updates or parameters, K is the
number of clients or devices over which the data is partitioned,
k is the index of a device, Fy is the local objective function
for the k,h device, Py is the set of indexes of datapoints
on device k, and ng is the number of data samples that are
available during training of device k. Although there are other
techniques such FedACNN [27], Per-FedAvg [43] for federated
learning convergence and minimizing the objective function,
FedAvg is the most popular [44].

We also implemented TFF for binary and multi-class clas-
sification. A different number of clients were sampled for
collaborative learning and for this purpose we experimented
with 10 to 40 clients in the federated learning model. However,
due to the limited resources (e.g., RAM and thread) supported
by Google Collab’, the training was done in multiple phases,
each training phase trained by datasets from 5 clients, which
is the maximum number supported by Google Colab.

Algorithm 1 simplifies and formalizes the training and
prediction procedure in our method that results in centralized
and decentralized models m. and m, respectively. The models
are trained with different machine learning algorithms train,
using our IDS-MA dataset 8; and validated with the MQTT-
IoT-IDS2020 dataset $,. The p. and p, are the predictions
for different attack classes in the centralized and decentralized
model respectively.

"https://www.tensorflow.org/federated
8https://research.google.com/colaboratory/faq.html
9https://colab.research.google.com/

Algorithm 1: IDS-MA Algorithm
Input: Train and test data of IDS-MA MQTT data
Output: MQTT attack classification
Data: IDS-MA(B;), MQTT-IoT-IDS2020(8,)

1 0=01...040 /* devices’ data */

2 @ =@]...Q¢ /* machine learning algorithms */
3 def idsma_training (mg, a, 0):

4 while /convergence do

5 send_to_devices(mg)

6 for 6; in o do

7 m; = traing(6;)

8 L send_to_central_server(m;)
/% update server model, myg %/
/* by averaging parameters of models on

all devices */

9 mg = FedAvg(m,, ..., myp)

10 me = traing (o)

11 return Mg, M

12 def predict_attacks (mg, me, class):

13 Pg = mg(B1, B2, class)

14 | pe=me(Bi, P2, class)

15 return pg, p.

E. Evaluation metrics

Our models’ performance evaluations were based on the
following research questions.

RQI1: At what accuracy, precision, and recall can centralized
learning and federated learning detect intrusion on the
MQTT protocol?

How well can the models perform over different attack
categories on the MQTT protocol?

Can we improve the detection of memory corruption
attacks (e.g., buffer overflows) on MQTT protocol using
packet data?

RQ2:

RQ3:

To answer the first research question, our classifiers’ per-
formance was measured using standard machine learning
classification metrics such as accuracy, precision, recall, and
F1-score. In the metrics definition TP, FP, TN, and FN refer to
true positive, false positive, true negative, and false negative
respectively.

Accuracy represents the overall rate of the positive and
negative predictions made by the classifier. Accuracy is defined
by the equation:

A TN +TP .
ccuracy =
Y S IN+FP+TP+FN

Precision measures the accuracy of the positive predictions
when classifying the data instances. The precision metric is
defined by:

. TP
Precision = ———— 3)
TP+ FP

Recall is also known as true positive rate. it is the ratio of
positive instances that are correctly predicted by the classifier.

TABLE VII
CENTRALIZED MODELS (AS BINARY CLASSIFIERS) PERFORMANCE
Metrics DT RF LDA NB LR DL
Accuracy | 86.87 | 87.25 | 76.59 | 75.84 | 78.14 | 86.23
Precision | 87.00 | 87.28 | 77.23 | 79.16 | 78.08 | 80.16
Recall 87.07 | 87.38 | 76.97 | 7495 | 78.13 | 85.29
F1-score 86.87 | 87.24 | 76.57 | 77.00 | 78.09 | 82.65
TABLE VIII

CENTRALIZED MODELS (AS MULTI-CLASS CLASSIFIERS) PERFORMANCE

Aftacks Metrics DT RF LDA NB LR DL
Accuracy | 8829 | 8922 | 8442 | 7338 | 8479 | 8101

Brute Force Precision | 88.75 | 89.27 | 83.02 | 7549 | 83.15 | 80.95
Recall 88.49 | 8821 | 81.62 | 7043 | 82.64 | 80.00

Fl-score | 88.62 | 8874 | 8232 | 7287 | 8290 | 8047

Accuracy | 100.00 | 100.00 | 97.61 | 6851 | 97.86 | 88.61

Aparessive Scan | PrECision | 100,00 | 100.0 | 98.30 | 67.387 | 98.64 | 80.00
SBIESSIVE SCAN | Recall | 100.00 | 100.00 | 9493 | 72.81 | 9532 | 8357
Fl-score | 100.00 | 100.00 | 9649 | 69.99 | 96.68 | 81.74

Accuracy | 100.00 | 99.99 | 99.96 | 5651 | 99.96 | 98.72

UDP Scan Precision | 100.00 | 99.99 | 99.97 | 5140 | 99.98 | 89.36
Recall | 100.00 | 99.95 | 98.72 | 77.53 | 98.72 | 90.00

Fl-score | 100.00 | 99.97 | 99.03 | 38.62 | 9934 | 89.67

Accuracy | 100.00 | 100.00 | 98.88 45.59 98.90 98.12

Sparta ssh sca Precision | 100.00 | 100.00 | 99.43 | 51.66 | 99.19 | 89.60
parta sShscan | pecall | 100.00 | 100.00 | 9031 | 7227 | 90.95 | 90.00
Fl-score | 100.00 | 100.00 | 94.60 | 3404 | 9421 | 89.82

Accuracy | 99.62 | 99.60 | 95.10 | 5440 | 9545 | 8542

Dos Precision | 99.77 | 99.72 | 97.99 | 62.10 | 89.87 | 82.71
Recall 9871 | 98.69 | 9505 | 7331 | 9261 | 8435

Fl-score | 99.23 | 99.19 | 91.02 | 5130 | 91.17 | 8352

Accuracy | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00

Mt Precision | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00

! Recall | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
Fl-score | 100.00 | 100.00 | 100.00 | 100.00 | 100.0 | 100.00

Accuracy | 89.99 | 89.99 | 88.00 | 47.78 | 89.67 | 89.68

Buffer Overflow | Precision | 89.99 | 89.99 | 8243 | 50.16 | 89.83 | 8359
Recall 89.90 | 89.90 | 8382 | 5223 | 89.48 | 81.89

Fl-score | 89.95 | 89.95 | 83.85 | 46.15 | 89.91 | 8255

The higher the recall, the more positive samples detected. The
recall is defined by the equation:

TP
Recall = ————— €]
TP+ FN

FI-score metric measures the harmonic mean of precision
and recall. F1-Score is defined by the equation:

Fl — score =2 Prec{sz:on x Recall 5)
Precision + Recall

The second research question is answered by comparing
the evaluation metric for different categories of attacks to see
if our models could generalize on the considered of attacks.
For the third research question, we answered by measuring
how well our model can correctly classify memory corruption
attacks using precision and recall scores. This category of
attacks has proven difficult to detect in much of existing works
relying network packet features [28], [36], [45].

IV. DISCUSSION OF RESULTS

RQ1: At what accuracy, precision, and recall can central-
ized learning and federated learning detect intrusion on the
MQTT protocol?

The goal is to determine, using classification metrics, the
performance of the models. Table VII and Table VIII depict the
performance scores of our centralized models trained as binary
and multi-class classifiers based on the performance evaluation

TABLE IX
CENTRALIZED MODELS (AS MULTI-CLASS CLASSIFIERS) VALIDATION ON
MQTT-10T-IDS2020

N

protocol

150
§100
d
50
10) 0
0 1

-+

(b) ip_len

dst_port

metrics. Our models’ performance is based on 10-fold cross-
validation. In Table VII the machine learning model with the
highest precision and recall is the Random Forest (RF) with
about 87% precision and recall scores respectively, while the
deep learning model has precision and recall of about 80% and
85% respectively. The models’ performance metrics were bet-
ter in multi-class classification as shown in Table VIII. For the
seven categories of attacks, our model performance in terms
of precision and recall scores is high. Except for NB, model
scores significantly improve, for example, it was possible to
obtain 100% precision and recall for MitM, Sparta ssh scan,
UDP Scan, and Aggressive Scan. To validate the centralized
model and check if it generalizes well, we evaluated the
performance using the MQTT-IoT-IDS2020 containing over
2 million attack records dataset and we also recorded high-
performance metrics scores shown in Table IX. This shows
that our models generalize well on the different attacks.

The distribution of some of the classification features used
by our models to distinguish the normal and attack com-
munication is shown in Fig. 3 by violin plots. They are
a combination of TCP and MQTT flags because MQTT
runs on top of TCP/IP for reliable message delivery. The
values 0 and 1 indicate feature distribution in the normal
and attack communication respectively. Fig. 3a to Fig. 31
are the distributions for protocol, packet length, source
port, destination port, TCP acknowledgement flag, TCP
push flag, TCP synchronization flag, TCP finish flag, MQTT
message type, MQTT user name flag, MQTT QoS level flag,
and MQTT clean session flag respectively.

In the decentralized approach using federated learning, we
tested our federated learning models (binary classification)
with multiple clients and we obtained model performance
scores in Table X. The federated learning model’s precision
and recall were both about 83% and this performance was not

Attacks Metrics DT RF LDA NB LR DL
Accuracy | 76.00 | 75.77 | 76.64 | 71.83 7191 74.24
Brute Force Precision | 76.94 | 76.97 | 76.67 | 78.30 | 72.13 73.55
Recall 76.01 | 75.79 | 76.64 | 71.87 71.92 74.19
Fl-score | 7647 | 76.38 | 76.59 | 74.95 71.74 70.68 (a) protocol
Accuracy | 9248 | 9390 | 9520 | 76.67 98.12 88.13
Aggressive Scan Precision | 94.70 | 85.08 | 88.43 | 79.98 99.04 80.00
Recall 85.58 | 95.64 | 93.39 | 79.88 94.16 89.04
Fl-score | 89.82 | 88.71 | 90.57 | 74.78 92.77 84.28
Accuracy | 93.79 | 93.79 | 99.12 | 54.55 94.36 97.90
UDP Scan Precision | 92.61 | 92.61 | 8522 | 52.20 | 93.55 88.95
Recall 96.82 | 96.82 | 97.11 | 76.78 92.84 90.00
Fl-score | 91.51 | 91.51 | 91.10 | 39.10 | 91.84 89.47
Accuracy | 96.96 | 97.04 | 91.20 | 60.38 97.25 99.69
Sparta ssh scan Precision | 90.05 | 94.69 | 90.72 | 50.05 92.52 89.84 (c) src_port
Recall 94.30 | 98.51 | 88.89 | 5430 | 91.92 90.00 o
Fl-score | 87.99 | 97.82 | 89.23 | 37.99 | 92.00 89.92
Accuracy | 99.69 | 99.58 | 95.06 | 54.30 | 95.39 85.51
DoS Precision | 99.81 | 99.74 | 8791 | 61.86 | 89.811 | 82.75 x*” .
Recall 98.93 | 98.59 | 94.77 | 72.99 | 92.25 89.84 B]
Fl-score | 99.37 | 99.15 | 90.87 | 51.11 90.97 86.09 5_.3“05 905
Accuracy | 99.99 | 99.96 | 99.63 | 99.63 99.63 91.01 3 i
MitM Precision | 99.94 | 99.98 | 100.0 | 100.0 100.0 89.80 200 2
Recall 99.99 | 95.16 | 100.0 | 100.0 100.0 85.67 3 T
Fl-score | 99.97 | 97.44 | 100.0 | 100.0 100.0 87.64

60000 60000
5
CL‘AUOGD 40000
g
@ 20000 20000
0 0
0 1 0 1

(d) dst_port

L

(f) tep_flag_push

m L I 10 L L
0] 00
0 1 0 1

(h) tcp_flag_fin

|

(j) mqtt_flag_uname

(e) tep_flag_ack

tep_flag_syn
=

tep_flag_fin
S

(g) tep_flag_syn

L

(i) mqtt_messagetype

1L el]

(k) mqtt_flag_QoS

maqtt_flag_uname
&

matt_messagetype

matt_flag_qos
S

matt_flag_clean
&

(1) mqtt_flag_clean

Fig. 3. Violin plots of the features for the normal (0) and attack (1)
communications

significantly affected as the number of clients grows from 10 to
40. This was also equally validated using MQTT-IoT-IDS2020
although the performance slightly dropped we still obtained
precision and recall as high as 80% and 81% respectively.
Training federated deep learning takes less time than feder-
ated random forest, e.g., in Fig. 4, which plots the logarithmic
training time, federated random forest algorithm took over 42
minutes to train with just 10 clients whereas just 37 seconds
with federated deep learning. Federated deep learning also
takes a less total training time than the centralized deep learn-
ing model as shown in Fig. 5. In addition, during detection,
federated random forest shows an additional 24% classification

3.25

3.00 -

)
© 2.754
3
o
L model
@ 2.50 4
£ e DL
= * RF
o
£
£ 2.25
©
=
2.00 A
1.751
.
. ° .
1.50 T T T T T T T
10 15 20 25 30 35 40

Number of clients

Fig. 4. Training time of federated random forest vs. federated deep learning

2.5 A

2.0 1

=
&)
L

Training time(log scale)

g
=)
L

0.5

0.0 -

20 clients 30 clients 40 clients Centralized

10 clients

Fig. 5. Training time of federated deep learning vs. centralized deep learning

time overhead compared to federated deep learning on the
MQTT-IoT-IDS2020 dataset.

RQ2: How well can the models perform over different attack
categories on the MQTT protocol?
Existing works on MQTT intrusion detection generally do
not provide individual attack detection scores which makes
it difficult to know how well the classifier generalizes on
different attacks. From the result of our models’ cross-

TABLE X
FEDERATED MODELS (AS BINARY CLASSIFIERS) PERFORMANCE AND
VALIDATION ON MQTT-I0T-IDS2020

Evaluation dataset Clients Metrics DL RF
Accuracy | 82.62 | 85.20
10 Precision | 82.63 | 85.02
Recall 89.97 | 84.82
Accuracy | 82.65 | 84.29
20 Precision | 82.68 | 84.67
Model performance Recall 89.89 | 84.22
Accuracy | 82.59 | 86.00
30 Precision | 82.59 | 85.89
Recall 90.02 | 86.04
Accuracy | 82.81 | 86.22
40 Precision | 82.81 86.76
Recall 88.24 | 86.69
Accuracy | 80.79 | 78.20
10 Precision | 76.57 | 78.01
Recall 76.57 | 78.66
Accuracy | 80.95 | 78.76
20 Precision | 78.57 | 78.52
Recall 78.57 | 78.40
MQTT-10T-IDS2020 dataset Accuracy | 80.00 | 79.23
30 Precision | 81.57 | 79.10
Recall 80.57 | 79.00
Accuracy | 80.94 | 79.26
40 Precision | 79.57 | 79.24
Recall 80.25 | 79.03

validation, both random forest and decision tree outperform
the other models’ detection scores for all the seven attacks
considered. The multi-class results in Table VIII show that on
average both RF and DT can detect brute force, aggressive
scan, UDP scan, sparta ssh scan, DoS, MitM, and buffer
overflow with approximate precision between 89 - 100%.
To confirm that these numbers were not exaggerated, on
the MQTT-IoT-IDS2020 dataset brute force, aggressive scan,
UDP scan, sparta ssh scan, DoS, and MitM were detected
with approximate precisions between 76-100%. These results
are significantly close to the actual model performance on the
different attack categories.

RQ3:Can we improve the detection of memory corruption

attacks (e.g., buffer overflows) on MQTT protocol using traffic
data?
Except for the Naive Bayes classifier, our models have average
precision and recall of about 87% which implies they can
correctly detect positive memory attacks with an accuracy
of 87% and that the predictions are right 87% of the time.
Furthermore, as of when this study was carried out, we are
not aware of any MQTT dataset that has memory attack data
probably because of the difficulty of implementing it even
though it is commonly exploited [10]. However, our detection
score for memory attacks is significant because some of the
past works that have used general network datasets for IoT
intrusion detection (e.g., NSL-KDD) have recorded as low as
0% precision and recall despite an accuracy of 99.95% [28].
This also justifies the incompleteness of accuracy metrics in
assessing classifiers. Despite being one of two minority classes
in Table V, it appears that MQTT traffic data is more efficient
at detecting this category of attack in IoT networks.

TABLE XI
EVALUATION RESULT COMPARSION WITH EXISTING MQTT WORKS
Author #Attack | Accuracy | Precision | Recall | #ML
this paper 7 0.86 0.84 0.85 6
[29] 1 - - - 1
[30] 4 0.84 - - 6
[31] 1 - 0.86 0.81 -
[32] 3 0.75 0.72 0.75 6
[17] 4 0.91 0.89 0.82 1
[33] 4 0.94 0.93 0.93 1

In Table XI we compare the average accuracy, precision,
and recall over all the six algorithms used for federated and
centralized learning with results obtained from other recent
MQTT intrusion research. If we have reported only the average
of our best algorithms such as RF and DT, of course, our
overall performance scores would be over 90%. Nonetheless,
this comparison shows that our MQTT network design closely
reflects the behavior of a typical MQTT network based on
the performance of our models on the benchmark dataset.
Our models detect more attack types and were not trained
and benchmarked on the same dataset. In addition, buffer
overflow attack detection scores were excluded from the
reported average because this attack, although detected with
high precision and recall, was not in any MQTT benchmark
dataset. Generally, our average models’ detection scores do not
significantly deviate from our MQTT-IoT-IDS2020 validation
scores hence, the cross-validation and test set scores could well
be used to justify our models’ performance for this attack as
done in works without separate model validation dataset [17],
[29]-[33].

1) Threats to Validity: We identified the following potential
threats to validity:

« the results presented in this work are based on simulation
of IoT devices and therefore the traffic patterns recorded
may differ from actual IoT devices. In fact, an IoT
network will usually contain more than 40 clients that
we simulated for our federated learning. However, the
benchmarking of our network with the existing MQTT
validation dataset shows our simulation is reasonably
similar and acceptable.

« This work is limited to attack detection on MQTT pro-
tocol. Of course, there are other protocols that IoT de-
vices could use for communication. However, in practice,
MQTT is one of the most common messaging protocols
used by IoT devices and we aim to detect anomalies over
communication using this protocol.

o Lastly, we do not focus on the details of the operation
or modification of the MQTT protocol stack but rather
on using artificial intelligence to detect and learn attack
patterns from communicated packet data over MQTT in
an IoT network. Our results show that our approach is
feasible and practical.

V. CONCLUSION

In this paper, a robust intrusion detection system for some
important MQTT attacks is presented. An IoT MQTT network
consisting of subscribers, publishers, and a broker (alongside
a rogue device) communicating over the MQTT protocol is
simulated. Then, the network traffic data is used to develop and
evaluate centralized learning and federated learning models
to classify different MQTT attacks. Our models demonstrate
good performance evaluation scores over seven categories
of attacks that include attacks such as man-in-the-middle
attacks, denial of service attacks, and memory corruption
attacks. The classification results of our model validation on
the MQTT-IoT-IDS2020 benchmark dataset are significant.
Furthermore, this paper differs from existing works with the
improved classification of MQTT memory attacks which has
been mostly overlooked in the majority of MQTT intrusion
detection studies. The results show that both centralized learn-
ing and federated learning are capable of detecting MQTT
attacks with similar classification scores, and federated random
forest has more classification time overhead than federated
deep learning. Overall, our findings support federated learning
practical application in IoT intrusion detection, together with
the added advantage of privacy because instead of training
data, model parameters are usually exchanged.

REFERENCES

[1] D. Harkin, M. Mann, and I. Warren, “Consumer iot and its under-
regulation: Findings from an australian study,” Policy & Internet, vol. 14,
no. 1, pp. 96-113, 2022.

[2] A. Ahmed, S. U. Din, E. Alhanaee, and R. Thomas, “State-of-the-art
in iot forensic challenges,” in 2022 8th International Conference on
Information Technology Trends (ITT). 1EEE, 2022, pp. 115-118.

[3] M. A. U. Rehman, R. Ullah, C.-W. Park, B. S. Kim et al., “Towards
network lifetime enhancement of resource constrained iot devices in
heterogeneous wireless sensor networks,” Sensors, vol. 20, no. 15, p.
4156, 2020.

[4] M. Salimitari, M. Chatterjee, and Y. P. Fallah, “A survey on consensus
methods in blockchain for resource-constrained iot networks,” Internet
of Things, vol. 11, p. 100212, 2020.

[5] J. Pacheco and S. Hariri, “Iot security framework for smart cyber
infrastructures,” in Ist International Workshops on Foundations and
Applications of Self-Systems, FAS-W 2016. Institute of Electrical and
Electronics Engineers Inc., 2016, pp. 242-247.

[6] H. Bauer, O. Burkacky, and C. Knochenhauer, “Security in the internet
of things,” Semiconductor, McKinsey & Company: New York, NY, USA,
2017.

[71 S. Rizvi, A. Kurtz, J. Pfeffer, and M. Rizvi, “Securing the internet
of things (iot): A security taxonomy for iot,” in 2018 17th IEEE
International Conference On Trust, Security And Privacy In Computing
And Communications/12th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE). 1EEE, 2018, pp. 163—
168.

[8] G. Singh and N. Khare, “A survey of intrusion detection from the
perspective of intrusion datasets and machine learning techniques,”
International Journal of Computers and Applications, vol. 44, no. 7,
pp. 659-669, 2022.

[9] F. Chen, Y. Huo, J. Zhu, and D. Fan, “A review on the study on mgqtt
security challenge,” in 2020 IEEE International Conference on Smart
Cloud (SmartCloud). 1EEE, 2020, pp. 128-133.

[10] M. Husnain, K. Hayat, E. Cambiaso, U. U. Fayyaz, M. Mongelli,
H. Akram, S. Ghazanfar Abbas, and G. A. Shah, “Preventing mqtt
vulnerabilities using iot-enabled intrusion detection system,” Sensors,
vol. 22, no. 2, p. 567, 2022.

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

A. Rostami, M. Vigren, S. Raza, and B. Brown, “Being hacked:
Understanding victims’ experiences of {IoT} hacking,” in Eighteenth
Symposium on Usable Privacy and Security (SOUPS 2022), 2022, pp.
613-631.

R. A Light, “Mosquitto: server and client implementation of the mqtt
protocol,” The Journal of Open Source Software, vol. 2, no. 13, p. 265,
2017.

M. Nasir, K. Muhammad, A. Ullah, J. Ahmad, S. W. Baik, and
M. Sajjad, “Enabling automation and edge intelligence over resource
constraint iot devices for smart home,” Neurocomputing, vol. 491, pp.
494-506, 2022.

L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, “Machine learning on
big data: Opportunities and challenges,” Neurocomputing, vol. 237, pp.
350-361, 2017.

I. K. Nti, J. A. Quarcoo, J. Aning, and G. K. Fosu, “A mini-review
of machine learning in big data analytics: Applications, challenges, and
prospects,” Big Data Mining and Analytics, vol. 5, no. 2, pp. 81-97,
2022.

R. A. Disha and S. Waheed, “Performance analysis of machine learn-
ing models for intrusion detection system using gini impurity-based
weighted random forest (giwrf) feature selection technique,” Cyberse-
curity, vol. 5, no. 1, pp. 1-22, 2022.

M. A. Khan, M. A. Khan, S. U. Jan, J. Ahmad, S. S. Jamal, A. A. Shah,
N. Pitropakis, and W. J. Buchanan, “A deep learning-based intrusion
detection system for mqtt enabled iot,” Sensors, vol. 21, no. 21, p. 7016,
2021.

S. Andy, B. Rahardjo, and B. Hanindhito, “Attack scenarios and security
analysis of mqtt communication protocol in iot system,” in 2017 4th
International Conference on Electrical Engineering, Computer Science
and Informatics (EECSI). 1EEE, 2017, pp. 1-6.

G. Perrone, M. Vecchio, R. Pecori, R. Giaffreda et al., “The day after
mirai: A survey on mqtt security solutions after the largest cyber-attack
carried out through an army of iot devices.” in JoTBDS, 2017, pp. 246—
253.

B. H. Corak, F. Y. Okay, M. Giizel, S. Murt, and S. Ozdemir, “Compara-
tive analysis of iot communication protocols,” in 2018 International sym-
posium on networks, computers and communications (ISNCC). 1EEE,
2018, pp. 1-6.

S. N. Firdous, Z. Baig, C. Valli, and A. Ibrahim, “Modelling and
evaluation of malicious attacks against the iot mqtt protocol,” in 2017
IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). 1EEE, 2017, pp. 748-755.

S. M. Almtrafi, B. A. Alkhudadi, G. Sami, and W. Alhakami, “Security
threats and attacks in internet of things (iots),” International Journal
of Computer Science & Network Security, vol. 21, no. 1, pp. 107-118,
2021.

H. Wong and T. Luo, “Man-in-the-middle attacks on mgqtt-based iot
using bert based adversarial message generation,” in KDD 2020 AloT
Workshop, 2020, pp. 1-7.

A. Omotosho, G. B. Welearegai, and C. Hammer, “Detecting return-
oriented programming on firmware-only embedded devices using hard-
ware performance counters,” in Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing, 2022, pp. 510-519.

H. Alaiz-Moreton, J. Aveleira-Mata, J. Ondicol-Garcia, A. L. Mufioz-
Castafieda, I. Garcia, and C. Benavides, “Multiclass classification proce-
dure for detecting attacks on mqtt-iot protocol,” Complexity, vol. 2019,
2019.

I. Vaccari, G. Chiola, M. Aiello, M. Mongelli, and E. Cambiaso,
“Mgqttset, a new dataset for machine learning techniques on mgqtt,”
Sensors, vol. 20, no. 22, p. 6578, 2020.

D. Man, F. Zeng, W. Yang, M. Yu, J. Lv, and Y. Wang, “Intelligent
intrusion detection based on federated learning for edge-assisted internet
of things,” Security and Communication Networks, vol. 2021, pp. 1-11.
N. A. A.-A. Al-Marri, B. S. Ciftler, and M. M. Abdallah, “Federated
mimic learning for privacy preserving intrusion detection,” in 2020 IEEE
International Black Sea Conference on Communications and Networking
(BlackSeaCom). 1EEE, 2020, pp. 1-6.

E. Jove, J. Aveleira-Mata, H. Alaiz-Moreton, J.-L. Casteleiro-Roca, D. Y.
Marcos del Blanco, F. Zayas-Gato, H. Quintidn, and J. L. Calvo-Rolle,
“Intelligent one-class classifiers for the development of an intrusion
detection system: The mgqtt case study,” Electronics, vol. 11, no. 3, p.
422, 2022.

(30]

[31]

(32]

[33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

E. Ciklabakkal, A. Donmez, M. Erdemir, E. Suren, M. K. Yilmaz, and
P. Angin, “Artemis: An intrusion detection system for mqtt attacks in
internet of things,” in 2019 38th Symposium on Reliable Distributed
Systems (SRDS). 1EEE, 2019, pp. 369-3692.

H. AP et al., “Secure-mgqtt: an efficient fuzzy logic-based approach to
detect dos attack in mqtt protocol for internet of things,” EURASIP
Journal on Wireless Communications and Networking, vol. 2019, no. 1,
pp. 1-15, 2019.

H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. Tachtatzis, and
X. Bellekens, “Machine learning based iot intrusion detection system:
An mqtt case study (mqtt-iot-ids2020 dataset),” in International Net-
working Conference. Springer, 2020, pp. 73-84.

D. C. Attota, V. Mothukuri, R. M. Parizi, and S. Pouriyeh, “An ensemble
multi-view federated learning intrusion detection for iot,” IEEE Access,
vol. 9, pp. 117734-117745, 2021.

J. Sidna, B. Amine, N. Abdallah, and H. El Alami, “Analysis and eval-
uation of communication protocols for iot applications,” in Proceedings
of the 13th international conference on intelligent systems: theories and
applications, 2020, pp. 1-6.

A. Niruntasukrat, C. Issariyapat, P. Pongpaibool, K. Meesublak, P. Aium-
supucgul, and A. Panya, “Authorization mechanism for mgqtt-based
internet of things,” in 2016 IEEE International Conference on Com-
munications Workshops (ICC). 1EEE, 2016, pp. 290-295.

J. Li, L. Lyu, X. Liu, X. Zhang, and X. Lyu, “Fleam: A federated
learning empowered architecture to mitigate ddos in industrial iot,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 6, pp. 4059-4068,
2021.

G. Genovese, G. Singh, C. Campolo, and A. Molinaro, “Enabling edge-
based federated learning through mqtt and oma lightweight-m2m,” in
2022 IEEE 95th Vehicular Technology Conference:(VIC2022-Spring).
IEEE, 2022, pp. 1-5.

M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning,” in 2019 IEEE symposium on
security and privacy (SP). 1EEE, 2019, pp. 739-753.

M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke,
“Edge-iiotset: A new comprehensive realistic cyber security dataset of
iot and iiot applications for centralized and federated learning,” IEEE
Access, vol. 10, pp. 40281-40306, 2022.

C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on
federated learning,” Knowledge-Based Systems, vol. 216, pp. 1-11, 2021.
S. AbdulRahman, H. Tout, H. Ould-Slimane, A. Mourad, C. Talhi,
and M. Guizani, “A survey on federated learning: The journey from
centralized to distributed on-site learning and beyond,” IEEE Internet of
Things Journal, vol. 8, no. 7, pp. 5476-5497, 2020.

M. B. Gorzafczany and F. Rudzinski, “Intrusion detection in internet of
things with mqtt protocol-an accurate and interpretable genetic-fuzzy
rule-based solution,” IEEE Internet of Things Journal, pp. 1-13, 2022.
C. T Dinh, N. Tran, and J. Nguyen, ‘“Personalized federated learning
with moreau envelopes,” Advances in Neural Information Processing
Systems, vol. 33, pp. 21394-21405, 2020.

A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, and M. Jirstrand, “A per-
formance evaluation of federated learning algorithms,” in Proceedings
of the second workshop on distributed infrastructures for deep learning,
2018, pp. 1-8.

D. Breitenbacher, I. Homoliak, Y. L. Aung, N. O. Tippenhauer, and
Y. Elovici, “Hades-iot: A practical host-based anomaly detection system
for iot devices,” in Proceedings of the 2019 ACM Asia conference on
computer and communications security, 2019, pp. 479-484.

