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Abstract

Super-strong Wilf equivalence is a type of Wilf equivalence on words that was
originally introduced as strong Wilf equivalence by Kitaev et al. [Electron. J. Com-
bin. 16(2)] in 2009. We provide a necessary and sufficient condition for two permu-
tations in n letters to be super-strongly Wilf equivalent, using distances between
letters within a permutation. Furthermore, we give a characterization of such equiv-
alence classes via two-colored binary trees. This allows us to prove, in the case of
super-strong Wilf equivalence, the conjecture stated in the same article by Kitaev
et al. that the cardinality of each Wilf equivalence class is a power of 2.

Mathematics Subject Classifications: 05A05, 05A15, 68R15

1 Introduction

In this work we investigate the notion of super-strong Wilf equivalence as given by J. Pan-
tone and V. Vatter in [6] on permutations in n letters. To avoid any confusion we note
that this notion was originally referred to as strong Wilf equivalence by S. Kitaev et al. in
[5]. Let P∗ be the set of words on the alphabet P of positive integers. Following [6], two
words u and v are super-strongly Wilf equivalent (resp. strongly Wilf equivalent), denoted
u ∼ss v (resp. u ∼s v), if there exists a weight-preserving bijection f : P∗ → P∗ such that
for all words w, the embedding sets of u in w and of v in f(w) are equal (resp. equipotent)
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(see Section 2 for all relevant definitions). To our knowledge, only a limited number of
results exist on super-strong Wilf equivalence. For example, even for n = 3, it has been
an open problem whether 213 ∼ss 312 [5, §8.4. Problem (6)]. We show that the answer
to this is affirmative (see Proposition 10) and, moreover, we give a full characterization
of super-strong Wilf equivalence classes.

Our motivation arose mainly from another open problem on Wilf equivalence of permu-
tations [5, §8.4. Problem (5)], namely whether the number of elements of the symmetric
group on n letters that are Wilf equivalent to a given permutation is always a power of
2. We are able to answer this positively in the case of super-strong Wilf equivalence.

A powerful tool for dealing with patterns in permutations is the cluster method of
Goulden and Jackson [3, 5, 1]. Pantone and Vatter [6] used this method in the special case
of embeddings in words. Our initial observation is based upon [6, Theorem 1.1], which
states that two strongly Wilf equivalent words are rearrangements of one another. In
Section 3 we extend this to a necessary and sufficient rearrangement criterion on minimal
clusters (Minimal Cluster Rearrangement Theorem, MCRT for short) for super-strong
Wilf equivalence (Theorem 4), namely u ∼ss v if and only if every minimal cluster of u is
a rearrangement of the corresponding minimal cluster of v. An arithmetic interpretation
of MCRT led us to an intersection rule result (Proposition 9) by enumerating the number
of times each letter is blocked by letters that are greater in an arbitrary pre-cluster.

The intersection rule implies preservation of distances under super-strong Wilf equiv-
alence. This led us to define the notion of cross equivalence (see Section 4). We say that
u and v are cross equivalent if for each letter i, i+(u) = i+(v), where i+(u) denotes the
multiset of distances of i from letters greater than i in u.

In Section 4 we use the Inclusion-Exclusion Principle to simplify the intersection rule
condition. This leads us to the notion of consecutive differences. Given a permutation u
and a letter i, the vector of consecutive differences ∆i(u

−1) for i ∈ [2, n− 1], contains the
distances between letters in u that are greater than or equal to i as they appear sequentially
in u from left to right. Our main result (Theorem 15) is a concrete characterization of
super-strong Wilf equivalence. In particular, u ∼ss v if and only if u and v have the same
sequence of differences.

In Section 5 we define a binary tree T n(u) that helps us visualize the cross equivalence
class of a given permutation u as the set of leaves of T n(u). The crucial point here is
that the cardinality of the latter is always a power of 2. In order to partition this set
into super-strong Wilf equivalence classes, we define a labeling on the vertices of T n(u)
that have two children, distinguishing between “good” ones which preserve symmetry
(labeled 0), and “bad” ones which destroy symmetry (labeled 1). This labeling, which is
in accordance to the sequence of differences ∆i(u

−1) for i ∈ [2, n − 1], implies that the
cardinality of each super-strong Wilf equivalence class is a power of 2.

2 Preliminaries

Let P be the set of positive integers with the usual total order 6. For each positive integer
n we let [n] = {1, 2, . . . , n} and for two non-negative integers m,n, where m < n, we let
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[m,n] = {m,m + 1, . . . , n}. Let n ∈ P and S ⊆ P. We denote by n + S the shift of S to
the right by n units, namely the set n+ S = {n+ s : s ∈ S}.

Let P∗ be the free monoid on P with the operation of concatenation of words. The set
P∗ can also be viewed as the set of strict integer compositions. The set of words with letters
from [n], where each letter appears exactly once, is the set of permutations in n letters,
denoted by Sn. Let ε be the empty word or composition. For every w = w1w2 . . . wn ∈ P∗,
the reversal w̃ of w is defined as w̃ = wnwn−1 . . . w2w1. A word w that is equal to
its reversal is called a palindrome. We let |w| be the length n of the word w (i.e., the
number of parts of the composition w) and ‖w‖ be the height or norm of w defined as
‖w‖ = w1 +w2 + · · ·+wn (i.e., the total length of the composition w). We denote by |w|i
the number of occurrences of the letter i in w and by alph(w) the set of distinct letters
of P that occur in w. Let us also define the multiset of distances between two distinct
letters i, j in w ∈ P∗ as

dw(i, j) = {|k − l| : wk = i, wl = j}.

In the trivial case where w is a permutation, dw(i, j) is a singleton, whose element is
identified with the usual distance between the corresponding letters of the permutation.
For example, for w = 2132213 we have |w| = 7, ‖w‖ = 14, |w|2 = 3, alph(w) = {1, 2, 3},
and dw(2, 3) = {2, 6, 1, 3, 2, 2}.

Generalized factor order. Given w, u ∈ P∗, we say that u is a factor of w if there exist
words s, v ∈ P∗ such that w = suv. For example u = 322 is a factor of w = 2132213,
since w = 21u13. Consider the poset (P,6) with the usual order in P. The generalized
factor order on P∗ is the partial order—also denoted by 6—obtained by letting u 6 w if
and only if there is a factor v of w such that |u| = |v| and ui 6 vi, for each i ∈ [|u|]. The
factor v is called an embedding of u in w. If the first element of v is the j-th element of
w then the index j is called an embedding index of u into w. The embedding index set of
u into w, or embedding set for brevity, is defined as the set of all embedding indices of u
into w and is denoted by Em(u,w).

For example, if u = 322 and w = 2343213421, then u 6 w with embedding factors v =
343, v′ = 432 and v′′ = 342 and corresponding embedding index set Em(u,w) = {2, 3, 7}.

Let now t, x be two commuting indeterminates. The weight of a word w ∈ P∗ is
defined as the monomial wt(w) = t|w|x‖w‖. For example, for w = 2132213 we obtain
wt(w) = t7x14.

A bijection f : P∗ → P∗ is called weight-preserving if the weight of w is preserved
under f , i.e., |f(w)| = |w| and ‖f(w)‖ = ‖w‖, for every w ∈ P∗. Observe that f(ε) = ε,
for all weight-preserving bijections f .

Let u ∈ P∗. The weight generating function F (u; t, x) of u is defined in [5] as

F (u; t, x) =
∑
w>u

wt(w) =
∑
w>u

t|w|x‖w‖.
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The generating function A(u; t, x, y) of u is defined in [6] as

A(u; t, x, y) =
∑
w∈P∗

t|w|x‖w‖y|Em(u,w)|.

There are three notions of Wilf equivalence that are relevant to this article. They are
defined as follows.

Wilf equivalence. Two words u, v ∈ P∗ are called Wilf equivalent, denoted u ∼ v, if

F (u; t, x) = F (v; t, x).

Strong Wilf equivalence. Two words u, v ∈ P∗ are called strongly Wilf equivalent,
denoted u∼sv, if

A(u; t, x, y) = A(v; t, x, y).

Equivalently, u ∼s v if there exists a weight-preserving bijection f : P∗ → P∗ such that
|Em(u,w)| = |Em(v, f(w))| for all w ∈ P∗.

Super-strong Wilf equivalence. Two words u, v ∈ P∗ are called super-strongly Wilf
equivalent, denoted u∼ssv, if there exists a weight-preserving bijection f : P∗ → P∗ such
that Em(u,w) = Em(v, f(w)) for all w ∈ P∗.

We note that super-strong Wilf equivalence implies strong Wilf equivalence, which in
turn implies Wilf equivalence. We denote by [u] and [u]ss the Wilf and super-strong Wilf
equivalence class respectively, of a given word u.

For a word u = u1u2 . . . un, define u+ = (u1 + 1)(u2 + 1) . . . (un + 1). We will make use
of the following result on Wilf and super-strong Wilf equivalences.

Lemma 1. [5, Lemmas 4.1, 5.1]

1. For every u ∈ P∗, u ∼ ũ.

2. If u ∼ v, then (i) 1u ∼ 1v and (ii) u+ ∼ v+.

3. If u ∼ss v, then (i) 1u ∼ss 1v, (ii) 1u ∼ss v1 and (iii) u+ ∼ss v+.

A well-known negative criterion for super-strong Wilf equivalence is related to the
notion of minimal cluster for a certain embedding index set, starting from position 1. Such
an embedding index set E is completely characterized by the shift vector (e1, e2, . . . , er),
which is defined by the equality

E = {j0, j1, j2, . . . , jr} = {1, 1 + e1, 1 + e1 + e2, . . . , 1 + e1 + e2 + · · ·+ er}, (2.1)

where jk = 1 + e1 + · · ·+ ek, for k ∈ [0, r].
Let u be a word of length n and E be an embedding set, with the additional property

that 1 6 ei 6 n − 1. Henceforth, we will refer to this property as the overlapping
condition. An (r + 1)-pre-cluster of u with embedding set E, denoted P (u,E), is an
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(r+ 1)× (e1 + e2 + · · ·+ er +n) array where in the i-th row, there is a copy of the word u
shifted e1 + · · ·+ei−1 places to the right and all remaining places—which are not included
in a representation of a pre-cluster—are filled with 1. An (r+1)-minimal cluster m(u,E)
of u with embedding set E is the word of length e1 + e2 + · · · + er + n whose j-th letter
is the maximum value in the j-th column of P (u,E).

Suppose that u ∈ Sn and E is a given embedding set. Kitaev et al. used minimal
clusters in [5, p. 14] to construct a word w with Em(u,w) = E, such that w has both
minimum length and height. This can be done since the embedding set Em(u,m(u,E))
is uniquely defined by the positions of n in m(u,E). In the general case where u is an
arbitrary word u ∈ P∗, Em(u,m(u,E)) = E might not hold. For example, if u = 1 1 1 and
E = {1, 3} then it follows that m(u,E) = 1 1 1 1 1 and Em(1 1 1, 1 1 1 1 1) = {1, 2, 3} 6=
{1, 3}.

The above method yields a sufficiency criterion for non super-strong Wilf equivalence.

Proposition 2. [5, p.14] Let u, v ∈ Sn and let E be an embedding index set. If ‖m(u,E)‖
6= ‖m(v, E)‖ then u �ss v.

Proof. We prove the contrapositive. Suppose that u ∼ss v. Then there exists a weight-
preserving bijection f : P∗ → P∗ such that for each w ∈ P∗ we have Em(u,w) =
Em(v, f(w)). For w = m(u,E), we obtain Em(v, f(m(u,E))) = Em(u,m(u,E)) = E.
Since f is weight preserving, it immediately follows that ‖f(m(u,E))‖ = ‖m(u,E)‖. Us-
ing the minimality condition of the minimal cluster m(v, E), we have that ‖m(v, E)‖ 6
‖f(m(u,E))‖ = ‖m(u,E)‖. Exchanging the roles of u and v, we likewise prove the
opposite.

3 Minimal Cluster Rearrangement Theorem

The main result of this section is based upon results and tools from [6]. Borrowing
notation from there, the minimal cluster generating function of u is defined to be

M(u; t, x, z) =
∑
r>1

zr
∑

minimal
r-clusters m of u

t|m|x‖m‖.

Two words w and w′ in P∗ are said to be rearrangements of one another if alph(w) =
alph(w′) and |w|i = |w′|i, for each i ∈ alph(w). The main result in [6] is the following.

Theorem 3. [6, Theorem 1.1] If two words in P∗ are strongly Wilf equivalent then they
are rearrangements of one another.

Minimal cluster generating functions are used to prove this; namely, it is shown that
if M(w; t, x, z) = M(w′; t, x, z), then w ∼s w′. Inspired by the methods used in this proof
and using rearrangements of minimal clusters of words, rather than rearrangements of
words themselves, we provide a necessary and sufficient criterion for super-strong Wilf
equivalence, which we call the Minimal Cluster Rearrangement Theorem—MCRT for
brevity.

the electronic journal of combinatorics 25(2) (2018), #P2.54 5



Theorem 4. (MCRT) Let u1, u2 ∈ Sn. Then u1 ∼ss u2 if and only if for every embed-
ding index set E the minimal clusters m(u1, E) and m(u2, E) are rearrangements of one
another.

Suppose we have a word u ∈ Sn. Let v = m(u,E1), for some embedding set E1, and
w = m(v, E2) with embedding set E2. The MCRT is based on a simple observation,
namely that w is also a minimal cluster of u. In particular, w = m(u,E3) with E3 =
{i+ j − 1 : i ∈ E1, j ∈ E2}.

Example 5. Let u = 2314 and E1 = {1, 2, 4}. Constructing P (u,E1) and letting v =
m(u,E1), we have:

2 3 1 4
2 3 1 4

2 3 1 4
v = 2 3 3 4 4 1 4.

Suppose now that we take the minimal cluster w = m(v, E2) with E2 = {1, 3}, namely

2 3 3 4 4 1 4
2 3 3 4 4 1 4

w = 2 3 3 4 4 4 4 1 4.

According to the previous observation, w is also a minimal cluster over u, with embedding
set E3 = {1 + 1− 1, 1 + 3− 1, 2 + 1− 1, 2 + 3− 1, 4 + 1− 1, 4 + 3− 1} = {1, 2, 3, 4, 6}. To
visualize this, substitute the words v = m(u,E1) in P (v, E2), with pre-cluster P (u,E1).
This gives the following pre-cluster over u:

2 3 1 4
2 3 1 4

2 3 1 4
− − − − − − −

2 3 1 4
2 3 1 4

2 3 1 4
− − − − − − −

w = 2 3 3 4 4 4 4 1 4.

In this table, copies of the word u start in positions 1 = 1 + 1 − 1, 2 = 1 + 2 − 1, 3 =
3 + 1− 1, 4 = 1 + 4− 1 or 3 + 2− 1 and 6 = 3 + 4− 1, as mentioned above.

The minimal cluster was defined over embedding sets E (see (2.1)) under the restriction
ei ∈ [n − 1], to ensure that words in the pre-cluster always overlap. We need to extend
this definition, so that the overlapping restriction is waived.

Definition 6. Let m ∈ N, u ∈ Sn and E = {j0, j1, . . . , jr} with j0 = 1. The extended
minimal cluster of u on E with prescribed length m is the unique word wmin of minimum
height such that Em(u,wmin) = E.
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It is obvious that an extended minimal cluster exists if and only if m > jr+ |u|−1. To
obtain the extended minimal cluster of a word u, we construct once again its corresponding
pre-cluster, filling any empty places with 1.

Example 7. Suppose m = 11, u = 2314 and E = {1, 6, 7}. The corresponding extended
minimal cluster is constructed as follows:

2 3 1 4
2 3 1 4

2 3 1 4
w = 2 3 1 4 1 2 3 3 4 4 1.

Proof of theorem 4. Suppose that u1 ∼ss u2. Fix an embedding set E = {1, 1 + e1, 1 +
e1 + e2, . . . , 1 + e1 + e2 + · · ·+ er} that satisfies the overlapping condition. As previously
mentioned in the paragraph following (2.1), |m(u1, E)| = e1 + e2 + · · · + er + n. Since
u2 has also length n and the embedding set E is common for both words, it follows that
|m(u1, E)| = |m(u2, E)|. Moreover, by Proposition 2, ‖m(u1, E)‖ = ‖m(u2, E)‖. Suppose
v1 = m(u1, E) and v2 = m(u2, E). We will show that v1 ∼s v2. Following [6, p. 4], it
suffices to show that M(v1; t, x, z) = M(v2; t, x, z). From the previous discussion, and for
any overlapping embedding set E ′, we know that m(v1, E

′) and m(v2, E
′) are minimal

clusters over u1 and u2 respectively, with embedding set E ′′ = {i+ j − 1 : i ∈ E, j ∈ E ′}.
Since u1 ∼ss u2, it follows that m(v1, E

′) and m(v2, E
′) have the same weight, hence

M(v1; t, x, z) = M(v2; t, x, z).
For the converse implication, suppose that for all embedding sets E, m(u1, E) and

m(u2, E) are rearrangements of one another. We will construct a weight-preserving bi-
jection f from P∗ to P∗ such that Em(u1, w) = Em(u2, f(w)). First, we partition the set
of words according to their length and height. Let P∗m,n = {w ∈ P∗ : wt(w) = tnxm}.
Clearly, P∗ = {ε}

⊔
m,n>1 P∗m,n. To have a weight-preserving bijection f from P∗ to P∗

such that Em(u1, w) = Em(u2, f(w)) it is necessary and sufficient to find a collection of
bijections fm,n : P∗m,n → P∗m,n such that Em(u1, w) = Em(u2, fm,n(w)). Fix m and n in
N. Since |P∗m,n| <∞, we know that we can find a bijection between two sets if and only
if the two sets have the same cardinality. Note that since we have words of length n,
we cannot place u1 in position n − |u1| + 2 or anywhere beyond that. We show that for
every possible embedding set S ⊆ [n− |u1|+ 1], the number of words w in P∗m,n such that
Em(u1, w) = S is equal to the number of words z in P∗m,n such that Em(u2, z) = S. This
will imply the result.
Fix S ⊆ [n− |u1|+ 1]. For every subset T ⊆ [n− |u1|+ 1], define u1,T to be the extended
minimal cluster of u1 with embedding set T . Define also W1(m,n, T ) = {w ∈ P∗m,n :
Em(u1, w) = T} and U1(m,n, T ) = {w ∈ P∗m,n : T ⊆ Em(u1, w)}. Clearly, W1 ⊆ U1. The
cardinality of U1(m,n, T ) has an immediate combinatorial interpretation via weak com-
positions. To establish that the embedding indices of u1 in a word w contain those of T , it
suffices to make sure that every letter of w is greater than or equal to every letter of u1,T
in the corresponding places. Such a w can be constructed by partitioning the difference
between heights ‖w‖ = m and ‖u1,T‖ to the n letters of w (we illustrate this in an ex-
ample below). To compute the cardinality of W1(m,n, S), we use the Inclusion-Exclusion
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principle and find that

|W1(m,n, S)| =
∑
T⊇S

(−1)|T\S||U1(m,n, T )|.

If we replace u1 by u2, knowing that ‖u1,T‖ = ‖u2,T‖ and |u1,T | = |u2,T | implies that the
cardinalities of the sets in the above equality remain the same. Thus, the desired equality
|W1(m,n, S)| = |W2(m,n, S)| follows.

Example 8. Using the aforementioned notation, suppose that m = 9, n = 4, u1 = 231,
T = {1}, and u1,T = 2311. Then m− ‖u1,T‖ = 9− 7 = 2, and the 10 weak compositions
of 2 into 4 parts are

(2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 2, 0), (0, 0, 0, 2),

(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1).

Thus, for u1 = 231, by adding the vector u1,T = (2, 3, 1, 1) to each one of the vectors
above, we obtain

U1(9, 4, {1}) = {4311, 2511, 2331, 2313, 3411, 3321, 3312, 2421, 2412, 2322}.

In view of the MCRT, in order to check whether two words u, v ∈ Sn are super-strongly
Wilf equivalent, we must show that for an arbitrary fixed embedding set E, every letter
in the minimal cluster of u appears as many times as it appears in the corresponding
minimal cluster of v. To do this we have to count the number of times each letter is
inherited from a pre-cluster to a minimal cluster.

An embedding set E can be written in the form (2.1). Now for each j ∈ [n] let j(E)
denote the shift of E by j − 1 positions to the right, i.e.,

j(E) = (j − 1) + E = {j, j + e1, j + e1 + e2, . . . , j + e1 + e2 + · · ·+ er}.

If the embedding set E is clear from the context, we will be writing j rather than
j(E).

For a given u = u1u2 · · ·ui · · ·un ∈ Sn let s = u−1 = s1s2 · · · si · · · sn denote its inverse
in Sn. For each i ∈ [n] and a fixed embedding set E consider the set si = si(E). Clearly
si is the position of the letter i in u, therefore the set si is precisely the set of all the
positions of the letter i in P (u,E).

Proposition 9. Let u, v ∈ Sn and s = u−1, t = v−1. Then u∼ssv if and only if∣∣∣∣∣si(E) ∩

(
n⋃

j=i+1

sj(E)

)∣∣∣∣∣ =

∣∣∣∣∣ti(E) ∩

(
n⋃

j=i+1

tj(E)

)∣∣∣∣∣ (3.1)

for each i ∈ [n− 1] and every embedding set E.
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Proof. Let w and w′ be the minimal clusters of u and v with respect to a given embedding
set E. In view of the MCRT, u∼ssv is equivalent to the statement that the number of
occurrences of each letter in w is equal to the number of occurrences of the same letter in
w′. The largest letter, namely n, appears the same number of times in w and w′ as nothing
can block it from being inherited. So the issue here is really about the letters in [n− 1].
Let i ∈ [n−1]. Instead of counting the actual number of occurrences of i in w, we do count
the number of times that i is blocked by bigger letters j in the corresponding pre-cluster
of u for an arbitrary fixed embedding set E, i.e., the number of columns in P (u,E) in
which both i and j appear, where j > i. Noting that the letter i appears in columns si in
P (u,E), this number is |si ∩ (

⋃n
j=i+1 sj)|. In the same fashion, the corresponding number

for w′ is |ti ∩ (
⋃n
j=i+1 tj)| and the result follows.

Proposition 10. Let n ∈ N and x, y, z ∈ P∗ such that x(n− 1)ynz ∈ Sn. Then

x(n− 1)ynz ∼ss xny(n− 1)z.

Proof. Set u = x(n − 1)ynz, v = xny(n − 1)z, s = u−1 = s1s2 . . . si . . . sn−1sn and
t = v−1 = t1t2 . . . ti . . . tn−1tn. Then we have si = ti for i ∈ [n − 2], sn−1 = tn = |x| + 1
and sn = tn−1 = |x| + |y| + 2. The equality in (3.1) holds trivially for i ∈ [n − 2]. For
i = n− 1 we have |sn−1 ∩ sn| = |tn ∩ tn−1| = |tn−1 ∩ tn| and the result follows.

Remark. In the special case n = 3, y = 1 and x = z = ε, the previous proposition gives
an affirmative answer to the question posed in [5, §8.4, Problem (6)] of whether it is true
that 312 ∼ss 213.

4 Sequence of differences

Proposition 9 implies that the distance between the positions of letters n − 1 and n is
preserved under super-strong Wilf equivalence. It is natural to examine if this is the case
for smaller letters too. Let u ∈ Sn. For all i ∈ [n − 1] define i+(u) as the multiset of
distances

i+(u) = {du(i, j) : j ∈ [i+ 1, n]}.

An equivalent way to define i+(u) is via the inverse s = s1 · · · si · · · sj · · · sn of u, as

i+(u) = {|si − sj| : j ∈ [i+ 1, n]}.

Since each letter can be placed either to the left or to the right of i (at a given distance),
any number in i+(u) appears at most two times. For example, let n = 7 and u =
2361745. Then 6+(u) = {2}, 5+(u) = {2, 4}, 4+(u) = {1, 1, 3}, 3+(u) = {1, 3, 4, 5},
2+(u) = {1, 2, 4, 5, 6}, and finally 1+(u) = {1, 1, 2, 2, 3, 3}.

Definition 11. Let u, v ∈ Sn. We say that u is cross equivalent to v and denote this by
u ∼+ v, if i+(u) = i+(v), for all i ∈ [n− 1].
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It is easy to check that cross equivalence is indeed an equivalence relation with u ∼+ ũ.
We denote by [u]+ the cross equivalence class of the word u. We will show that it gives a
necessary condition for super-strong Wilf equivalence.

Proposition 12. Let u, v ∈ Sn. If u∼ssv then u∼+v.

Proof. Suppose that u �+ v so that there exists an i ∈ [n − 1] such that i+(u) 6= i+(v).
We will show that u �ss v. Consider the set D of all distances d ∈ [n− 1] such that

|{d : d ∈ i+(u)}| 6= |{d : d ∈ i+(v)}|.

Let e := minD and consider the embedding E = {1, 1 + e}. We have the following two
cases: e appears in only one of the multisets i+(u) and i+(v), or e appears in both of
them, once and twice respectively.

Firstly, without loss of generality, e ∈ i+(u) \ i+(v). Since e /∈ i+(v), the letter i will
appear twice in the minimal cluster of v, since no letter greater than i can block it. On
the other hand, i will be blocked at least once in the pre-cluster of u.

In the second case, without loss of generality, e appears once in i+(u) and twice in
i+(v). Then i will be blocked twice in the pre-cluster of v, and exactly once in the
pre-cluster of u.

Remark. The converse to Proposition 12 does not hold in general. To see this, set
u = 2351647 and v = 6471532. It is easy to check that u∼+v. On the other hand, if we
consider the embedding set E = {1, 2, 5}, the corresponding minimal clusters for u and v
are respectively m(u,E) = 23556677647 and m(v, E) = 66776572532. Clearly the letter
4 appears only in m(u,E), so we immediately obtain u�ssv, by the MCRT.

Proposition 9 gives a necessary and sufficient condition for super-strong Wilf equiva-
lence. Nevertheless, it has not yet reached a concrete form involving the permutations in
question. Using Inclusion-Exclusion Principle to simplify it, we are led to the following
definition.

Definition 13. Let u ∈ Sn and s = s1 · · · si · · · sn = u−1. For i = n−1 down to 1 consider
the proper suffix si · · · sn of s and its alphabet set Σi(s) = alph(si · · · sn) = {s(i)i , . . . , s

(i)
n },

where s
(i)
i < · · · < s

(i)
n . We define ∆i(s) to be the vector of consecutive differences in

Σi(s), i.e.,

∆i(s) = (s
(i)
i+1 − s

(i)
i , . . . , s

(i)
n − s

(i)
n−1).

As already mentioned in the introduction, ∆i(u
−1) is the vector of distances between

letters in u that are greater than or equal to i as they appear sequentially in u from left
to right. Note that since ∆1(u

−1) is always the (n− 1)-tuple with all of its entries equal
to 1, we usually consider ∆i(u

−1) for i = n− 1 down to 2.

Example 14. Let u = 21365874. Then s = u−1 = 21385476. The sequence of differences
for s is the following:
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∆7(s) = (1)
∆6(s) = (2, 1)

∆5(s) = (1, 1, 1)
∆4(s) = (1, 1, 1, 1)

∆3(s) = (1, 1, 1, 1, 1)
∆2(s) = (2, 1, 1, 1, 1, 1)

The main result of this section and the whole article is the following.

Theorem 15. Let u, v ∈ Sn and s = u−1, t = v−1. Then u∼ssv if and only if ∆i(s) =
∆i(t), for each i ∈ [2, n− 1].

To prove this, we will need the following technical lemmas, whose proofs, for the sake
of clarity, are included in the appendix.

Lemma 16. Let m ∈ [n] and i1 < i2 < · · · < im, j1 < j2 < · · · < jm be indices in [n],
where i1 6 j1. Let dl = il+1 − il and fl = jl+1 − jl, for l ∈ [m − 1], be respectively their
consecutive differences. Then the equality

|i1(E) ∩ i2(E) ∩ · · · ∩ im(E)| = |j1(E) ∩ j2(E) ∩ · · · ∩ jm(E)|

holds for every embedding set E if and only if (d1, d2, . . . , dm−1) = (f1, f2, . . . , fm−1).

Lemma 16 yields the connection between cardinalities of intersections of sets similar
to the ones appearing in equation (3.1) and the sequence of differences defined above.

The next result outlines a procedure for constructing a permutation u ∈ Sn with a
given sequence of differences. In particular, given ∆i+1(u

−1) and ∆i(u
−1), it looks into all

possible choices for placing the letter i with respect to letters which are greater than i in
u.

Lemma 17. Let u, v ∈ Sn and let s = s1 · · · si · · · sn, t = t1 · · · ti · · · tn respectively be their
inverses. Suppose that ∆i(s) = ∆i(t) and ∆i+1(s) = ∆i+1(t), for i ∈ [n− 2].

1. If s
(i+1)
j < si < s

(i+1)
j+1 , for some j ∈ [i + 1, n − 1], then t

(i+1)
j < ti < t

(i+1)
j+1 with

si − s(i+1)
j = ti − t(i+1)

j and s
(i+1)
j+1 − si = t

(i+1)
j+1 − ti.

2. If si < s
(i+1)
i+1 then

(a) either ti < t
(i+1)
i+1 and s

(i+1)
i+1 − si = t

(i+1)
i+1 − ti,

(b) or ti > t
(i+1)
n and ∆i(s) = ∆i(t) = (d, d, . . . , d), where

d = s
(i+1)
i+1 − si = ti − t(i+1)

n .

3. If si > s
(i+1)
n then
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(a) either ti > t
(i+1)
n and si − s(i+1)

n = ti − t(i+1)
n ,

(b) or ti < t
(i+1)
i+1 and ∆i(s) = ∆i(t) = (d, d, . . . , d), where

d = si − s(i+1)
n = t

(i+1)
i+1 − ti.

Example 18. Suppose u = 21365874 and s = 21385476, as in Example 14. Using Lemma
17, we will construct a word v (with t = v−1), from larger to smaller letters, that has the
same sequence of differences as u.

For i = 6, we have s6 = 4 and Σ7(s) = {6 < 7}. Since s6 < s
(7)
7 and ∆6(s) is not of

the form (d, d), we are in Case 2(a) of Lemma 17. It follows that s
(7)
7 − s6 = t

(7)
7 − t6, so

that t6 = t
(7)
7 − 2. This implies that the position of the letter 6 in v should be two places

to the left of the leftmost letter greater than 6.
For i = 5, we have s5 = 5 and Σ6(s) = {4 < 6 < 7}. Since s

(6)
6 < s5 < s

(6)
7 , we are in

Case 1 of Lemma 17 and the letter 5 should be placed between greater letters in v. More
specifically, t5 − t(6)6 = s5 − s(6)6 = 5− 4 = 1 and t

(6)
7 − t5 = s

(6)
7 − s5 = 6− 5 = 1, so both

distances of 5 from greater letters to its left and to its right are equal to 1.
For i = 4, we have s4 = 8 and Σ5(s) = {4 < 5 < 6 < 7}. Since s4 > s

(5)
8 , we are in Case

3 of Lemma 17. Here both Cases 3(a) and 3(b) can be applied since ∆4(s) = (1, 1, 1, 1).

If we choose the former, then t4 − t(5)8 = s4 − s(5)8 = 8 − 7 = 1, whereas for the latter we

have t
(5)
5 − t4 = s4 − s(5)8 = 1. Making the second choice, we get t4 = t

(5)
5 − 1, hence the

letter 4 is placed one place to the left of the leftmost letter greater than 4.
Following the same steps, one possible construction for v is shown in the following

diagram, where the symbol ◦ is used to represent smaller letters than the ones appearing
in every step.

7 8︸︷︷︸
1

→ 6 ◦ 7 8︸ ︷︷ ︸
2 1

→ 6 5 7 8︸ ︷︷ ︸
1 1 1

→ 4 6 5 7 8︸ ︷︷ ︸
1 1 1 1

→ 4 6 5 7 8 3︸ ︷︷ ︸
1 1 1 1 1

→ 2 ◦ 4 6 5 7 8 3︸ ︷︷ ︸
2 1 1 1 1 1

→ 2 1 4 6 5 7 8 3 = v.

The following result provides all possible choices for the sequences of differences in
a given cross equivalence class. Since super-strong Wilf equivalence is a refinement of
cross equivalence, this result narrows down the choice of sequences of differences in a
super-strong Wilf equivalence class.

Lemma 19. Suppose that u ∼+ v and that there exists an i ∈ [2, n − 2] such that

∆i(s) 6= ∆i(t) and ∆i+1(s) = ∆i+1(t). Then ∆i(s) = ∆̃i(t) and ∆i+1(s) is a palindrome.

Example 20. Suppose u = 21365874, v = 34875612, s = u−1, and t = v−1. For both
u and v the multisets of distances are 7+ = {1}, 6+ = {2, 3}, 5+ = {1, 1, 2}, 4+ =
{1, 2, 3, 4}, 3+ = {1, 2, 3, 4, 5}, 2+ = {2, 3, 4, 5, 6, 7}, 1+ = {1, 1, 2, 3, 4, 5, 6}, whereas the
corresponding sequences of differences are
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∆7(s) = (1) ∆7(t) = (1)
∆6(s) = (2, 1) ∆6(t) = (1, 2)

∆5(s) = (1, 1, 1) ∆5(t) = (1, 1, 1)
∆4(s) = (1, 1, 1, 1) ∆4(t) = (1, 1, 1, 1)

∆3(s) = (1, 1, 1, 1, 1) ∆3(t) = (1, 1, 1, 1, 1)
∆2(s) = (2, 1, 1, 1, 1, 1) ∆2(t) = (1, 1, 1, 1, 1, 2).

Here, we can see the situation described in Lemma 19, precisely for i = 6 and i = 2.

Our proof strategy for Theorem 15 is as follows: For the sufficiency of the condition
∆i(s) = ∆i(t) for each i ∈ [2, n − 1], we use the three cases considered in Lemma 17.
For each of these cases, applying Lemma 16 and the Inclusion-Exclusion Principle, we
obtain super-strong Wilf equivalence via (3.1). On the other hand, for the necessity of
the condition, we apply Lemma 19 and, using appropriate embedding sets, we exclude
the case of inequality between ∆i(s) and ∆i(t).

Proof of Theorem 15.

The condition ∆i(s) = ∆i(t) for each i ∈ [2, n− 1] is sufficient : Suppose that ∆i(s) =
∆i(t), for each i ∈ [2, n−1]. We will show that u∼ssv using Proposition 9. Using previous
notation and the Inclusion-Exclusion Principle we get∣∣∣∣∣si ∩

(
n⋃

j=i+1

sj

)∣∣∣∣∣ =

∣∣∣∣∣si ∩
(

n⋃
j=i+1

s
(i+1)
j

)∣∣∣∣∣ =

∣∣∣∣∣
n−i⋃
j=1

(
si ∩ s(i+1)

i+j

)∣∣∣∣∣
=

n−i−1∑
k=1

(−1)k+1
∑

16j1<···<jk6n−i

∣∣∣si ∩ s(i+1)
i+j1
∩ · · · ∩ s(i+1)

i+jk

∣∣∣+ (−1)n−i+1
∣∣∣si ∩ s(i+1)

i+1 ∩ · · · ∩ s
(i+1)
n

∣∣∣ .
(4.1)

Similarly, we obtain ∣∣∣∣∣ti ∩ (
n⋃

j=i+1

tj)

∣∣∣∣∣ =

n−i−1∑
k=1

(−1)k+1
∑

16j1<···<jk6n−i

∣∣∣ti ∩ t(i+1)
i+j1
∩ · · · ∩ t(i+1)

i+jk

∣∣∣+ (−1)n−i+1
∣∣∣ti ∩ t(i+1)

i+1 ∩ · · · ∩ t
(i+1)
n

∣∣∣ .
(4.2)

In view of Lemma 17, we distinguish between 3 cases:
(1) si < s

(i+1)
i+1 and ti < t

(i+1)
i+1 .

Since ∆i(s) = ∆i(t), Lemma 16 immediately yields the equality∣∣∣si ∩ s(i+1)
i+1 ∩ · · · ∩ s

(i+1)
n

∣∣∣ =
∣∣∣ti ∩ t(i+1)

i+1 ∩ · · · ∩ t
(i+1)
n

∣∣∣
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between the last terms in (4.1) and (4.2).
Furthermore, ∆i(s) = ∆i(t) implies the following equality of differences(

s
(i+1)
i+j1
− si, . . . , s(i+1)

i+jk
− s(i+1)

i+jk−1

)
=
(
t
(i+1)
i+j1
− ti, . . . , t(i+1)

i+jk
− t(i+1)

i+jk−1

)
.

Then Lemma 16 once more implies that∣∣∣si ∩ s(i+1)
i+j1
∩ · · · ∩ s(i+1)

i+jk

∣∣∣ =
∣∣∣ti ∩ t(i+1)

i+j1
∩ · · · ∩ t(i+1)

i+jk

∣∣∣ ,
so that every term for s in (4.1) is equal to the corresponding one for t in (4.2).

The dual case si > s
(i+1)
n and ti > t

(i+1)
n is dealt with in a similar way.

(2) s
(i+1)
i+l < si < s

(i+1)
i+l+1, for some l ∈ [n− 1 + i].

By Lemma 17 we immediately get t
(i+1)
i+l < ti < t

(i+1)
i+l+1, for the same index l. Rearranging

terms we obtain∣∣∣si ∩ s(i+1)
i+1 ∩ · · · ∩ s

(i+1)
n

∣∣∣ =
∣∣∣s(i+1)
i+1 ∩ . . . ∩ s

(i+1)
i+l ∩ si ∩ s

(i+1)
i+l+1 ∩ · · · ∩ s

(i+1)
n

∣∣∣ .
Since ∆i(s) = ∆i(t), Lemma 16 implies that the latter term is equal to∣∣∣t(i+1)

i+1 ∩ . . . ∩ t
(i+1)
i+l ∩ ti ∩ t

(i+1)
i+l+1 ∩ · · · ∩ t

(i+1)
n

∣∣∣ ,
which is clearly identical to

∣∣∣ti ∩ t(i+1)
i+1 ∩ · · · ∩ t

(i+1)
n

∣∣∣.
A similar rearrangement of terms would lead us to compare the cardinalities∣∣∣s(i+1)

ji+1 ∩ . . . ∩ s
(i+1)
i+jm
∩ si ∩ s(i+1)

i+jm+1
∩ · · · ∩ s(i+1)

i+jk

∣∣∣
and ∣∣∣t(i+1)

ji+1 ∩ . . . ∩ t
(i+1)
i+jm
∩ ti ∩ t(i+1)

i+jm+1
∩ · · · ∩ t(i+1)

i+jk

∣∣∣ ,
for a suitable index m. Once more, ∆i(s) = ∆i(t) implies the following equality of coarser
differences (

s
(i+1)
i+j2
− s(i+1)

i+j1
, . . . , si − s(i+1)

i+jm
, s

(i+1)
i+jm+1

− si, . . . , s(i+1)
i+jk
− s(i+1)

i+jk−1

)
=(

t
(i+1)
i+j2
− t(i+1)

i+j1
, . . . , ti − t(i+1)

i+jm
, t

(i+1)
i+jm+1

− ti, . . . , t(i+1)
i+jk
− t(i+1)

i+jk−1

)
.

Now the result follows immediately by Lemma 16.

(3) si < s
(i+1)
i+1 and ti > t

(i+1)
n .

By a direct application of Lemma 17 (Case 2(b)), we obtain that the consecutive differ-

ences in both
∣∣∣si ∩ s(i+1)

i+1 ∩ · · · ∩ s
(i+1)
n

∣∣∣ and
∣∣∣ti ∩ t(i+1)

i+1 ∩ · · · ∩ t
(i+1)
n

∣∣∣ is (d, d, . . . , d). There-

fore, by Lemma 16, we obtain that∣∣∣si ∩ s(i+1)
i+1 ∩ · · · ∩ s

(i+1)
n

∣∣∣ =
∣∣∣ti ∩ t(i+1)

i+1 ∩ · · · ∩ t
(i+1)
n

∣∣∣ .
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For the previous terms of the summations in Equations (4.1) and (4.2), it suffices to
construct a bijection from the set {1 6 j1 < . . . < jk 6 n− i} to itself, that will preserve
the equality of the corresponding sums there. This is equivalent to constructing a bijection
φ from the set {(j0, j1, . . . , jk) : j0 = 0 < j1 < · · · < jk 6 n− i} to {(j1, . . . , jk, jk+1) : 1 6
j1 < · · · < jk < jk+1 = n+ 1− i}, that will preserve the equality∣∣∣si ∩ s(i+1)

i+j1
∩ · · · ∩ s(i+1)

i+jk

∣∣∣ =
∣∣∣t(i+1)
i+φ1(α)

∩ · · · ∩ t(i+1)
i+φk(α)

∩ t(i+1)
n+1

∣∣∣ , (4.3)

where by convention ti := t
(i+1)
n+1 , α = (0, j1, . . . , jk), ni = n + 1 − i and the bijection φ is

defined via its coordinate functions as

φ(α) = (φ1(α), φ2(α), . . . , φk(α), φk+1(α)) = (ni − jk, ni − jk + j1, . . . , ni − jk + jk−1, ni).

By Lemma 17 (Case 2(b)), we have that s
(i+1)
i+jl
− s(i+1)

i+jl−1
= d(jl − jl−1) and t

(i+1)
i+φl+1(α)

−
t
(i+1)
i+φl(α)

= d(φl+1(α) − φl(α)). Now, by a careful analysis of the definition of φ, it follows

that in every case φl+1(α) − φl(α) = jl − jl−1, for l = 1, . . . , k. The equality (4.3) now
follows by Lemma 16.

The dual case si > s
(i+1)
n and ti < t

(i+1)
i+1 is dealt in a similar way.

The condition ∆i(s) = ∆i(t) for each i ∈ [2, n−1] is necessary : Suppose that u ∼ss v.
We will show that ∆i(s) = ∆i(t), for each i ∈ [2, n − 1]. Suppose the contrary. Let i be
the largest index in [2, n − 1] such that ∆i(s) 6= ∆i(t). If i = n − 1, then by Lemma 16

it follows that there exists an embedding E such that
∣∣∣s(n−1)n ∩ s(n−1)n−1

∣∣∣ 6= ∣∣∣t(n−1)n ∩ t(n−1)n−1

∣∣∣.
Therefore, by Proposition 9, u �ss v, a contradiction. Thus we may assume that i < n−1.

By Lemma 19, we know that ∆i+1 = ∆i+1(s) = ∆i+1(t) = (d1, d2, . . . , dn−i−2, dn−i−1)
is a palindrome. Thus, dk = dn−i−k for all 1 6 k 6 bn−i−1

2
c. Therefore, the factors of the

words u and v that correspond to the previous distance vector ∆i+1 may be written in
the form

∗ ◦ · · · ◦︸ ︷︷ ︸
d1−1

∗ ◦ · · · ◦︸ ︷︷ ︸
d2−1

∗ · · · ∗ ◦ · · · ◦︸ ︷︷ ︸
d2−1

∗ ◦ · · · ◦︸ ︷︷ ︸
d1−1

∗, (4.4)

where ∗ corresponds to letters greater than i and ◦ corresponds to letters less than or
equal to i. The crucial point is the placement of the letter i in u and v. We distinguish
between the following two cases.

Case A. The letter i is placed in between greater letters in both u and v:
It will replace one of the characters ◦ in (4.4), in distinct positions for u and v re-

spectively, since ∆i(s) 6= ∆i(t). Let r be the distance of the letter i from the leftmost

(respectively, rightmost) greater letter. Since ∆i(s) = ∆̃i(t), after the insertion of the
letter i, without loss of generality, we have the following configurations of common length
m

∗ · · ·︸︷︷︸
r

i · · · ◦ · · ·︸︷︷︸
r

∗ and ∗ · · ·︸︷︷︸
r

◦ · · · i · · ·︸︷︷︸
r

∗,
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for the corresponding factors of u and v, respectively. We want to count the number of
times that the letter i is inherited in some minimal cluster for u and v, hence the factors
in u and v on the left and on the right of the above configurations contain only letters
smaller than i and they do not affect us.

These may be written in a more precise form as follows:

∗ u1 i v ◦ u2 ∗ and ∗ u′2 ◦ v′ i u′1 ∗,

where |u1| = |u2| = |u′1| = |u′2| = r and |v| = |v′|.
We distinguish between two cases.

(1) r < |v|: In this case, v and v′ can be respectively written as v = u3bw and
v′ = w′b′u′3, where |u3| = |u′3| = r; b, b′ are letters, and w,w′ ∈ P∗. Consider the
embedding E = {1, r + 2,m}. We have the following parts of the pre-clusters for u and
v, respectively

∗ u1 i u3 b w ◦ u2 ∗
∗ u1 i · · · · · · · · · ◦ u2 ∗

∗ u1 i u3 b w ◦ u2 ∗

∗ u′2 ◦ w′ b′ u′3 i u′1 ∗
∗ · · · · · · · · · b′ u′3 i u′1 ∗

∗ u′2 ◦ w′ b′ u′3 i u′1 ∗
We claim that b > i if and only if b′ > i. In the notation of the proof of Lemma 19,

we observe that b > i if and only if r = d′′k + dk+1 + · · · + dk+q, for a suitable q > 0.
Since d′′k = e′l, dk+1 = dl−1, dk+2 = dl−2, etc., we have that r = e′l + dl−1 + · · · + dl−q, and
b′ > i. The converse also holds following a similar argument. In view of this observation,
canceling out the common behavior of i with respect to b and b′, the letter i appears one
extra time in the minimal cluster of v. Since u ∼ss v, this is a contradiction.

(2) r > |v|: Consider again the embedding E = {1, r + 2,m}. Let b denote the letter
that appears right above the letter i of the middle word in the pre-cluster of u and let b′

denote the letter that appears right below the letter i of the first word in the pre-cluster
of v. The claim that b > i if and only if b′ > i follows by symmetry, as in the previous
case. Using similar arguments, the letter i appears one extra time in the pre-cluster of v,
a contradiction.

Case B. No letter greater than i precedes i to the left or right:
Without loss of generality, we have the following configurations

i · · ·︸︷︷︸
d0−1

∗ · · ·︸︷︷︸
d1−1

∗ · · · ∗ · · ·︸︷︷︸
dn−i−1−1

∗ and ∗ · · ·︸︷︷︸
d1−1

∗ · · · ∗ · · ·︸︷︷︸
dn−i−1−1

∗ · · ·︸︷︷︸
d0−1

i ,
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for the corresponding factors of u and v, respectively. Since ∆i(s) 6= ∆i(t), we let k be
the smallest index such that d0 + d1 + · · · + dk−1 6= d1 + d2 + · · · + dk−1 + dk. It follows
that d0 = d1 = · · · = dk−1 = d, for a suitable positive integer d. Then we consider the
embedding E = {1, 1 + kd, 1 + kd+ min{d, dk}}.

Our configurations can be written in the form

i u1 ∗ u2 ∗ · · · ∗ uk ∗ v ∗ w and w′ ∗ v′ ∗ u′k ∗ u′k−1 ∗ · · · ∗ u′1 i ,

where |uj| = |u′j| = d for j = 1, . . . , k, |v| = |v′| = dk, and |w| = |w′|. Suppose that dk < d.
Then, u′1 can be written as u′1 = w′1b

′v′1, where |v′1| = dk, b
′ ∈ P, b′ < i and w′1 ∈ P∗.

Therefore, we have the following parts of the pre-clusters for u and v, respectively

i u1 ∗ · · · ∗ uk ∗ v ∗ w

i · · · · · · · · · · · · · · · · · · · · · · · · · · ·
i u1 ∗ · · · ∗ uk ∗ v ∗ w

· · · ∗ u′k ∗ · · · ∗ w′1 b′ v′1 i

· · · · · · · · · ∗ u′k ∗ · · · ∗ w′1 b′ v′1 i

· · · · · · · · · · · · · · · · · · · · · ∗ w′1 b′ v′1 i .

Observe that the letter i is inherited once in the former minimal cluster, whereas it is
inherited twice in the latter one.

The case where d < dk is dealt in a similar way.

Example 21. Let n = 8 and let u = 21365874, v = 21657843 and w = 21478563. Then
set s = u−1 = 21385476, t = v−1 = 21874356 and p = w−1 = 21836745.

For i = 7 down to 2 the proper suffixes of s are 76, 476, 5476, 85476, 385476 and
1385476. The alphabet sets of these factors are Σ7(s) = {6, 7}, Σ6(s) = {4, 6, 7}, Σ5(s) =
{4, 5, 6, 7}, Σ4(s) = {4, 5, 6, 7, 8}, Σ3(s) = {3, 4, 5, 6, 7, 8} and Σ2(s) = {1, 3, 4, 5, 6, 7, 8}.
The corresponding difference vectors are ∆7(s) = (1), ∆6(s) = (2, 1), ∆5(s) = (1, 1, 1),
∆4(s) = (1, 1, 1, 1), ∆3(s) = (1, 1, 1, 1, 1) and ∆2(s) = (2, 1, 1, 1, 1, 1).

The proper suffixes of t are 56, 356, 4356, 74356, 874356 and 1874356. Their alphabet
sets are Σ7(t) = {5, 6}, Σ6(t) = {3, 5, 6}, Σ5(t) = {3, 4, 5, 6}, Σ4(t) = {3, 4, 5, 6, 7},
Σ3(t) = {3, 4, 5, 6, 7, 8} and Σ2(t) = {1, 3, 4, 5, 6, 7, 8}. It is straightforward to check that
the difference vectors of t are identical to the corresponding ones for s, and consequently
we obtain that u∼ssv.

On the other hand, the proper suffix 745 of p has alphabet set equal to Σ6(p) = {4, 5, 7}
and the corresponding vector of differences is ∆6(p) = (1, 2) 6= (2, 1) = ∆6(s). Therefore
w �ss u.

Let us now calculate the class [u]ss. All possible permutations that satisfy the se-
quence of differences that correspond to s = u−1 are the following: 21385476, 21385467,
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21835467, 21835476, 21346578, 21346587, 21874356, 21874365. Taking the inverse of each
such permutation, we obtain [u]ss as the class

{21365874, 21365784, 21465783, 21465873, 21346578, 21346587, 21657843, 21658743}.

Observe that
∣∣[u]+

∣∣ = 8 = 23. This is not a coincidence. In the next section, using a
binary tree representation for [u]+, we will prove that the cardinality of each super-strong
Wilf equivalence class is a power of 2.

We conclude this section with an application of Theorem 15 that demonstrates its
feasibility and gives an immediate characterization of the words w for which w ∼ss w̃.

Two important super-strong Wilf equivalence classes are the classes

In = [123 . . . n]ss and Mn = [12 . . . (n− 3)(n− 1)(n− 2)n]ss,

for n > 1 and n > 3, respectively. It is easy to check that for u ∈ In, ∆i(u
−1) is the (n−i)-

tuple with all entries equal to 1, for i = 1, . . . , n−1, whereas for u ∈Mn, ∆n−1(u
−1) = (2)

and ∆i(u
−1) is the (n− i)-tuple with all entries equal to 1, for i = 1, . . . , n− 2. Observe

that in both cases the vectors of consecutive differences are always palindromic.

Theorem 22. Let w ∈ Sn. Then w ∼ss w̃ if and only if either w ∈ In or w ∈Mn.

Proof. By Theorem 15 we have that w ∼ss w̃ if and only if ∆i(w
−1) = ∆i(w̃

−1), for

i = 1, . . . , n − 1. Viewing vectors as words, it is easy to check that ∆i(w̃
−1) = ∆̃i(w−1),

hence w ∼ss w̃ if and only if ∆i(w
−1) is a palindrome.

The above remark immediately implies that Ĩn = In and M̃n =Mn. For the converse,
let i be the largest index such that ∆i(w

−1) = (1, . . . , 1). If i = n − 1, then w ∈ In. On
the other hand, if i < n− 1, then we necessarily get

∆i+1(w
−1) = (1, 1, . . . , 1︸ ︷︷ ︸

r

, 2, 1, 1, . . . , 1︸ ︷︷ ︸
r

).

If r = 0, then i = n − 2 and clearly w ∈ Mn. If r > 0, then all possible choices for
∆i+2(w

−1) correspond to non-palindromic vectors.

Remark. The only words w that do not begin or end in 1 and for which we have w ∼ss w̃
are the words 213 and 312 which constitute the class M3.

5 Binary Tree Representation

The binary tree representation that will be presented here corresponds to the reconstruc-
tion of a word u and its cross equivalent words, using the sets i+(u), for i = 1, . . . , n− 1.
For this representation we need to define the following sets of partly-filled words of length
n, on the alphabet A = {1, 2, . . . , n, ∗}, where ∗ is an extra character. For i ∈ [0, n] we
set

Sni = {x ∈ An : |x|j = 1 for 1 6 j 6 i and |x|∗ = n− i}.

the electronic journal of combinatorics 25(2) (2018), #P2.54 18



Observe that for i = 0 we have Sn0 = {∗n} and for i = n we obtain Snn = Sn.
Fix a word u = u1u2 . . . uj . . . un ∈ Sn. We denote by T n(u) the ordered rooted

tree whose leaves constitute the cross equivalence class of u. This tree is defined in the
following way:

• The root of the tree is ∗n ∈ Sn0 .

• The elements at the i-th level constitute the set

Lni (u) = {x ∈ Sni : dx(i, ∗) = i+(u)}.

• The word y = y1y2 . . . yn ∈ Sni+1 is a child of the word x = x1x2 . . . xn ∈ Sni if and
only if for all j ∈ [1, i] there exists an index k such that xk = yk = j. In other
words, the letters 1, 2, . . . , i appear in the same positions in both x and y.

• The order for the children of the same vertex is defined as follows. If y = y1y2 . . . yn
and y′ = y′1y

′
2 . . . y

′
n are two children of x, then y is to the left of y′ when for indices

k and l such that yk = y′l = i+ 1, we have k < l, otherwise y is to the right of y′.

Note that Lni (u) 6= ∅ for i ∈ [0, n], since it contains a word u(i) = ui1ui2 . . . uin such
that uij = uj if uj 6 i and uij = ∗ if uj > i. Obviously, for this word the condition
du(i, ∗) = i+(u) holds. Observe that in this notation we have u(0) = ∗n, u(n) = u and
Lnn(u) = [u]+.

Proposition 23. The tree T n(u) is a binary tree, where at each level the number of
children is the same throughout all nodes and is either equal to 1 or 2.

Proof. Suppose x ∈ Lni , where for brevity Lni = Lni (u). Let f(x) be the factor of x whose
first and last letter is respectively the first and last ∗ that appear in x. Let us replace
each j ∈ alph(f(x)), where 1 6 j 6 i, with the character ◦. In this way, we obtain a
configuration word c(x) on the two-lettered alphabet {∗, ◦} of length |f(x)|. Note that
this configuration also appears in (4.4). Our induction hypothesis is that at each level i,
one of the following holds:

1. |{c(x) | x ∈ Lni }| = 2 and for any fixed x ∈ Lni it holds that Lni = {c(x), c̃(x)}. In
this case, we have exactly one child for each parent x ∈ Lni .

2. |{c(x) | x ∈ Lni }| = 1 and for all x ∈ Lni it holds that c(x) = c̃(x).

(a) If |c(x)| is odd, with the character in the middle position equal to ∗ and
|c(x)|−1

2
∈ (i+ 1)+(u), we have exactly one child for each parent x ∈ Lni .

(b) In all other cases, we have exactly two children for each parent x ∈ Lni .

For the first step of this procedure, there are three different cases according to the set
1+(u).
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• Case 1. 1+(u) = {1, 2, . . . , n− 1}
In this case, letter 1 is placed either in position 1 or in position n. Then, we
immediately get Ln1 = {1 ∗n−1, ∗n−1 1} and c(x) = ∗n−1 for both x ∈ Ln1 .

• Case 2. 1+(u) = {1, 1, 2, 2, . . . , n−1
2
, n−1

2
} (This case holds only for n odd.)

The letter 1 is placed in the middle position (n + 1)/2. Here we have only one
choice for inserting the letter 1, namely Ln1 = {∗(n−1)/2 1 ∗(n−1)/2}. In this case,
c(x) = ∗(n−1)/2 ◦ ∗(n−1)/2.

• Case 3. 1+(u) = {1, 1, 2, 2, . . . , l, l, l + 1, l + 2, . . . , k}, where 1 6 l < k and
k+ l = n− 1. The letter 1 is neither in positions 1 or n, nor in the middle position.
Here there are two choices for each position, namely l + 1 or k + 1. In this case,

Ln1 = {∗l 1 ∗k, ∗k 1 ∗l}. Thus, c(∗l 1 ∗k) = ∗l ◦ ∗k = ˜∗k ◦ ∗l = ˜c(∗k 1 ∗l).

In all three cases, our desired results hold after inserting 1.
Suppose that the induction hypothesis holds for the level i. Define k = max((i +

1)+(u)). The letter i+ 1 will be inserted either in position k + 1 or in position |f(x)| − k
of the word f(x).

In Case 1, we cannot have both choices for placing the letter 1, because this would

imply symmetry, i.e., c̃(x) = c(x), a contradiction. Consider x, x′ ∈ Lni such that c(x′) 6=
ci(x) but c(x′) = c̃(x). Let y, y′ denote their children, respectively. If i + 1 is inserted
in position k + 1 of f(x), then it will necessarily be symmetrically inserted in position

|f(x)| − k of f(x′) and this yields c(y′) = c̃(y).
In Case 2 (a), for every word x ∈ Lni , its corresponding configuration c(x) will be

written as c(x) = z ∗ z, for a suitable word z. Note that in this case, k =
|c(x)|+ 1

2
.

Clearly, for the unique child y of x, its corresponding word c(y) will be written as c(y) =
z ◦ z.

In Case 2 (b), we have two children for every parent x, namely y, y′. Suppose, without
loss of generality, that y is created by inserting i+ 1 in position k + 1 of f(x). Then, by
symmetry, y′ is created by inserting i+ 1 in position |f(x)|−k of f(x). Clearly, we would

have that c(y′) = c̃(y).

Corollary 24. The number of permutations in a cross equivalence class is a power of 2.

Proof. The result follows from the equality [u]+ = Lnn(u).

The question now is how cross equivalence classes are partitioned into super-strong
Wilf equivalence classes. In order to deal with this, we define a labeling on the vertices
of T n(u) that have two children, distinguishing between “good” ones, which preserve
symmetry (labeled 0), and “bad” ones which destroy symmetry (labeled 1).

Definition 25. A vertex x ∈ T n(u) that has two children y and y′ is labeled 0 if c(y) =
c(y′), and 1 otherwise.
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It follows from the proof of Proposition 23 that vertices with the same level have the
same labeling.

Theorem 26. Let u, v ∈ Sn. Suppose that u ∼+ v. Then u ∼ss v if and only if one
can get from u to v in the cross equivalence tree Tn(u) by following a path that avoids
switching direction (from left to right or vice-versa) on vertices at the same level which
are labeled 1.

The idea behind the proof is to show that the sequence of differences of a permutation
is obtained by the unique path traced from the root down to the corresponding leaf in the
tree. Using this construction and the tree labeling by configuration words, we conclude
that two words produce the same sequence of differences (and hence are super-strongly
Wilf equivalent) if and only if the corresponding paths are as described in the theorem.

Proof. Consider the unique path u(0) = ∗n → u(1) → · · · → u(i) → · · · → u(n) = u from
the root of T n(u) to the leaf u. Let fi(u) and ci(u) be respectively the factor f(u(i)) of
u(i) and its configuration c(u(i)).

Suppose ci(u) = c
(i)
1 c

(i)
2 . . . c

(i)
|fi(u)|. Define Σi(u) = {j : c

(i)
j = ∗} and observe that if we

arrange it in ascending order we obtain

Σi(u) = {j1 < j2 < · · · < jn−i}.

Recall that the sets Σi(u
−1) = Σi(s) of Definition 13 represent the positions of the n− i

letters in u that are greater than i. It is crucial to observe that they also represent the
positions of ∗ in u(i). Since u(i) can be written in the form u(i) = pfi(u)q for suitable
words p, q ∈ [1, i− 1]∗, this observation yields

Σi+1(s) = |p|+ Σi(u). (5.1)

This change of index is due to the following fact. In both cases, we consider distances
between letters which are greater than i. These correspond precisely to the sets Σi+1(s)
and Σi(u) that appear to the left and right hand side of (5.1). It follows that

s
(i+1)
i+l − s

(i+1)
i+l−1 = jl+1 − jl, l ∈ [1, n− i− 1]. (5.2)

Let v ∈ [u]ss. By Theorem 15, this is equivalent to ∆i+1(u
−1) = ∆i+1(v

−1) for i ∈
[1, n − 2]. In view of equation (5.2), this is equivalent to Σi(u) = Σi(v) for i ∈ [1, n − 2]
or, in other words, ci(u) = ci(v). Going back to Definition 25, which provides a labeling
on T n(u), the result follows.

Corollary 27. Let u ∈ Sn and let k, l be the number of levels in T n(u) labeled 0 and 1,
respectively. Then:

• The number of words in each super-strong Wilf equivalence class in T n(u) is equal
to 2k.

• The class [u]+ is partioned into 2l distinct super-strong Wilf equivalence classes.
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Proof. In order to find the words v that are super-strong Wilf equivalent to u, we follow a
path in Tn(u) that can change direction (from left to right or vice-versa) only on vertices
labeled 0 at the same level. This provides us with two choices for every such level.
This implies the first statement. Now, since T n(u) has 2k+l leaves, the second statement
follows.

Example 28. Let us construct the tree T n(u) for n = 8 and the word u = 21365874.
First, we find the multisets of distances for the word u. These are

7+(u) = {1}, 6+(u) = {2, 3}, 5+(u) = {1, 1, 2},
4+(u) = {1, 2, 3, 4}, 3+(u) = {1, 2, 3, 4, 5},
2+(u) = {2, 3, 4, 5, 6, 7}, and 1+(u) = {1, 1, 2, 3, 4, 5, 6}.

Using the above, we find all words that have the same multisets of distances by placing
the corresponding letter at each step and considering all possible choices at each level.
This yields the tree T n(u) shown in Figure 1.

The following table traces the path along the vertices of the tree T n(u) beginning
at the root and leading to the leaf u. The corresponding configuration words ci(u) and
vectors of differences ∆i+1(u

−1) for u−1 are also given at each step, for i ∈ [0, 8].

i u(i) ci(u) ∆i+1(u
−1)

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ (1, 1, 1, 1, 1, 1, 1)
1 ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ◦ ∗ ∗ ∗ ∗ ∗ ∗ (2, 1, 1, 1, 1, 1)
2 2 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ (1, 1, 1, 1, 1)
3 2 1 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ (1, 1, 1, 1)
4 2 1 3 ∗ ∗ ∗ ∗ 4 ∗ ∗ ∗ ∗ (1, 1, 1)
5 2 1 3 ∗ 5 ∗ ∗ 4 ∗ ◦ ∗ ∗ (2, 1)
6 2 1 3 6 5 ∗ ∗ 4 ∗ ∗ (1)
7 2 1 3 6 5 ∗ 7 4 ∗ −
8 2 1 3 6 5 8 7 4 − −

Let v = 21347856. The super-strong Wilf equivalence classes obtained by the tree
T n(u), starting from the class [u]ss and reading the leaves of the tree from left to right,
where u, v and their reversals are underlined within their classes, are the following:

Class
u 21346578, 21346587, 21365784, 21365874, 21465783, 21465873, 21657843, 21658743
v 21347856, 21348756, 21378564, 21387564, 21478563, 21487563, 21785643, 21875643
ũ 34785612, 34875612, 37856412, 38756412, 47856312, 48756312, 78564312, 87564312
ṽ 34657812, 34658712, 36578412, 36587412, 46578312, 46587312, 65784312, 65874312

The above classes are distinguished in the tree (see Figure 1) as follows: elements of
[u]ss in red boxes, elements of [v]ss in blue boxes and their reversals in the corresponding
dashed boxes. Finally, 0 and 1 labels are shown with green and orange color, respectively.
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Figure 1: The tree T 8(21365874)
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6 Conclusion

Recently the geometric notion of shift equivalence was defined and studied in [2]. In the
same paper it was shown that shift equivalence implies strong Wilf and therefore Wilf
equivalence. We would like to investigate further connections between Wilf, cross, shift,
and super-strong Wilf equivalence classes. Suppose that u �ss ũ. By Lemma 1 we get
[u]ss ∪ [ũ]ss ⊆ [u] and since u ∼+ ũ we also obtain [u]ss ∪ [ũ]ss ⊆ [u]+. Is there a specific
relationship between [u]+ and [u]? For n 6 5, we have verified that [u]ss∪[ũ]ss = [u] = [u]+.
On the other hand, in Example 28, we found a word u such that [u]ss ∪ [ũ]ss 6= [u]+. This
led us to the question whether [u]ss ∪ [ũ]ss = [u]. It turns out that the answer is negative.
Let u = 234156 and v = 256143. Then, as a by-product from [2, Section 5], u ∼s v, and
therefore u ∼ v. On the other hand v �ss u and v �ss ũ.

Problem 29. Is it true that [u] ⊆ [u]+ or do there exist words v ∈ [u]+ such that v � u?

Problem 30. Enumerate all cross equivalence and super-strong Wilf equivalence classes
for a given n ∈ N.

Appendix

Proof of Lemma 16. Suppose that (d1, d2, . . . , dm−1) = (f1, f2, . . . , fm−1). Then for each
k ∈ [m] we obtain ik = i1 +

∑k−1
p=1 dp and jk = j1 +

∑k−1
p=1 fp, so that jk − ik = j1 − i1. Let

d be this common difference of indices.
Now fix an embedding set E. For brevity, we write k instead of k(E) for all indices

k ∈ {i1, i2, . . . , im}∪{j1, j2, . . . , jm}. Let Xm = i1∩ i2∩· · ·∩ im and Ym = j1∩j2∩· · ·∩jm.
We claim that the mapping x 7→ x+ d is a well-defined bijection from Xm to Ym.

We show firstly that this mapping is well-defined, i.e. for each x ∈ Xm we have x+d ∈
Ym. Let (e1, e2, . . . , er) be the vector that characterizes the embedding set E. For technical
reasons we set e0 = 0. Since x ∈ Xm, there exists a strictly descending sequence of indices
α1 > · · · > αl > αl+1 > · · · > αm, where αl ∈ [0, r] and such that x = il + e1 + · · · + eαl

,
for each l ∈ [m]. This implies that dl = il+1− il = eαl+1+1 + · · ·+ eαl

, for each l ∈ [m− 1].
Now since dl = fl, it follows that fl = jl+1 − jl = eαl+1+1 + · · ·+ eαl

, for each l ∈ [m− 1].
Then x+d = x+ (j1− i1) = x+ (jl− il) = (il + e1 + · · ·+ eαl

) + jl− il = jl + e1 + · · ·+ eαl
,

for each l ∈ [m], therefore x+ d ∈ Ym.
To show that the mapping x 7→ x + d is onto, we show that for each y ∈ Ym we have

y − d ∈ Xm. Let (e1, e2, . . . , er) and e0 be as in the previous paragraph. For y ∈ Ym,
there exists a strictly descending sequence of indices β1 > · · · > βl > βl+1 > · · · > βm,
where βl ∈ [0, r] and such that y = jl + e1 + · · ·+ eβl , for each l ∈ [m]. This implies that
fl = jl+1 − jl = eβl+1+1 + · · ·+ eβl , for each l ∈ [m− 1]. Now since fl = dl, it follows that
dl = il+1 − il = eβl+1+1 + · · · + eβl , for each l ∈ [m − 1]. Then y − d = y − (j1 − i1) =
y − (jl − il) = (jl + e1 + · · ·+ eβl)− jl + il = il + e1 + · · ·+ eβl , for each l ∈ [m], therefore
y − d ∈ Xm. The result that the mapping is a bijection is now evident since it is clearly
one-to-one.
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For the converse implication, suppose that |Xm| = |Ym|, for every embedding set E.
Consider, in particular the embedding set

E = {1, 1 + (im − im−1), 1 + (im − im−2), . . . , 1 + (im − i1)}.

Then it is easy to see that Xm = {im}, therefore |Ym| = 1. Now the only way that this
can be done is when

jm = jm−1 + (im − im−1) = jm−2 + (im − im−2) = · · · = j1 + (im − i1).

The latter immediately implies that jl+1−jl = il+1−il, for each l ∈ [m−1], as required.

Proof of Lemma 17. Suppose that s
(i+1)
j < si < s

(i+1)
j+1 , for some j ∈ [i + 1, n − 1]. First

we will show that t
(i+1)
i+1 < ti < t

(i+1)
n . Indeed, if ti < t

(i+1)
i+1 then ∆i(s) = ∆i(t) yields

s
(i+1)
j+1 − si = t

(i+1)
j+1 − t

(i+1)
j . Since ∆i+1(s) = ∆i+1(t), we get t

(i+1)
j+1 − t

(i+1)
j = s

(i+1)
j+1 − s

(i+1)
j .

Thus we obtain s
(i+1)
j+1 −si = s

(i+1)
j+1 −s

(i+1)
j , a contradiction. In a similar manner we cannot

have ti > t
(i+1)
n . Therefore we necessarily get t

(i+1)
i+1 < ti < t

(i+1)
n .

Moreover, we will show that t
(i+1)
j < ti < t

(i+1)
j+1 . Suppose that t

(i+1)
j+k < ti < t

(i+1)
j+k+1,

for a suitable positive integer k. Then since ∆i(s) = ∆i(t), we obtain si − s
(i+1)
j =

t
(i+1)
j+1 − t

(i+1)
j . Since the latter is equal to s

(i+1)
j+1 − s

(i+1)
j due to ∆i+1(s) = ∆i+1(t), we

obtain si − s(i+1)
j = s

(i+1)
j+1 − s

(i+1)
j , a contradiction. If t

(i+1)
j−k < ti < t

(i+1)
j−k+1, for a suitable

positive integer k, we interchange the roles of s and t and work in a similar fashion. The
equality s

(i+1)
j+1 − si = t

(i+1)
j+1 − ti follows from the assumption that ∆i(s) = ∆i(t).

Now suppose that si < s
(i+1)
i+1 . Then we show that ti /∈ (t

(i+1)
i+1 , t

(i+1)
n ). Indeed, if the

contrary holds, then by interchanging the roles of s and t we get that si ∈ (s
(i+1)
i+1 , s

(i+1)
n ),

which contradicts our assumption. Therefore, we either have ti < t
(i+1)
i+1 or ti > t

(i+1)
n . In

the former case the equality s
(i+1)
i+1 − si = t

(i+1)
i+1 − ti follows directly by the assumption

that ∆i(s) = ∆i(t). For the latter one we let d = s
(i+1)
i+1 − si, d

′ = ti − t
(i+1)
n and

dk = s
(i+1)
i+k+1 − s

(i+1)
i+k = t

(i+1)
i+k+1 − t

(i+1)
i+k , for k ∈ [n − i − 1]. Since ∆i(s) = ∆i(t), we finally

obtain d = d1, dk = dk+1, for k ∈ [n − i − 1] and dn−i−1 = d′. Thus all the consecutive
differences are equal.

For the case where si > s
(i+1)
n , similar arguments as in the latter case apply.

Proof of Lemma 19. Suppose that ∆i+1(s) = ∆i+1(t) = (d1, d2, . . . , dn−i−1) and ∆i(s) 6=
∆i(t). There are two cases to consider.
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Case A. The letter i is placed at a distance d0 to the left, without loss of generality,
of all its greater letters in u, i.e., ∆i(s) = (d0, d1, d2, . . . , dn−i−1). Then we see that
max(i+(u)) = d0 + d1 + d2 + · · ·+ dn−i−1. There are three sub-cases to consider.

(1) If i is also placed at distance e0 to the left of all its greater letters in v, i.e.,
∆i(t) = (e0, d1, d2, . . . , dn−i−1), we also obtain max(i+(v)) = e0 + d1 + d2 + · · · + dn−i−1,
hence d0 = e0, which in turn yields ∆i+1(s) = ∆i+1(t), a contradiction.

(2) If i is placed in between larger letters in v, i.e., ∆i(t) = (d1, d2, . . . , dl−1, e
′
l, e
′′
l ,

dl+1, . . . , dn−i−1), where e′l + e′′l = dl, we get max(i+(v)) = max{d1 + d2 + · · · + dl−1 +
e′l, e

′′
l + dl+1 + · · · + dn−i−1} < d1 + d2 + · · · + dn−i−1 < max(i+(u)), contradicting the

equality i+(u) = i+(v).
(3) For the remaining sub-case where ∆i(t) = (d1, d2, . . . , dn−i−1, e0) we also get

max(i+(v)) = e0 + d1 + d2 + · · · + dn−i−1. It follows that d0 = e0. Comparing fur-
ther i+(u) with i+(v) we immediately see that i+(u) = {d0 < d0 + d1 < d0 + d1 + d2 <
· · · < d0 + d1 + d2 + · · ·+ dn−i−1} and i+(v) = {d0 < d0 + dn−i−1 < d0 + dn−i−1 + dn−i−2 <
· · · < d0 + dn−i−1 + dn−i−2 + · · · + d1}. Since i+(u) = i+(v) it follows that ∆i+1(s) is a

palindrome which in turn yields ∆i(s) = ∆̃i(t), as required.

Case B. The letter i is placed in between larger letters at both u and v, i.e.,

∆i(s) = (d1, d2, . . . , dk−1, d
′
k, d
′′
k, dk+1, . . . , dn−i−1)

6= ∆i(t) = (d1, d2, . . . , dl−1, e
′
l, e
′′
l , dl+1, . . . , dn−i−1),

where d′k + d′′k = dk and e′l + e′′l = dl. We consider two sub-cases:

(1) k = l: We claim that in this case n − i − 1 must be odd and k = (n − i)/2. Set
M = i+(u) = i+(v). Considering minimum elements we obtain min{d′k, d′′k} = minM =
min{e′k, e′′k}. Since ∆i(s) 6= ∆i(t) we can neither have minM = d′k = e′k nor minM =
d′′k = e′′k. Moreover, since d′k + d′′k = dk = e′k + e′′k, it follows that d′k = e′′k and d′′k = e′k.

Going one step further for the multisets M\{d′k, d′′k} = M\{e′k, e′′k}, we obtain min{d′k+
dk−1, d

′′
k+dk+1} = min{e′k+dk−1, e

′′
k+dk+1}. Since d′k 6= e′k, we get dk−1 = dk+1. Repeating

this process, we obtain dk−j = dk+j, for j ∈ [r], where r = min{k − 1, n − i − k − 1}. If

k−1 = n−i−k−1, ∆i+1(s) is an odd palindrome and ∆i(s) = ∆̃i(t), as required. Suppose
that k−1 6= n−i−k−1; without loss of generality let k−1 < n−i−k−1. Then r = k−1
and we have max(i+(u)) = d′k+dk+1+· · ·+dn−i−1 and max(i+(v)) = d′′k+dk+1+· · ·+dn−i−1.
It follows that d′k = d′′k, which in turn yields d′k = e′k, a contradiction.

(2) k 6= l (without loss of generality, k < l): We claim that in this case we must have
k + l = n− i.

Considering the maximum elements of i+(u) and i+(v) we respectively obtain

max{d′k + dk−1 + · · ·+ d1, d
′′
k + dk+1 + · · ·+ dn−i−1} =

max{e′l + dl−1 + · · ·+ d1, e
′′
l + dl+1 + · · ·+ dn−i−1}.
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We claim that

d′k + dk−1 + · · ·+ d1 = e′′l + dl+1 + · · ·+ dn−i−1 and d′′k + dk+1 + · · ·+ dn−i−1 = e′l + dl−1 + · · ·+ d1. (*)

For brevity set

d′ = d′k + dk−1 + · · ·+ d1 and d′′ = d′′k + dk+1 + · · ·+ dn−i−1,

e′ = e′l + dl−1 + · · ·+ d1 and e′′ = e′′l + dl+1 + · · ·+ dn−i−1.

Since k 6 l − 1 we obtain d′ < dk + dk−1 + · · · + d1 6 dl−1 + · · · + d1 < e′. Since
d′ + d′′ = e′ + e′′ = d1 + · · · + dn−i−1, we also get d′′ > e′′. It follows that we can only
have d′ = e′′ and d′′ = e′, as required. Deleting {d′, d′′} and {e′, e′′} from i+(u) and i+(v),
respectively, we consider the two new possible choices for maximum and applying similar
arguments we get

d′k + dk−1 + · · ·+ d2 = e′′l + dl+1 + · · ·+ dn−i−2 and d′′k + dk+1 + · · ·+ dn−i−2 = e′l + dl−1 + · · ·+ d2. (**)

Subtracting (**) from (*) in parts, it follows that d1 = dn−i−1. Repeating this process,
we obtain dj = dn−i−j, for j ∈ [r], where r = min{k−1, n− i−1− l}. We now claim that
k − 1 = n− i− 1− l, i.e., k + l = n− i. For the sake of contradiction, suppose, without
loss of generality, that k − 1 < n− i− 1− l. After the k successive deletions of distances
from the leftmost and rightmost elements, we obtain a common multiset Mk. Computing
maxMk with respect to u and v, we obtain maxMk = d′′k + dk+1 + · · · + dn−i−1−k and
maxMk < dk+1 + · · ·+ dn−i−1−k, which clearly cannot hold.

Having established the claim that k+ l = n− i, the k-th deletion of distances from the
leftmost and rightmost elements yields d′k = e′′l . For the remaining multisets Mk, on the
one hand, with respect to u, we have Mk = {d′′k < d′′k+dk+1 < · · · < d′′k+dk+1+ · · ·+dl−1},
while on the other, with respect to v, we obtain Mk = {e′l < e′l + dl−1 < · · · < e′l + dl−1 +
· · ·+ dk+1}. We firstly get that d′′k = e′l, and since d′k = e′′l this yields dk = dl. We also get
that dk+j = dl−j, for j ∈ [l − k − 1]. We conclude that dj = dk+l−j for j ∈ [k + l − 1] and
the result follows.
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