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Abstract
Background/Aims: Sample size determination for cluster randomised trials is challenging because it requires robust
estimation of the intra-cluster correlation coefficient. Typically, the sample size is chosen to provide a certain level of
power to reject the null hypothesis in a two-sample hypothesis test. This relies on the minimal clinically important differ-
ence and estimates for the overall standard deviation, the intra-cluster correlation coefficient and, if cluster sizes are
assumed to be unequal, the coefficient of variation of the cluster size. Varying any of these parameters can have a strong
effect on the required sample size. In particular, it is very sensitive to small differences in the intra-cluster correlation
coefficient. A relevant intra-cluster correlation coefficient estimate is often not available, or the available estimate is
imprecise due to being based on studies with low numbers of clusters. If the intra-cluster correlation coefficient value
used in the power calculation is far from the unknown true value, this could lead to trials which are substantially over-
or under-powered.
Methods: In this article, we propose a hybrid approach using Bayesian assurance to determine the sample size for a
cluster randomised trial in combination with a frequentist analysis. Assurance is an alternative to traditional power,
which incorporates the uncertainty on key parameters through a prior distribution. We suggest specifying prior distribu-
tions for the overall standard deviation, intra-cluster correlation coefficient and coefficient of variation of the cluster
size, while still utilising the minimal clinically important difference. We illustrate the approach through the design of a
cluster randomised trial in post-stroke incontinence and compare the results to those obtained from a standard power
calculation.
Results: We show that assurance can be used to calculate a sample size based on an elicited prior distribution for the
intra-cluster correlation coefficient, whereas a power calculation discards all of the information in the prior except for a
single point estimate. Results show that this approach can avoid misspecifying sample sizes when the prior medians for
the intra-cluster correlation coefficient are very similar, but the underlying prior distributions exhibit quite different
behaviour. Incorporating uncertainty on all three of the nuisance parameters, rather than only on the intra-cluster
correlation coefficient, does not notably increase the required sample size.
Conclusion: Assurance provides a better understanding of the probability of success of a trial given a particular minimal
clinically important difference and can be used instead of power to produce sample sizes that are more robust to para-
meter uncertainty. This is especially useful when there is difficulty obtaining reliable parameter estimates.
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Background

Cluster randomised trials (CRTs) are a type of rando-
mised controlled trial (RCT) in which randomisation is
at the cluster-level, rather than the individual-level as in
standard RCTs. This means that ‘groups’ of individuals
(e.g. general practices, schools or communities) are ran-
domly allocated to different interventions (e.g. vaccina-
tion programmes or behavioural interventions). A
common reason for implementing this design is to miti-
gate the risk of contamination or where individual ran-
domisation is not feasible. Other justifications are
detailed in the study by Eldridge and Kerry.1

Individuals within a cluster are likely to share simi-
lar characteristics (e.g. demographics), as well as be
exposed to extraneous factors unique to the cluster
(e.g. delivery of the intervention by the same healthcare
professional). Consequently, outcomes from members
of the same cluster are often correlated, which can be
quantified by the intra-cluster correlation coefficient
(ICC). This lack of independence reduces the statistical
power compared to a standard RCT of the same size,
meaning that the sample size needs to be inflated to
allow for the clustering effect.

Various methods for sample size determination in
CRTs exist,2,3 which all rely on estimation of the ICC.
In practice, ICC estimates are typically based on pilot
studies, but these are often too small to provide precise
and reliable estimates.4 An alternative simple approach
is to use a conservative estimate of the ICC (e.g. the
upper confidence interval limit) in the sample size cal-
culation.5 However, this can lead to over-powered and
unnecessarily large trials. A more reliable method is to
combine ICC estimates from multiple sources, such as
previous trials or databases listing ICC estimates,6 and
use information on patterns in ICCs.7 This raises fur-
ther issues such as how to effectively combine the ICC
estimates, how to adequately reflect their varying
degrees of relevance to the planned trial and how to
capture the uncertainty in the individual ICC esti-
mates.8 It was suggested to consider integrating over a
range of possible ICC values, determined by confidence
intervals obtained using methods in the study by
Ukoumunne,9 to provide an ‘average’ sample size with
respect to the ICC. However, this does not consider the
uncertainty present in other design parameters, such as
the treatment effect and variability of the outcome
measures. Furthermore, it assumes that each value of
the ICC is equally likely. Other approaches to deal with
uncertainty in the ICC include sample size re-estima-
tion10,11 and robust designs, such as maximin designs.12

For the latter approach, a range rather than a prior is
used for the ICC.

Utilising a Bayesian approach for the trial design, in
which prior distributions are assigned to the unknown
design parameters such as the ICC, could further cir-
cumvent these issues and is particularly useful in

settings where ICC estimates are not readily available.
In the CRT literature, prior distributions for the ICC
have been proposed based on subjective beliefs13 and
single or multiple ICC estimates,14 which may be
weighted by relevance of outcomes and patient popula-
tion.15 These are used to estimate a distribution for the
power of the planned trial for a given sample size.
Within the Bayesian framework, uncertainty in other
design parameters can be incorporated into the sample
size calculation in a similar way, and the relative likeli-
hood of different parameter values is encompassed
through specification of the prior distribution. For
example, Sarkodie et al.16 assigned a prior to the over-
all standard deviation, in addition to the ICC, then
described a ‘hybrid’ approach to determine the sample
size required to attain a desired ‘expected power’,
defined as a weighted average of the probability that
the null hypothesis is rejected (with weights determined
by the priors).

Hybrid approaches, which combine a Bayesian
design with a frequentist analysis of the final trial data,
have gained increasing popularity, particularly with
respect to standard RCTs.17,18 In this article, we adopt
a hybrid approach by using the Bayesian concept of
‘assurance’ to determine the sample size for a two-arm
parallel-group CRT with a Wald test for the analysis.
In contrast to traditional frequentist power, which rep-
resents a conditional probability that the trial is a suc-
cess, given the values chosen for the design parameters
and the hypothesised treatment effect, assurance typi-
cally refers to the ‘unconditional’ probability that the
trial will be ‘successful’.19 We modify this definition by
conditioning on the minimal clinically important differ-
ence (MCID) instead of assigning a prior distribution
to, and integrating over, the treatment effect as is stan-
dard practice.17,20 This is more representative of the
design stage of a trial, in which the treatment effect is
typically fixed a priori by investigators. Moreover, this
ensures that the assurance will tend to one as the sam-
ple size increases so can be used analogously to tradi-
tional power, thus aiding interpretation.

A key consideration when applying a Bayesian
design is how to specify suitable prior distributions. In
contrast to the study by Sarkodie et al.,16 which
assumes independent priors on the ICC and standard
deviation, we suggest a joint prior distribution for these
parameters, as described in the Methods section. In
addition, we account for the fact that many CRTs have
unequal cluster sizes by defining a prior distribution on
the coefficient of variation of cluster size. This is often
overlooked in standard sample size calculations for
CRTs.21,22

Our approach is motivated by a parallel-group
CRT, Identifying Continence OptioNs after Stroke
(ICONS), outlined in the ‘Results’ section. We
illustrate the effects of redesigning this trial using the
entire ICC prior distribution to inform sample size
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determination via an assurance calculation, rather than
relying on a single point estimate from this distribution
as in Tishkovskaya et al.23 The impacts of varying the
ICC prior distributions on the chosen sample size are
evaluated. We perform sensitivity analyses on other
design parameters in an additional simulation study
provided in the Appendix.

Jones et al.24 summarise the current state of play
regarding the use of Bayesian methods in CRTs. In
doing so, they highlight the ‘need for further Bayesian
methodological development in the design and analysis
of CRTs ... in order to increase the accessibility, avail-
ability and, ultimately, use of the approach’. This arti-
cle is, therefore, a timely contribution.

Methods

Analysis for CRTs

Suppose that we are designing a two-arm, parallel-
group CRT assuming 1:1 randomisation of clusters and
normally distributed outcomes. A common analysis fol-
lowing the trial is to use a linear mixed-effects model.
That is, if Yij is the response for individual i= 1, . . . , nj

in cluster j= 1, . . . , J , then

Yij =a+Xjd+ cj + eij, ð1Þ

where a is an intercept term; Xj is a binary variable that
takes the value 1 if cluster j is allocated to the treatment
arm and 0 if it is allocated to the control arm, so that d

represents the treatment effect; cj;N 0,s2
b

� �
is a ran-

dom cluster effect with s2
b denoting the between-cluster

variation and eij;N 0,s2
w

� �
is the individual-level error

with s2
w denoting the within-cluster variation.

The ratio of the variability between clusters s2
b to the

total variability s2 =s2
b +s2

w determines the extent to
which clustering induces correlations between outcomes
for individuals in the same cluster. This is referred to as
the ICC, r=s2

b=s2.25

The superiority of the treatment is assessed via a
hypothesis test of H0 : d ł 0 versus H1 : d.0. Using a
Wald test, assuming asymptotic normality, the test

statistic is Z = d̂=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var d̂

� �r
, where d̂ is the estimate of d

and Var d̂
� �

= 4s2½1+ f n2 + 1ð Þ�n� 1gr�=J�n,12 where

�n is the average sample size per cluster and n is the coef-
ficient of variation of cluster size, that is, the ratio of
the standard deviation of cluster sizes to the mean clus-
ter size.

Choosing a sample size using assurance

The power of the one-sided Wald test for significance
level a can be approximated4 by

P n j d,cð Þ=F d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J�n

4s2½1+ f n2 + 1ð Þ�n� 1gr�

s
� z1�a

 !
,

ð2Þ

where z1�a is the 100 1� að Þ% percentile of the stan-
dard normal distribution and c= s, r, nð Þ is the vector
of ‘nuisance’ parameters, excluding the treatment effect.
For a two-sided Wald test, z1�a would be replaced by
z1�a=2. For equal cluster sizes, the power function
would take the same form as equation (2), with n= 0

and �n= nj = n.
In a standard power calculation, the sample size

would be chosen as the smallest value which gives 80%
or 90% power, based on values for u= d,cð Þ. The
treatment effect d could be specified as the MCID or
an estimate based on a pilot study, similar historical
trials or expert knowledge. The values used for c are
typically estimates.

Alternatively, we can use assurance to choose the
sample size. Whereas the power is conditioned on the
chosen estimates for c and possibly d, the assurance
represents the ‘unconditional’ probability that an RCT
will achieve a successful outcome.26 Assurance has been
used almost exclusively when the value to be used for d

is an estimate. In this case, suppose that the CRT is a
success if the null hypothesis is rejected by the Wald
test for d. Rather than using point estimates for u, we
could assign a prior distribution p uð Þ to it and define
the assurance A nð Þ as the power, averaged over the
uncertainty in u:

A nð Þ=
ð
u

Pr H0rejected j uð Þp uð Þdu,

=

ð
u

P n j uð Þp uð Þdu:

ð3Þ

One disadvantage of the assurance is that it tends to
Pr d.0ð Þ under p dð Þ as the sample size increases. That
is, unlike power, there may be no sample size for which
the assurance is above the typical thresholds of 80% or
90%. Kunzmann et al.17 avoid this by conditioning the
prior distribution for d on d.0 in the assurance calcu-
lation. In this article, we consider the following alterna-
tive approach.

The assurance in equation (3) assumes that we
choose d in the sample size calculation based on a
priori considerations of the likelihood of the treatment
effect. Instead, we consider the assurance in conjunc-
tion with a trial planned using the relevance argument,
that is, using the MCID for d, dM . In this case, there is
no need to define a prior distribution for d, and the
assurance reduces to:

Williamson et al. 3



A n j dMð Þ=
ð
c

P n j dM ,cð Þp cð Þdc:

The advantage of this is that the assurance will now
tend to 1 as the sample size increases.

To evaluate the assurance in practice, we sample
values of cj

� �
j= 1, ..., S

from the prior distribution p cð Þ
for some large number of samples S, and use Monte
Carlo simulation to approximate the assurance as

~A n j dMð Þ= 1

S

XS

j= 1

P n j dM ,cj

� �
,

’
1

S

XS

j= 1

F dM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J�n

4s2
j ½1+ f n2

j + 1
� �

�n� 1grj�

vuut � z1�a

0
B@

1
CA:
ð4Þ

Specification of priors

To evaluate the assurance, we are required to specify a
prior distribution for c. This simplifies to specifying
marginal prior distributions for each parameter if they
can be assumed independent. Given that s2 and r are
both functions of s2

w and s2
b, it is unlikely that s and r

can be assumed independent. Therefore, we consider a
joint prior distribution for s, rð Þ and a marginal prior
distribution for n. In order for the assurance to be a
meaningful representation of the probability that the
null hypothesis is rejected, these prior distributions
should be informative, representing the current state of
knowledge about the possible parameter values. This is
an elicitation problem, and information to specify the
priors can be obtained from relevant past data, expert
knowledge or a combination (an example of this is
given in the ‘Results’ section).

Since the coefficient of variation can only take
positive values, a gamma distribution n;Gamma an, bnð Þ
is a sensible choice for its prior distribution. The
hyperparameters an and bn could be chosen based on
previous studies, via modelling or by eliciting expert
knowledge.4

One way to specify a joint prior distribution for
s, rð Þ is to assign independent priors to s2

b and s2
w,

which will induce a correlation between r and s2. If we
sample values of sb and sw from their priors, we can
obtain samples from the joint prior of s, rð Þ. Typical
choices of prior distributions for s2

b and s2
w are (inverse)

gamma distributions because they provide conjugacy.
An alternative approach, relevant to our application,

is to specify the joint distribution between r and s

directly. For example, we can utilise a bivariate copula
to encode the dependence between the parameters. A
bivariate copula is a joint distribution function on ½0, 1�2

with standard uniform marginal distributions.27 It can
be used to construct a joint prior for r and s via

pr,s r,sð Þ=pr rð Þps sð Þc u, vð Þ,

where pr and ps are marginal prior distributions,
c u, vð Þ is the bivariate copula density function evaluated
at u=Fr rð Þ and v=Fs sð Þ for prior cumulative distri-
bution functions (CDFs) Fr and Fs. One simple choice
is the Gaussian copula:

c u, vð Þ= ∂2

∂u∂v
Fg F�1 uð Þ,F�1 vð Þ
� �

,

where Fg is the CDF of the bivariate standard normal
distribution with correlation g, and F�1 is the inverse
univariate standard normal CDF. The advantage of
this structure is that it allows specification of the mar-
ginal prior distributions for r and s separately to their
dependence, which is given by g.

Results

The ICONS post-stroke incontinence CRT

The approach developed in this article is motivated by
a planned parallel-group CRT, ‘Identifying Continence
OptioNs after Stroke’ (ICONS), which investigates the
effectiveness of a systematic voiding programme in sec-
ondary care versus usual care on post-stroke urinary
incontinence for people admitted to NHS stroke
units.28 The primary outcome is the severity of urinary
incontinence at three months post-randomisation,
measured using the International Consultation on
Incontinence Questionnaire.29 Although a feasibility
trial, ICONS-I30 was conducted, the resulting ICC esti-
mate was of low precision and could not be used as a
reliable single source to inform the planning of the pro-
posed trial.

ICONS, therefore, considered a Bayesian approach
to combine multiple ICC estimates from 16 previous
related trials. The opinions of eight experts regarding
the relevance of the previous ICC estimates were eli-
cited31 and used to assign weights to each study and
each outcome within a study. The elicited study and
outcome weights were combined using mathematical
aggregation32 and incorporated into a Bayesian hier-
archical model following the method by Turner et al.15

The resulting constructed ICC distribution had a pos-
terior median of r̂= 0:0296 with a 95% credible inter-
val of 0:00131, 0:330ð Þ. Details of the expert elicitation
process and modelling are described in the study by
Tishkovskaya et al.23

For the ICONS CRT, the sample size was chosen to
give 80% power with a 5% significance level to detect
dM = 2:52 using a two-tailed independent-samples t-test
and a common standard deviation s of 8.32 obtained
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from the ICONS-I feasibility trial. The ICC was
assumed to be less than or equal to r̂= 0:0296. It was
assessed as realistic to recruit between 40 and 50 stroke
units, which required total sample sizes of N = 480 and
N = 450, respectively, and an average sample size per
cluster of n= 12 and n= 9, respectively. The original
sample size calculation assumed equally sized clusters
(i.e. n= 0). However, if we consider unequal cluster
sizes with n= 0:49 (obtained from ICONS-I) and apply
the Wald test, the required sample sizes remain the
same.

Redesigning the ICONS CRT using assurance

We consider assurance as an alternative to power to
determine the sample size for the ICONS CRT. This
seems like a more natural approach given the uncer-
tainty in the ICC and the extensive elicitation and mod-
elling that was conducted to construct the ICC
posterior distribution (which forms the prior distribu-
tion for the assurance-based sample size calculation).
Moreover, assurance incorporates the full ICC distri-
bution into the sample size calculation, rather than
relying on a single point estimate from it as in the
power calculation.

We consider the following two forms of assurance.

Assurance based on the ICC prior only. In the first case, we
fix s, nð Þ using the point estimates obtained from
ICONS-I (ŝ = 8:32 and n̂= 0:49) and only consider the
assurance with respect to the ICC. We sample S = 10, 000

values of r from its distribution (see Figure 1) and
approximate the assurance using equation (4).

To obtain an assurance of 80%, the resulting aver-
age sample sizes per cluster are �n= 17 for J = 40 clus-
ters (J=2= 20 per arm) and �n= 11 for J = 50 clusters
(J=2= 25 per arm), requiring total sample sizes of
N = 680 and N = 550, respectively (see Table 1). Thus,
the inclusion of uncertainty in the ICC results in a
larger sample size than when using the posterior med-
ian ICC, but provides a more realistic and robust study
design. Compared to the classical approach, the total
sample size attained is smaller for the smaller number
of clusters.

The left-hand side plot of Figure 2 illustrates the
trade-off between cluster size and assurance/power, for
J = 40 clusters (J=2= 20 per arm). The power calcula-
tion based on the median from the elicited prior distri-
bution of r is represented by the red curve and the
assurance with a prior on r only by the black curve. We
see that the assurance requires a larger sample size than
power when the target lies above 0.5. We also include
the power curve corresponding to the commonly used
approach of taking the median of the 34 ICC estimates
(blue line). For a target power of 0.8 (horizontal line),

Figure 2 shows that this method requires a larger sam-
ple size per cluster than the aforementioned methods.

We illustrate the effect of changing n= 0, 0:1,ð
. . . , 1Þ on the assurance in the right-hand side plot of
Figure 2. The red curve corresponds to n= 0:5, the top
curve to n = 0 and the bottom curve to n= 1. As n

increases, the assurance decreases for a given cluster
size. We see that the estimate of n has a relatively strong
effect on the assurance, and hence the required sample
size. This implies that it needs to be estimated accu-
rately, or its uncertainty should be taken into account
in the assurance calculation.

Assurance based on the prior for c. In the second case, we
obtain the sample size required using an assurance calcu-
lation, which averages over a prior distribution on s and
n, as well as the ICC. Using the data from ICONS-I, we
give s and n gamma marginal prior distributions,
centred at their estimated values of 8.32 and 0.49, respec-
tively. The standard deviations of the prior distributions
are chosen to represent a belief that s is very likely to
be in the range ½5, 11� and n is very likely to be in
the range ½0:3, 0:7�. Specifically, s;Gamma as, bsð Þ and
n;Gamma an, bnð Þ, where a�=m2

� =v� and b�=m�=v�,
ms = 8:32, vs = 12 and mn = 0:49, vn = 0:0662.

To incorporate the dependence between r and s, we
utilise the Gaussian copula with g = 0:43. This is cho-
sen to be consistent with the correlation between r and
s that would result from independent prior distribu-
tions on the between- and within-group standard
deviations of sb;Gamma 0:6, 0:5ð Þ and sw;Gamma

83:5, 10:4ð Þ, respectively. The hyperparameters of these
two gamma prior distributions are chosen to provide
the correct marginal means and variances for r and s.
To sample values of r and s from their joint prior
distribution, we repeat the following steps:

Figure 1. Histogram of 10,000 samples of the ICC, r.
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1. Sample xi, yið Þ, i= 1, . . . , S from N2 0,Rð Þ, where R

is the prior correlation matrix with diagonal
elements 1 and off-diagonal elements g = 0:44.

2. Calculate ri,sið Þ as F�1
r F xð Þð Þ,F�1

s F yð Þð Þ
� �

.

The quantile function F�1
s is that of the relevant nor-

mal distribution. The empirical quantile function F�1
r is

used for r, based on the 10,000 prior samples.

The resulting joint prior distribution for s, rð Þ and
marginal prior distribution for n are illustrated in
Figure 3. We see that the marginal prior for r remains
as in Figure 1, but the samples are positively correlated
with the values of s.

The resulting average cluster sample sizes for an
assurance of 80% are �n= 18 for J = 40 clusters
(J=2= 20 per arm) and �n= 12 for J = 50 clusters
(J=2= 25 per arm), requiring total sample sizes of

Table 1. Summary of sample sizes obtained for the ICONS CRT based on power and assurance calculations.

Method Priors Total number
of clusters, J

Mean cluster
size, �n

Total sample
size, N

Power
(classical approach)

NA 50
40
30

12
18
37

600
720
1110

Power
(based on posterior median)

NA 50
40
30

9
12
19

450
480
570

Power
(conservative values)

NA 50
40
30

23
57
.100

1150
2280
.3000.

Assurance r 50
40
30

11
17
30

550
680
900

Assurance c= s, r, nð Þ 50
40
30

12
18
35

600
720
1050

ICONS: Identifying Continence OptioNs after Stroke; CRT: cluster randomised trial.

Figure 2. Power and assurance curves for the ICONS CRT (left). The power using the posterior median ICC is red, the power
using the median ICC from the 34 ICC estimates is light blue, the assurance with a prior only on the ICC is black and the assurance
with a prior on all of the nuisance parameters c is green. The effect of varying the coefficient of variation n on the assurance (right).
n varies between 0 (top curve) and 1 (bottom curve), with the red line at n= 0:5. The horizontal line indicates the desired power/
assurance. Each plot corresponds to J= 40 (J=2= 20 per arm).
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N= 720 and N= 600, respectively. By incorporating
uncertainty on s and n, as well as r, the sample size
increases only slightly, as illustrated in the left-hand
side plot of Figure 2 (green line). To achieve a target
assurance of 80% (dashed horizontal line), the average
sample size required per cluster increases from 17 to 18
when J = 40; an increase in total sample size of approx-
imately 5%.

Table 1 summarises the sample sizes required to attain
a target power/assurance of 80% for the various
approaches applied to the ICONS trial. ‘Classical
approach’ refers to the multiple-estimate method of tak-
ing the median of the ICC estimates without taking the
relevance of the different studies into account. Relative to
the classical approach that is often used in practice, the
total sample size required when using the assurance-based
method remains the same while incorporating uncertainty
on all three parameters. ‘Conservative values’ refers to
using conservative values for each of s, r, nð Þ, which
we take as the upper quartile values from each of their
marginal design priors. In this case, we obtain sample
sizes that are more than double those attained via any
other approach.

We include the solutions for a smaller number of
clusters, J = 30. Apart from power using the posterior
median, which uses a relatively small ICC value, we see
assurance resulting in the smallest sample sizes for this
case.

Sensitivity analysis for the ICC prior

In the above, we consider the ICC prior distribution
based on all eight reviewers and all 16 relevant studies.
In this section, we investigate the sensitivity of the
assurance-based sample size (with priors on c) to varying
assumptions on the reviewers and relevant studies, and
compare this to the sensitivity of the sample sizes from
power calculations (using the posterior median ICC).

To recognise uncertainty in the individual reviewers’
responses, and in how these responses were pooled, the

mathematical aggregation was refitted with alternative

reviewer importance weights: equal weights of 0.125 for

all reviewers and using a rank sum approach.23 For the

rank sum approach, we use Cronbach’s alpha score

and assign ranks to each reviewer according to this

score. In addition, we rerun the Bayesian hierarchical

model for only the top 4 (25%), 8 (50%) and 12 (75%)

most relevant studies. We refer to the five variations of

the original ICC prior distribution as: equal weights,

differentiated weights, top 4, top 8 and top 12.
The differentiated weights prior (red) and equal

weights prior (green) are provided alongside the original
prior (black) in the left-hand side plot of Figure 4. The
top 4 prior (red), top 8 prior (green) and top 12 prior
(blue) are given alongside the original prior (black) in
the right-hand side plot of Figure 4. In both plots, the
prior medians are given by vertical dashed lines.

Figure 3. The joint prior distribution between r and s (left) and the marginal prior distribution for n (right), based on 10,000
samples.
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We see that the ICC prior remains similar to the
original prior whether differentiated weights or equal
weights are used, although both alternative weightings
assign more probability to the ICC taking larger val-
ues. There is a larger change when using the top 4, top
8 or top 12 studies. In each case, the alternative prior is
more diffuse than the original prior. Relatively large
changes in the prior can cause only small changes in
the prior median (e.g. the original prior compared to
the top 12 prior). The effects of the alternative ICC
priors on the sample sizes are shown in Table 2.

We see smaller changes in sample sizes for J = 50

than J = 40 using assurance. Overall, we observe larger
changes in sample size using assurance than power based
on the prior median of the ICC. This illustrates the risk
with using just the median; it takes no account of the

prior probability that the ICC could be relatively large,
so has the potential to systematically underestimate the
required sample size. In contrast, the assurance-based
sample size is sensitive to the entire ICC prior distribu-
tion, particularly the upper tail.

To illustrate this point, compare the original ICC
prior (black) to the top 12 prior (blue) in the right-hand
side of Figure 4. They have substantially different
priors, resulting in large differences in sample sizes
required under assurance (600 versus 750 when J = 50,
respectively). However, their prior medians are almost
identical, resulting in identical sample size requirements
under power (450 when J = 50).

In the Appendix, we further evaluate the properties
of the hybrid approach compared to power via a simu-
lation study.

Table 2. The average sample size per cluster �n and the total sample size N required for the ICONS CRTusing assurance (with
priors on c) and power based on the original ICC estimate/prior and five alternative estimates/priors when J= 50 and J= 40.

J=50 J= 40

ICC Estimate/Prior Assurance Power Assurance Power

�n N �n N �n N �n N

Original 12 600 9 450 18 720 12 480
Differentiated weights 13 650 10 500 20 800 13 520
Equal weights 13 650 9 450 19 760 13 520
Top 4 12 600 8 400 18 720 11 440
Top 8 14 700 9 450 23 920 12 480
Top 12 15 750 9 450 24 960 12 480

The power is based on the posterior median of the ICC.

ICONS: Identifying Continence OptioNs after Stroke; CRT: cluster randomised trial; ICC: intra-cluster correlation coefficient.

Figure 4. Left: The densities of the differentiated weights (red), equal weights (green) and original ICC prior (black). Right: The
densities of the top 4 (red), top 8 (green), top 12 (blue) and original ICC prior (black). The prior medians are represented by
vertical dashed lines.
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Conclusion

A standard sample size calculation requires pre-
specification of parameters that are unknown at the
design stage of a trial. Unique to sample size calcula-
tions for typical CRTs is the ICC, which requires
robust estimation to avoid over- or under-powering the
trial. Unnecessarily high ICC values, for example, lead
to inefficient trials, increasing the number of clusters
and/or participants and overall trial costs. In practice,
parameter uncertainty is typically not considered,
which can be problematic given the sensitivity of the
sample size to small differences in the ICC.

This article proposes an alternative approach to sam-
ple size determination for CRTs using the Bayesian
concept of assurance to incorporate parameter uncer-
tainty into the design. The advantage of this approach
is that it yields designs that provide adequate power
across the likely range of parameter values and is, there-
fore, more robust to parameter misspecification. This is
particularly important when there is difficulty obtaining
a reliable ICC estimate, as in the ICONS post-stroke
incontinence CRT used to motivate this work. Another
approach in this context is to perform an interim analy-
sis for sample size re-estimation. The approach pro-
posed in this article could be used in combination with
sample size re-estimation to provide further robustness
to the design of CRTs.

We assign prior distributions to the ICC, overall
standard deviation and coefficient of variation of the
cluster size, while setting the treatment effect equal to
the MCID in line with standard practice. We consider
a joint prior for the ICC and standard deviation to
model the dependency between these parameters. In
the motivating case study, we use the entire ICC prior
distribution elicited from expert opinion and data from
previous studies to inform the sample size. Further
work could consider using a commensurate prior to
synthesise multiple sources of pre-trial information on
the ICC, as in literature.33

Sensitivity analyses of the assurance-based sample
size to different ICC priors showed that different beha-
viour of the prior, particularly in the upper tail, can
have quite a strong effect on the required sample size.
Using a point estimate from this prior, for example the
median, can miss this overall behaviour and result in
sample sizes which are systematically too small, based
on current knowledge about the ICC. Additional sensi-
tivity analyses conducted on the overall standard devia-
tion showed that the greater the uncertainty expressed
in the prior, the more robust the assurance-based sam-
ple size is (see Appendix).

Uncertainty in the treatment effect can also be incor-
porated into the assurance calculation in a similar way.
This may be appropriate for non-inferiority trials, for
example, where the non-inferiority margin is fixed in

advance and the treatment difference can be considered
a nuisance parameter.

In line with regulatory requirements, we have main-
tained a frequentist analysis to present a hybrid frame-
work. Further work could consider a fully Bayesian
approach by using assurance when the success criterion
is based on the posterior distribution of the treatment
effect.13

The hybrid approach presented in this article can be
applied to avoid incorrectly powered studies resulting
from ill-estimated model parameters, to mitigate the
impact of uncertainty in the ICC and other nuisance
parameters, and to incorporate expert opinion or his-
torical data when designing a CRT. The approach pro-
posed has been outlined in the case that the number of
clusters is fixed and we aim to determine the total sam-
ple size for the trial. The approach would also allow
the reverse process – to calculate the necessary number
of clusters given a fixed total sample size.
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