

Central Lancashire Online Knowledge (CLoK)

Title	Vertically constructed wetlands for greywater reuse: Performance analysis
	of plants
Type	Article
URL	https://clok.uclan.ac.uk/id/eprint/49265/
DOI	https://doi.org/10.1016/j.enmm.2023.100881
Date	2023
Citation	Siriwardhana, Kushan D., Miguntanna, Nandika, Jayaneththi, Dimantha I., Kantamaneni, Komali and Rathnayake, Upaka (2023) Vertically constructed wetlands for greywater reuse: Performance analysis of plants. Environmental Nanotechnology, Monitoring & Management, 20.
Creators	Siriwardhana, Kushan D., Miguntanna, Nandika, Jayaneththi, Dimantha I., Kantamaneni, Komali and Rathnayake, Upaka

It is advisable to refer to the publisher's version if you intend to cite from the work. https://doi.org/10.1016/j.enmm.2023.100881

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the http://clok.uclan.ac.uk/policies/

1	Vertically constructed wetlands for greywater reuse: Performance analysis of plants
2	
3	Kushan D. Siriwardhana ¹ , Nandika Miguntanna ^{2*} , Dimantha I. Jayaneththi ¹ , Komali
4	Kantamaneni ³ , Upaka Rathnayake ^{4*}
5	¹ Water Resources Management and Soft Computing Research Laboratory, Millennium City,
6	Athurugiriya, 10150, Sri Lanka
7	² Department of Civil Engineering, Faculty of Engineering, Sri Lanka Institute of Information
8	Technology, Malabe, 10150, Sri Lanka
9	³ School of Engineering, University of Central Lancashire, Preston PR1 2HE, United Kingdom.
10	⁴ Department of Civil Engineering and Construction, Faculty of Engineering and Design, Atlantic
11	Technological University, Sligo, F91 YW50, Ireland
12	Correspondence: nandika.m@sliit.lk and Upaka.Rathnayake@atu.ie
13	
14	Abstract
15	Vertical Flow constructed wetlands (VFCWs) are environmentally feasible engineered systems
16	that mimic the functions of natural wetlands. They are alternative engineering systems that are
17	economical, and simple in structure with reduced land area compared to Horizontal Flow
18	Constructed Wetlands (HFCW). Thus provides a sustainable solution for greywater treatment to a
19	considerable extent. However, VFCWs feasibility and plant performance were not tested in the
20	context of Sri Lanka for the greywater treatment. Therefore, the purpose of this study is to evaluate
21	the potential of household greywater treatment using a pilot-scale VFCW and examine the
22	performance characteristics of different types of plants. Three types of plants, the Canna plant
23	(Canna indica), Ferns plant (Matteuccia struthiopteris), and Cattail plant (Typha latifolia) were

used as emergent plants and a retention tank was constructed to retain solid particles in the greywater as primary treatment. The experiments were carried out for two months using a Completely Randomized Design (CRD) for three replicates. The quality of the influent and effluent was tested fortnight for a number of water quality parameters. Results revealed that the removal efficiency of contaminants was increased. Cattail plants showed higher removal efficiency for dissolved oxygen (DO), chemical oxygen demand (COD), nitrates (NO₃¹-), turbidity, and electrical conductivity. In addition, Canna plants had higher efficiencies for the removal of total dissolved solids (TDS) and phosphates (PO₄³-). Furthermore, Ferns plants presented higher efficiency only for removing sulphate (SO₄³⁻). Conclusively, Cattail plants presented the overall best performance in treating greywater. This can be attributed to the ability of the Cattail's dense fibrous root system to absorb more contaminants from greywater. This research also discussed the importance of microplastic analysis in greywater treatment which is a vital part of the current day research. The results of this study will be helpful to the further advanced research. Furthermore, this methodology can be implemented to other similar plants across the globe irrespective of geographical area.

39

40

38

24

25

26

27

28

29

30

31

32

33

34

35

36

37

- Keywords: Canna plant; Cattail plant; constructed wetlands; Ferns plants; greywater treatment;
- 41 Vertical flow Construction Wetlands (VFCWs)

42

43

1. Introduction

Water is one of the most crucial resources for all living organisms. Even though 71% of the earth consists of water, the availability of fresh and potable water is very limited. According to the data available, 771 million people don't have any access to clean water in 2020 [1]. Furthermore,

according to statistics world population is expected to reach 8.45 billion by 2025, thus would result in risks of water shortages for 40% of the population [2]. This is a critical environmental concern; therefore, severe attention should be given to water supply systems. In addition, industrialization demands a high amount of water, and it is in an increasing phase [3]. On the other hand, the discharge of contaminated water from various industries into the environment has been identified as a major point source of pollution to receiving water bodies creating a considerable negative impact on all the sectors of the environment [4]. Furthermore, the degradation of water quality of receiving water bodies due to non-point sources of pollution which mainly includes urban stormwater runoff has also been identified as a major issue during the past few decades [5]. The degradation of the water quality directly impacts aquatic life, human life, and other species immensely. All these situations ultimately lead to the discussion of water scarcity and how to safeguard, reuse and save the water for future generations. In this context, wastewater treatment and reuse have been identified as one of the most practical and feasible methods to address the problems associated with water quantity and quality. Even though there are many methods that are being implemented to optimize the process of wastewater treatment in industries, the focus on the domestic level of wastewater treatment methods for different types of household discharges is not very progressive, particularly in developing countries like Sri Lanka. Greywater is the effluent that discharges from households excluding toilet wastewater [6]. Usually, greywater is contaminated with different soluble and insoluble compounds such as dirt, grease, hair, food, and chemical substances, pathogens in general [7]. In addition, microplastics are readily available in grey water even though it is not yet given in-depth attention in most of the countries. In developing countries such as Sri Lanka, greywater production in urban and suburban areas is mostly discharged without any treatment to either a sewage line or stormwater drain, or the direct

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

environment. Discharges to the direct environment are very popular in many rural areas in developing countries as there are no policy regulations to prohibit that. As a result of these untreated greywater discharges, natural water bodies are in real danger with environmental impacts such as depletion of dissolved oxygen, high turbidity levels, eutrophication, etc. [6]. Most countries utilize greywater for home garden irrigation or agricultural purposes in regions where water scarcity is a major issue or when the cost of water supply is high. Even though greywater is considerably less polluted compared to other wastewater sources, it still contains various contaminants which need to be removed through a proper treatment process before attempting to reuse or release into the environment. This includes microplastics as well. If proper treatment is not carried out before reusing or discharging to the environment, it will lead to adverse impacts on human health, soil, groundwater quality, and the whole environment system ultimately [8]. Four different types of waste treatment methods are used in many countries. They are physical water treatment, biological water treatment, chemical water treatment, and sludge treatment. Some of the treatment techniques have combined methods. Constructed wetlands are under both physical and biological categories due to the involvement of both processes. There is an increasing demand for more environmentally friendly wastewater treatment technologies such as constructed wetlands. Constructed wetland is an engineered system that is designed to have a natural wastewater treatment process (which incorporates soil, vegetation, and microbial assemblages) [9]. They are mostly utilized for treating point source pollution such as municipal waste, and domestic waste [8]. But they can also be used to treat non-point source pollution (agricultural runoff, landfill leachate, etc.). However, by changing various design factors, constructed wetlands may treat a range of pollutants by utilizing low-energy and natural processes [10,11].

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

Three main types of constructed wetlands can be identified based on the flow direction of effluent: horizontal flow (HFCWs), vertical flow (VFCWs), and hybrid flow (HFCW) [12]. In HFCW, wastewater flows through a porous medium under the emergent plants horizontally [13]. The treatment process involves aerobic, anaerobic, and anoxic zones to be passed through to treat the greywater. However, VFCWs operate in a different manner where wastewater is percolated through the soil with discontinuous loading periods and resting periods. These VFCWs are usually constructed either in shallow excavation or above ground with an impermeable linear covering around the wetland area. Also, emergent plants on the wetland assist in maintaining the hydraulic conductivity of the VFCW's bed. Typically VFCW requires a lesser area to treat wastewater when compared with HFCW [14]. VFCWs, unlike HFCWs, are a viable alternative when faced with restricted land availability and are usually suitable in domestic and industrial wastewater recycling. This treatment system is designed to effectively remove organic matter, nitrogen, phosphorus, and pathogens through microbial activity. Additionally, it is capable of managing solids due to the oxidation-reduction environment inside the system. Overall, this system offers ample and appropriate treatment for various types of contaminants [15-17]. Nevertheless, the hybrid flow constructed wetland influences both VFCW and HFCW to obtain higher treatment efficiency. This is also considered to be preferable for nitrogen as it provides less oxygen in the system. On the other hand, wetland plants play a significant role in constructed wetlands. This primarily includes uptaking of the nutrients, absorbing, and accumulating heavy metal and poisonous substances from wastewater, and contributing significantly to simultaneous nitrification and denitrification, transferring oxygen to the rhizosphere for microorganism growth, reproduction, and decomposition [18]. The Root Zone theory by Seidel and Kickuth [19], highlighted the function

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

of macrophytes in wetlands' sewage treatment systems and significantly encouraged the study and use of constructed wetlands.

Even though literature showcases a number of studies to investigate the performance of these constructed wetlands [20-26], they are very limited in the context of Sri Lanka. The performance of VFCWs was never tested using the readily available plants in Sri Lanka. Therefore, such analysis is highly important as most of the generated greywater is not treated in Sri Lanka and is directly discharged to nearby environments. Thus, a high necessity is raised to investigate the performance of constructed wetlands using readily available Sri Lankan plants and then to promote such systems among the community. Therefore, this study for the first time in the context of Sri Lanka, is focused on the investigation of VFCW performance using three different plant species readily available.

125 .

Most of the studies have shown that Canna plants and Cattail plants exhibit good performance overall [27] [28]. Canna lily is a plant that consists of soft tissues and is used as an emergent plant. Even though many studies have been conducted related to macrophyte use in greywater treatment, studies on Canna plant utilization are rarely done. This plant has higher efficiencies in removing nitrogen and phosphate[29]. This is due to the ability of the Canna plant to carry out evapotranspiration at higher rates compared to the other plants. Also, it has higher rates of dry weight and nutrient accumulation within the Canna plant tissue. As per Polomski et al. [29], the study has found the maximum storage capacity lies within the shoots and roots of the plant. Moreover, the Canna plant has a higher growth rate with a higher biomass production [30] and has a direct relationship with nutrient uptake. The Canna plant's tolerance towards wastewater stress and the presence of chemicals gives this plant the potential for phytoremediation.

Fern is a nonflowering vascular plant, which contains true roots, complex leaves, and stems. Fern plants are utilized for wastewater treatment at the domestic level expecting to lower the concentration of BOD levels, COD levels, and Ammonia levels [31]. Fern has a good growth rate that contributes towards lowering the above parameters in wastewater. Several researchers have highlighted the ability to use Ferns in phytoremediation which is an important aspect of wastewater treatment [32-34]. With more focus on constructed wetlands, it is a viable choice to use Ferns as a free-floating emergent plant. In addition, Ferns consist of a high tolerance ability to pollutants while having a high potential for phytoremediation ability [32]. Cattail plants can rapidly colonize any type of wetland covering a great range as it produces wind-dispersed seeds [32]. The rapid growth rate of Cattail plants combined with their large size and aggressive expansion nature create a dense stand in wetlands [35]. State that Cattail has great potential to be used as a wetland emergent plant for wastewater treatment. With all these positive points, these three plants were selected to understand their performance of them in VFCWs with the aid of an experimental study. As it was stated earlier, this is essential to develop and implement policy decisions to reduce the pollution levels in greywater discharges in an economical way in Sri Lanka.

153

154

155

156

157

158

159

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

2. Materials and methods

2.1. Wetland construction

Three experimental setups were designed and constructed with the same density of Canna, Ferns, and Cattail plants. Wetland sizes were calculated based on the formula proposed by Kicked [36] and a septic tank was established for the primary retention purposes. The surface area of each wetland was kept at 1 m². Literature recommended a depth of 500 – 800 mm for the wetland [37]

and it was kept at 700 mm for this study. Therefore, three rectangular VFCWs were constructed using cement blocks (refer to Figure 1a). Each VFCW has an effective surface area of 1500 mm x 660 mm, and a depth of 700 mm. Walls and beds were completely sealed using cement mortar and tested twice for leakages using water before the experiments. This setup was developed for filtering a continuous greywater flow of 1.2 m³/day. Two separate outlets (One extra outlet for emergencies) for each wetland were arranged at the lowest levels of the bed.

Figure 1aVFCW Replicates



Figure 1(b). VFCW Layers Structure

The wetland was designed with seven layers and the cross section of VFCW is shown in Figure 1b. The purpose of cabals (layer 1), coarse gravel (layer 2), and medium gravel layer (layer 4) was to provide more flow and retention time and surface area for microbiological activities for wastewater and then to have efficient oxygen transport into the root zone to encourage the oxidation of hazardous metals that have been reduced to support a large rhizosphere [10,38]. The purpose of the plastic mesh in between layers 2 and 4 was to prevent aggregates block below the coarse gravel and cabal layers. Otherwise, all the fine and gravel particles would block the layers,

and it may cause low performance. In addition, the purpose of the charcoal layer was to remove toxins from the water without stripping important minerals and applying locally dominating macrophyte species [39]. The top sand and vegetation layers (6th and 7th) were intended to provide proper conditions for the plants to grow. At the same time, it creates an environment that is suitable for microbial populations, and it helps to transport oxygen to roots efficiently. This setup allows to absorption nutrients of in greywater while facilitating oxidization to reduce toxic metal.

2.2. Introduction of wetland plants

After laying subsurface material, three selected plants namely Canna (*Canna indica*), Ferns (*Typha angustifolia*), and Cattail (*Fiddlehead Fern*) were planted in the constructed wetland at the same density (refer to Figure 2). The selection of the plants was entirely based on the literature as discussed in the introduction section. The main functionality of the roots of wetland plants is to enable the environment to remove pollutants from wastewater [11] and to offer an ample surface area for the development of microbial biofilms [40].

Figure 2. Wetland plants

2.3. Retention tank construction

It is crucial to remove all debris and particles from untreated greywater before entering the constructed wetland. If not removed, the substrate of the wetland might quickly fill up with these materials. Wetlands' low flow velocities promote the sedimentation of suspended solids [41]. Therefore, a minimal pre-treatment should be offered to remove these solid materials. This is very common in most of the constructed wetlands. As shown in Figure 3, a setup was placed above the inlet of the wetland. The outlet of the retention tank was connected to VFCW, and gravity flows were maintained. Furthermore, a sludge removal outlet at the bottom and an overflow outlet at the top of the retention tank were arranged. These tanks need to be de-slugged and cleaned regularly. If not the water quality of the effluent might be very poor due to higher suspended solids. Thus, the wetlands can be clogged. Therefore, regular attention should be paid.

Figure 3. Retention tank Setup

2.4. Sample collection

The retention tank outflow was connected to the VFCW system at 0.83 L/min (1.2 m³/day) rate and controllers were used to control the flow. This setup was designed for 24 hours of hydraulic retention time. Higher hydraulic retention time ensures a higher removal performance of contaminants [42]. The arranged final set was showcased in Figure 4.

Figure 4. Final arrangement of VFCW

Samples of both treated and untreated greywater were collected in two stages. Samples from retention tank outflow were collected in Phase 1. Then three samples from each tank were collected in phase 2 from the outlets of constructed wetland for quality examination. The sample collection procedure was followed as per the guidelines of the National Engineering Handbook [43]. After completing the in-situ measurements, all the samples were then carefully transported to the Central Environmental Authority laboratory (CEA Laboratory Ratnapura, Sri Lanka which is 30 km away from the site) for testing of physio-chemical parameters.

These samples were routinely collected fortnightly. Before collecting samples, all the wetland beds were cleaned using high-quality mineralized water 24 hours before the process and poured greywater into the retention tank up to its maximum level. Afterward, a sample from the retention tank was collected and the flow was directed to the VFCW. Subsequently, three treated water samples from each tank were collected after the following of next 24 hours. Throughout the testing process, the retention tank inlets were blocked during the sample collecting period to get highly accurate and precise data for quantitative analysis.

2.5. Water quality analysis

Water samples were evaluated for key physio-chemical parameters namely pH, electrical conductivity (EC), total dissolved solids (TDS), salinity, temperature, turbidity, dissolved oxygen (DO), chemical oxygen demand (COD), phosphates (PO₄³⁻), nitrates (NO₃⁻) and sulphate (SO₄²⁻). Due to the limitations of the water quality testing facility, only these were considered in this study. However, it is well noted the importance of measuring heavy metals and microplastics in greywater. The sample testing was done at the site and the CEA Laboratory, Rathnapura, Sri Lanka as per the guidelines of the standard methods for the examination of water and wastewater [44] Table 1 presents the details of these water quality tests.

Table 1. Water quality testing

Parameter	Unit	Test method	Testing facility
			Location
рН		W. O. L. T.	VFCW site
Temperature	$^{0}\mathrm{C}$	Water Quality Tester	premises

Electrical conductivity	μs/cm	(Make -ALTIFUNCTION,	
(EC)		Model-EZ-9909SP)	
Total dissolved solids	Part per million		
(TDS)	(ppm)		
Salinity	Part per thousand		
	(ppt-%)		
Turbidity	NTU	Water Quality Monitor	
		(Make - HORIBA, Model-	
		U500)	
Dissolved oxygen	mg/l	Water Quality Monitor	
(DO)		(Make - HORIBA, Model-	
		U500)	CEA Laboratory
Chemical oxygen	mg/l	APHA 5220D	
demand (COD)			
Nitrite (NO ₃ ¹⁻)	mg/l	APHA 418D	
Phosphate (PO ₄ ³⁻)	mg/l	APHA 4500P-E	
Sulphate (SO ₄ ²⁻)	mg/l	APHA 4500 SO42-	

240

241

2.6. Overall methodology

- The flowchart for the overall methodology carried out in the experiments was shown in Figure 5.
- 243 This is for easy understanding of the experimental work which was carried out.

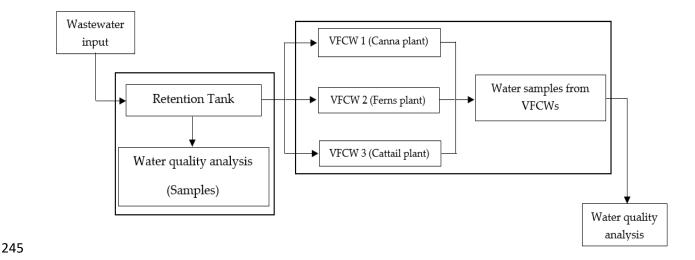
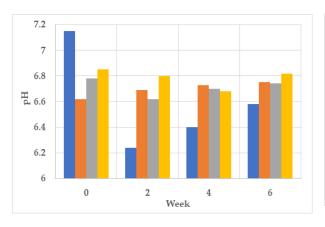


Figure 5. The overall methodology flowchart

4. Results

4.1 Water quality analyses


The outcomes of the water quality analyses for various water quality parameters are presented in Figure 6. The variation of water quality for six weeks is given for the retention tank, and VFCWs with three plants. Figure 6a shows the variation of pH values of the effluents of all three VFCW units. The pH values of all three VFCW outlets have shown slight changes in the variation. The outlet's mean pH values of Canna, Fern, and Cattail plants were 6.69, 6.71, and 6.79 respectively. All three plant types have performed efficiently, and Cattail has shown relatively higher efficiency in pH reduction than Canna and Ferns plants. pH variations of plants were closer to 7 and showed consistency in the results throughout the study period. This phenomenon can be explained by the fact that plants absorb CO₂ and produce O₂ when they expose to adequate sunlight. While O₂ has no impact on the pH of water, carbon dioxide induces a decrease in pH and makes water more acidic. As a result of that, the pH of the water gradually rises as plants absorb CO₂. However, plants can also metabolize a number of other compounds and alter pH. For instance, NH₃ and other

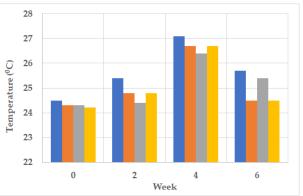
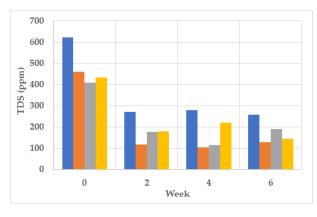
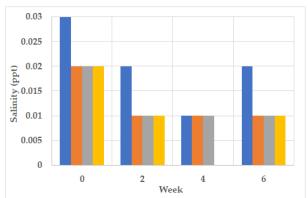

nitrogen molecules in the water can be absorbed by plants. Additionally, free hydrogen ions (H⁺) are produced by biological reactions often causing the pH of the water to be close to 7 [45]. The pH of values showcases a sudden decrease in the retention tank in week 2 and back to normal after that.

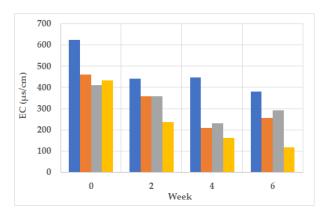
Figure 6b shows the variation of the temperature in the effluent of each VFCW unit. Wastewater temperatures of the effluent of VFCWs were comparatively lower than the temperatures of the wastewater in the retention tank. The atmospheric temperature might have an impact on these readings. Similar trends of temperature can be seen in Cattail and Canna plants. However, these temperatures were less than the outflow of the retention tank (inflows to the VFCWs). It could be due to the absorbance of CO₂ of greywater from the roots of plants. In addition, the surface area of the wetlands might have influenced the temperature levels. That could be another reason to have lower temperatures in the wetlands. In addition, the filtration process has significantly increased the quality of the greywater (refer to Figure 6c). Reduced total dissolved solids can be seen in all samples. The VFCW with Canna plants performed the best. On average 49%, 38.6%, and 32.3%

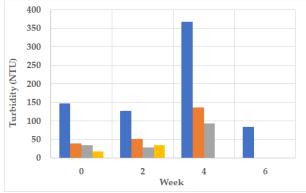
of removal efficiencies have been observed in the experiments for Canna, Ferns, and Cattail plants


respectively. Similar results have been found by researchers [46].

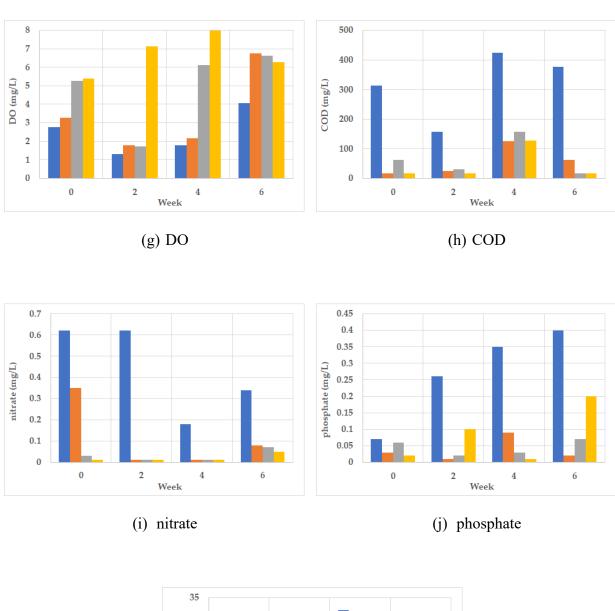


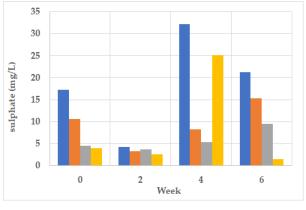
(a) pH


(b) Temperature



(c) TDS


(d) Salinity



(e) EC

(f) Turbidity

(k) sulphate

Figure 6. Temporal variation of water quality constituents

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

The results of the salinity levels in the water filtered through VFCW with Canna, Ferns, and Cattail plants have shown significant decreases (refer to Figure 6d). Similar decreasing trends can be seen in the electrical conductivity variation plots as well (refer to Figure 6e). The relationship between the total dissolved solids and electrical conductivity is clearly visualized. Turbidity levels also showcased a significant reduction for all three VFCWs compared to the Turbity levels in the effluent of the retention tank (refer to Figure 6f). The best results were found in the VFCW with the Cattail plants (refer to Figure 6h). Notably, the turbidity-removing efficiency of the Cattail plant was 90% making it the highest whereas Ferns plants and Canna plants with efficiencies of 82% and 74% respectively. However, turbidity levels of all the VFCW outlets progressively reached 0 NTU during the 6th week which was an indication of its maximum performance. The growth of the cattail plant might have improved the removal efficiency as the results showcase 100% removal efficiency during the 4th week. The removal mechanisms of water turbidity in the constructed wetland are attributed to sedimentation and filtration facilitated by macrophyte roots that reduce interspaces between gravel by forming dense filter media that is capable of removing suspended particles [47]. Turbidity removal in sand filters (sand layers in VFCW) is attributed to sedimentation, microbial biodegradation of suspended organic matter, and filtration through the sand layer in the VFCWs. DO level of the water is an important parameter that ascertains the Physicochemical and biological activities taking place in water. In constructed wetlands and sand filters, DO facilitate in degradation of organic matter by aerobic microorganisms [46]. DO levels of the greywater of all the VFCW units have shown a significant increment compared to the DO levels in the retention

tank as shown in Figure 6g. This is a clear indication of improvement in the quality of greywater after passing through the VFCW system. Furthermore, this strengthens the fact that the aquatic plants and microorganisms in constructed wetlands together play an integral role in the process of treating greywater. Moreover, plants add oxygen during the process of photosynthesis or by direct transport from the atmosphere through their stems and roots to the rhizosphere of constructed wetlands [48]. Therefore, DO levels eventually get increased after going through the remediation process of the wetland. However, the best result was obtained from the Cattail plant with an average DO value of 6.7 mg/l compared to the 4.9 mg/l with the Fern plant and 3.5 mg/l with the Canna plant as shown in the graph. In contrast and as expected COD levels have shown a significant reduction in all VFCWs compared to the COD levels of retention tank effluent (refer to Figure 6h). This is very good evidence to showcase the increased water quality due to the wetland process. The best results were found in the wetland with Cattail plants. The final COD levels but in the range of acceptable levels for wastewater treatment. Similar to other water quality constituents NO₃-, PO₄³-, and SO₄²- showcased significant reductions for the effluents from wetlands compared to the effluents of the retention tank (refer to Figure 6i, i, and k). Therefore, the water quality of the greywater was significantly increased because of the filtration process through the wetlands. Wetland plants have done a significant improvement in absorbing nitrates. The Cattail plant (94% of overall efficiency) and the Fern plant (92% overall efficiency) provided a better arrangement for nitrate absorption. However, the Canna plant (78% overall efficiency) has also contributed. The roots of the wetland plants take up some of the nitrates and incorporate them into their biomass. Microorganisms in the gravel layer further break down any remaining nitrates into nitrogen gas through a process called denitrification. This process

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

requires a low-oxygen environment, which is created by the plant roots that grow into the gravel [49].

The VFCWs with Canna plants and Ferns plants showcased a better performance PO₄³⁻ removals. Fern and Cattail plants showcased a similar performance for SO₄²⁻ removals. Sulphates can be reduced in constructed wetlands through both biological and chemical processes. Microorganisms in the wetland's soil and plants can convert sulphates into sulphides, which are less soluble and can precipitate out of the water. This process is called sulphate reduction and it occurs under anaerobic conditions [50]. Overall, mixed results can be observed from these wetlands with three types of plants.

4.2 Statistical analysis

Statistical analysis of the results for water quality analysis are given in Table 2 for the three plants which were used in this analysis. The table revealed the overall treatment capacity of the three plants.

Table 2. Statistical analysis of results obtained

	Canna plant		Ferns plant		Cattail plant	
		Standard		Standard		Standard
Parameter	Mean	Deviation	Mean	Deviation	Mean	Deviation
рН	6.7	0.057	6.71	0.07	6.79	0.06
Temperature	25.08	1.103	25.13	0.98	25.20	1.02
EC	290.25	114.875	344.25	79.20	382.50	62.56
TDS	144.75	57.755	171.50	39.25	189.00	29.77

Salinity	0.01	0.005	0.01	0.01	0.01	0.01
Turbidity	57.03	57.719	39.13	38.98	53.60	73.83
DO	3.49	2.259	4.93	2.22	6.70	0.97
COD	57.25	49.547	66.75	63.28	43.75	48.06
NO ₃ ²⁻	0.11	0.162	0.19	0.35	0.16	0.25
PO ₄ ³ -	0.04	0.036	0.05	0.02	0.02	0.01
SO ₄ ²⁻	9.37	5.015	6.58	2.21	8.24	9.77

The overall performance of the Canna, Cattail, and Fern plants can be considered acceptable based on the mean and standard deviation values of the parameters. Furthermore, standard deviation elaborates volatility of results for 4 samples. These plants are specifically used as emergent plants as they have naturally adapted structures to contain these constituents within the plants themselves. However, the mean values highlight some parameters such as pH, Temperature, EC, TDS and DO are relatively lower which means plants are capable of handling them very well. Finally, these emergent plants can be recommended for wetlands and further studies can be done to narrow down their performances with different parameters to properly utilize them.

4.3 Effluent water quality against the WHO standards

Table 5 presents the average water quality levels of the effluent of wetlands against the World Health Organization water quality standards. These water quality levels are based on the Sri Lankan standards; SLS614. In addition, the table presents the average water qualities of the effluents of the retention tank. High performance of treatment levels can be found in all three VFCWs with three different plants. However, DO levels have not reached the standard of 6-8 mg/L

for potable water use. Nevertheless, the DO levels are acceptable for aquatic living species. Furthermore, Turbidity exceeded the level of acceptable levels (<5 NTU), and when compared to the septic tank VFCW shows good performance in the removal of solid particles, also it's acceptable for aquatic life. Therefore, the VFCW performed well with the used plants.

Table 5. Comparative water qualities with WHO standards

			Retention	VFCW		VFCW
		WHO acceptable	tank	with	VFCW	with
		limits for portable	effluent	Canna	with Ferns	Cattail
Parameter	Unit	use (SLS614)		plants	plants	plants
рН		6.0-8.5	6.6	6.7	6.7	6.8
Temperature	$^{0}\mathrm{C}$	12 to 25	25.7	25.0	25.1	25.0
EC	μs/cm	< 400	473	320	322	237
TDS	ppm	500-1000	358	202	223	245
Salinity	%	< 0.5	0.02	0.01	0.01	0.01
Turbidity	NTU	< 5	181	57	39	13
DO	mg/L	6.0-8.0	2.5	3.5	4.9	6.7
COD	mg/L	< 250	317	57.2	66.8	43.8
NO ₃ ² -	mg/L	< 1	0.44	0.11	0.03	0.02
PO ₄ ³ -	mg/L	< 1	0.27	0.04	0.05	0.08
SO ₄ ² -	mg/L	< 25	18.7	9.4	5.7	8.2

4.4 Discussion

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

In this study, plant performance in VFCWs for greywater treatment was tested using an experimental study. Interesting findings were observed for three commonly found plants in Sri Lanka to use in VFCWs. Canna and Cattail plants have performed well in maintaining hydraulic balance as their tall and sturdy stems facilitated uniform flow distribution across the wetland bed. On the other hand, Ferns have exhibited slightly lower hydraulic efficiency due to their smaller size and less dense foliage. Plant growth and biomass production of the three plants were also observed throughout the study. It was observed that Canna plants have exhibited vigorous growth and high biomass production. They have formed a dense root system and abundant above-ground biomass. Cattail plants have also shown good growth and biomass production, with tall stalks and dense foliage. Fern plants have a rather modest growth rate and lower biomass production compared to Canna and Cattail. Furthermore, in terms of aesthetic aspects and adaptability to the VFCW environment, Canna and Cattail plants were found to be visually appealing with their tall and vibrant appearance. They added aesthetic value to the system. Ferns, on the other hand, have a more subtle appearance and may be less visually appealing to some individuals. Nevertheless, it is highly subjective. When considering maintenance and operation, Canna and Cattail plants required regular maintenance including trimming of leaves and stalks, maintaining their efficiency, and preventing overgrowth. Ferns have lower maintenance requirements due to their slower growth rate. However, its lower biomass production may result in reduced removal capacity of pollutants compared to the other two species. Overall, all three species of plants have demonstrated a good performance in treating greywater in VFCWs. However, the specific choice of plant species should be based on the desired removal

efficiencies for different pollutants, the feasibility of maintenance, and aesthetic preferences. Cattail plants are recommended for systems that require high organic matter with considerable efficiency in the removal of nitrogen. At the same time, Cattail plants perform well in the removal of salinity, turbidity, COD, NO₃⁻, and SO₄² when compared to the other two plants. In addition, Cattail performed well in DO enhancement and PH stabilization. Additionally, Canna plants are suitable for systems that focus on the removal of PO43- and TDS while Ferns showed better performance in the reduction of PO₄³⁻ and SO₄²⁻. When considering all the factors, it can be stated that Cattail Plants are the most suitable emergent plants for wetlands with the better overall performance. Recently, microplastics and water treatments particularly from greywaters have become a hot topic in the academic press in the field of ecology and environmental management because of its ecotoxicological effects on aquatic environments. This study only looked at some of the water quality constituents due to limited testing facilities. Microplastics in greywater have been a very interesting topic in today's world [51-53]. Amrutha et al. [54] presented the present state of microplastic research in SAARC countries and showcased its importance. Microplastics in the marine environment including coastal sand, coastal waters, and lagoons were tested in Sri Lanka by several researchers [55-57]. In addition, microplastics were tested for personal care and cosmetic products in Sri Lanka by Nawalage and Bellanthudawa [58]. They stated that 21.4 trillion microplastics were annually released into the environment. Furthermore, Kapukotuwa et al. [59] have found more microplastic levels in raw salt than commercial salts. Therefore, there is a high chance of having microplastics in the greywater. However, it has never been tested in greywater in the context of Sri Lanka and for this study. Currently, microplastics in greywater were not considered in this study due to the study limitations. However, this will be the next priority research

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

target to investigate the performance of wetland plants to reduce microplastics in greywater. The vertical flow constructed wetland (VFCW) method will be used to investigate the removal potential of the microplastics/fiber microplastics from greywater in Sri Lanka in our next study.

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

411

412

413

Conclusions

This study assessed the effectiveness of a pilot-scale vertical flow constructed wetland (VFCW) system in treating household greywater with three emergent plants (Canna, Ferns, and Cattail plants). The greywater qualities were tested for several water-quality constituents and found encouraging results. VFCW with Cattail plants performed the best while the other two plants also had higher performances. The VFCW systems are more cost-effective and require less space than horizontal flow-constructed wetlands (HFCWs). Therefore, VFCWs are preferred. Overall, it can be recommended that the small-scale VFCW units are a promising technology for greywater treatment at the household level with the Cattail plant (Typha latifolia) because of its dense fibrous root structure which leads to the removal of more contaminants in domestic greywater. This would be highly important for developing countries like Sri Lanka to encourage the treatment of domestic greywater sustainably. These VFCWs should be further studied to investigate the possibilities of introducing them to rural domestics to protect the environment. This can be an economical and sustainable solution to rural areas due to the financial capacities of communities. However, this study does not look at the microplastic levels in greywater due to experimental limitations. Therefore, it is highly recommended to investigate the microplastic levels of greywater and the treatment efficiencies using VFCWs using commonly available wetland plants. Our future research will be on the removal of fiber microplastics by using vertical flow constructed wetland (VFCW) method.

Acknowledgement

- 436 Authors of this paper highly appreciate the support that they have received from Sri Lanka
- 437 Technological Campus, Sri Lanka and Central Environmental Authority, Sri Lanka to carry out
- this research work.

439

440

435

References

- [1] Caruso, B.A. (2023) 'Water is life, particularly for women', Nature Water, 1(2), pp. 124–124.
- doi:10.1038/s44221-023-00035-2.
- [2] Kulshreshtha, S.N. (1998) 'A Global Outlook for Water Resources to the Year 2025', Water
- Resources Management, 12(3), pp. 167–184. doi:10.1023/a:1007957229865.
- 445 [3] Messay, E. and Mekibib, D. (2019) 'Tannery wastewater treatment using two-stage anaerobic
- sequence batch reactor (ASBR) at Mesophilic and thermophilic phase', International Journal
- of Water Resources and Environmental Engineering, 11(1), pp. 24–30.
- 448 doi:10.5897/ijwree2018.0805.
- [4] Sultana, Most.N., Hossain, M.S. and Latifa, G.A. (2019) 'Water quality assessment of balu
- river, Dhaka Bangladesh', Water Conservation and Management, 3(2), pp. 08–10.
- 451 doi:10.26480/wcm.02.2019.08.10.
- 452 [5] Xue, J., Wang, Q. and Zhang, M. (2022) 'A review of non-point source water pollution
- modeling for the urban-rural transitional areas of china: Research status and Prospect',
- Science of The Total Environment, 826, p. 154146. doi:10.1016/j.scitotenv.2022.154146.
- 455 [6] Morel, A. and Diener, S. (2006). Greywater management in low and middle-income countries,
- 456 review of different treatment systems for households or neighbourhoods Sandec Report
- No. 14/06. Sandec (Water and Sanitation in Developing Countries) at Eawag (Swiss Federal
- Institute of Aquatic Science and Technology), Dübendorf, Switzerland [7] Asgharnejad, H.

- et al. (2021) 'Comprehensive Review of Water Management and wastewater treatment in
- 460 food processing industries in the framework of water-food-environment Nexus',
- 461 Comprehensive Reviews in Food Science and Food Safety, 20(5), pp. 4779–4815.
- doi:10.1111/1541-4337.12782.
- 463 [8] Kumar, S. and Dutta, V. (2019) 'Constructed wetland microcosms as sustainable technology
- for domestic wastewater treatment: An overview', Environmental Science and Pollution
- 465 Research, 26(12), pp. 11662–11673. doi:10.1007/s11356-019-04816-9.
- 466 [9] Hammer, D.A. and Bastian, R.K. (1989) 'Wetlands ecosystems: Natural water purifiers?',
- Constructed Wetlands for Wastewater Treatment, pp. 5–19. doi:10.1201/9781003069850-3.
- 468 [10] Vymazal, J. (2010) 'Constructed wetlands for wastewater treatment', Water, 2(3), pp. 530–
- 469 549. doi:10.3390/w2030530.
- 470 [11] Waly, M.M. et al. (2022) 'Constructed wetland for sustainable and low-cost wastewater
- 471 treatment: Review article', Land, 11(9), p. 1388. doi:10.3390/land11091388.
- 472 [12] Vymazal, J. (2022) 'The historical development of constructed wetlands for wastewater
- 473 treatment', Land, 11(2), p. 174. doi:10.3390/land11020174.
- 474 [13] Delgado, N. et al. (2020) 'Occurrence and removal of pharmaceutical and personal care
- products using subsurface horizontal flow constructed wetlands', Water Research, 187, p.
- 476 116448. doi:10.1016/j.watres.2020.116448.
- 477 [14] Ilyas, H. and Masih, I. (2017) 'Intensification of constructed wetlands for land area reduction:
- A Review', Environmental Science and Pollution Research, 24(13), pp. 12081–12091.
- 479 doi:10.1007/s11356-017-8740-z.

- 480 [15] Kouki, S. et al. (2009) 'Performances of a constructed wetland treating domestic wastewaters
- during a macrophytes life cycle', Desalination, 246(1-3), pp. 452-467.
- doi:10.1016/j.desal.2008.03.067.
- 483 [16] Wang, X. et al. (2009) 'Advanced wastewater treatment by integrated vertical flow
- 484 constructed wetland with Vetiveria Zizanioides in North China', Procedia Earth and
- 485 Planetary Science, 1(1), pp. 1258–1262. doi:10.1016/j.proeps.2009.09.194.
- 486 [17] Otter, P., Hertel, S., Ansari, J., Lara, E., Cano, R., Arias, C., ... Alvarez, J. A. (2020).
- Disinfection for decentralized wastewater reuse in rural areas through wetlands and solar-
- driven onsite chlorination. Science of The Total Environment, 721, 137595.
- doi:10.1016/j.scitotenv.2020.137595
- 490 [18] H. Zhang and J. Hong, Functions of plants of con-structed wetlands, Wetland Sci., 4(2) (2006)
- 491 146–154
- 492 [19] Vymazal, J. (2005) 'Horizontal sub-surface flow and hybrid constructed wetlands systems for
- wastewater treatment', Ecological Engineering, 25(5), pp. 478–490.
- 494 doi:10.1016/j.ecoleng.2005.07.010.
- 495 [20] Khan, R.A. et al. (2023) 'Comparison of constructed wetland performance coupled with
- aeration and Tubesettler for pharmaceutical compound removal from hospital wastewater',
- 497 Environmental Research, 216, p. 114437. doi:10.1016/j.envres.2022.114437.
- 498 [21] Liu, F., Zhang, Y. and Lu, T. (2023) 'Performance and mechanism of Constructed Wetland-
- 499 microbial fuel cell systems in treating mariculture wastewater contaminated with
- antibiotics', Process Safety and Environmental Protection, 169, pp. 293–303.
- doi:10.1016/j.psep.2022.11.022.

- 502 [22] Liu, T., Guo, F., Chen, M., Zhao, S., Yang, X., & He, Q. (2023). Silver nanoparticles disturb
- treatment performance in constructed wetlands: Responses of biofilm and Hydrophyte.
- Journal of Cleaner Production, 385(135751), 1–10. doi:10.1016/j.jclepro.2022.135751
- 505 [23] Yan, C., Huang, J., Lin, X., Wang, Y., Cao, C., & Qian, X. (2023). Performance of constructed
- wetlands with different water level for treating graphene oxide wastewater: Characteristics
- of plants and microorganisms. Journal of Environmental Management, 334(117432), 1–10.
- 508 doi:10.1016/j.jenvman.2023.117432
- 509 [24] Yan, C., Li, X., Huang, J., Cao, C., Ji, X., Qian, X., & Wei, Z. (2023). Long-term synergic
- removal performance of N, P, and Cuo nanoparticles in constructed wetlands along with
- 511 temporal record of CU pollution in substrate-biofilm. Environmental Pollution,
- 512 322(121231), 1–11. doi:10.1016/j.envpol.2023.121231
- 513 [25] Zhang, H., Wang, X. C., Zheng, Y., & Dzakpasu, M. (2023). Removal of pharmaceutical
- active compounds in wastewater by constructed wetlands: Performance and mechanisms.
- 515 Journal of Environmental Management, 325(116478), 1–16.
- 516 doi:10.1016/j.jenvman.2022.116478
- 517 [26] Zhao, X., Zhang, T., Dang, B., Guo, M., Jin, M., Li, C., ... Bai, S. (2023). Microalgae-based
- constructed wetland system enhances nitrogen removal and reduce carbon emissions:
- Performance and mechanisms. Science of The Total Environment, 877(162883), 1–10.
- 520 doi:10.1016/j.scitotenv.2023.162883
- 521 [27] Karungamye, P.N. (2022) 'Potential of canna indica in constructed wetlands for wastewater
- treatment: A Review', Conservation, 2(3), pp. 499–513. doi:10.3390/conservation2030034.
- 523 [28] Marín-Muñiz, J.L. et al. (2020) 'Plant growth and pollutant removal from wastewater in
- domiciliary constructed wetland microcosms with monoculture and polyculture of tropical

- ornamental plants', Ecological Engineering, 147, p. 105658.
- doi:10.1016/j.ecoleng.2019.105658.
- 527 [29] Polomski, R.F. et al. (2008) 'Nitrogen and phosphorus remediation by three floating aquatic
- macrophytes in greenhouse-based laboratory-scale subsurface constructed wetlands', Water,
- 529 Air, and Soil Pollution, 197(1–4), pp. 223–232. doi:10.1007/s11270-008-9805-x.
- 530 [30] Chen, K.G. et al. (2009) 'Involvement of ABC transporters in melanogenesis and the
- development of multidrug resistance of melanoma', Pigment Cell & Delanoma
- Research, 22(6), pp. 740–749. doi:10.1111/j.1755-148x.2009.00630.x.
- 533 [31] Zimmels, Y., Kirzhner, F. and Kadmon, A. (2009) 'Effect of circulation and aeration on
- wastewater treatment by floating aquatic plants', Separation and Purification Technology,
- 535 66(3), pp. 570–577. doi:10.1016/j.seppur.2009.01.019.
- 536 [32] Forni, C. et al. (2001) 'Evaluation of the fern azolla for growth, nitrogen and phosphorus
- removal from wastewater', Water Research, 35(6), pp. 1592–1598. doi:10.1016/s0043-
- 538 1354(00)00396-1.
- 539 [33] Rai, P.K. (2007) 'Wastewater management through biomass of Azolla pinnata: An eco-
- sustainable approach', AMBIO: A Journal of the Human Environment, 36(5), pp. 426–428.
- doi:10.1579/0044-7447(2007)36[426:wmtboa]2.0.co;2.
- 542 [34] Vermaat, J.E. and Khalid Hanif, M. (1998) 'Performance of common duckweed species
- (Lemnaceae) and the waterfern azolla filiculoides on different types of waste water', Water
- Research, 32(9), pp. 2569–2576. doi:10.1016/s0043-1354(98)00037-2.
- 545 [35] Bansal, S. et al. (2019) 'Typha (cattail) invasion in North American wetlands: Biology,
- regional problems, impacts, ecosystem services, and Management', Wetlands, 39(4), pp.
- 547 645–684. doi:10.1007/s13157-019-01174-7.

- 548 [36] UN-HABITAT, 2008, 'Sizing of the wetland'. Constructed Wetlands Manual. UN-
- 549 HABITAT Water for Asian Cities Programme Nepal, Kathmandu (Vol. 978-92-1-131963–
- 550 7, pp. 18–23).
- 551 [37] Hua, G. et al. (2017) 'High-throughput sequencing analysis of bacterial community
- spatiotemporal distribution in response to clogging in vertical flow constructed wetlands',
- Bioresource Technology, 248, pp. 104–112. doi:10.1016/j.biortech.2017.07.061.
- 554 [38] Tran, D.H.; Vi, T.M.H.; Dang, T.T.H.; Narbaitz, R., (2019). Pollutant removal by Canna
- Generalis in tropical constructed wetlands for domestic wastewater treatment. Global J.
- Environ. Sci. Manage., 5(3): 331-344. DOI: 10.22034/gjesm.2019.03.06 [39] Johnson, C.
- 557 (2014) 'Advances in pretreatment and clarification technologies', Comprehensive Water
- Ouality and Purification, pp. 60–74. doi:10.1016/b978-0-12-382182-9.00029-3.
- 559 [40] Lee, C., Fletcher, T.D. and Sun, G. (2009) 'Nitrogen Removal in constructed wetland
- systems', Engineering in Life Sciences, 9(1), pp. 11–22. doi:10.1002/elsc.200800049.
- 561 [41] Budd, R., O'Geen, A., Goh, K. S., Bondarenko, S., & Samp; Gan, J. (2009). Efficacy of
- constructed wetlands in pesticide removal from tailwaters in the Central Valley, California.
- 563 Environmental Science & En
- 564 [42] Merino-Solís, M. et al. (2015) 'The effect of the hydraulic retention time on the performance
- of an ecological wastewater treatment system: An anaerobic filter with a constructed
- wetland', Water, 7(12), pp. 1149–1163. doi:10.3390/w7031149.
- 567 [43] National Engineering Handbook (1992). Washington, D.C. (P.O. Box 2890, Washington
- 568 20013): U.S. Dept. of Agriculture, Soil Conservation Service.
- 569 [44] SLS 614; Specification for Potable Water (First Revision). Sri Lanka Standards Institution:
- 570 Colombo, Sri Lanka, 2013

- 571 [45] Bezbaruah, A.N. and Zhang, T.C. (2004) 'Ph, redox, and oxygen microprofiles in rhizosphere
- of Bulrush (scirpus validus) in a constructed wetland treating municipal wastewater',
- Biotechnology and Bioengineering, 88(1), pp. 60–70. doi:10.1002/bit.20208.
- 574 [46] Kurniawati Wulandari, L. et al. (2019) 'Abilities of stratified filter and wetland to reduce TDS
- and TSS in Blackwater domestic waste', IOP Conference Series: Materials Science and
- Engineering, 469, p. 012016. doi:10.1088/1757-899x/469/1/012016.
- 577 [47] Mtavangu, S. et al. (2017) 'Performance of constructed wetland integrated with sand filters
- for treating high turbid water for drinking', Water Practice and Technology, 12(1), pp. 25–
- 579 42. doi:10.2166/wpt.2017.007.
- 580 [48] Rehman, F. et al. (2016) 'Constructed wetlands: Perspectives of the oxygen released in the
- rhizosphere of macrophytes', CLEAN Soil, Air, Water, 45(1).
- 582 doi:10.1002/clen.201600054.
- 583 [49] Chang, J. et al. (2013) 'Nitrogen removal from nitrate-laden wastewater by integrated vertical-
- flow constructed wetland systems', Ecological Engineering, 58, pp. 192–201.
- 585 doi:10.1016/j.ecoleng.2013.06.039.
- 586 [50] Wiessner, A. et al. (2005) 'Sulphate reduction and the removal of carbon and ammonia in a
- laboratory-scale constructed wetland', Water Research, 39(19), pp. 4643-4650.
- 588 doi:10.1016/j.watres.2005.09.017.
- 589 [51] Wang, F., Wang, B., Duan, L., Zhang, Y., Zhou, Y., Sui, Q., ... Yu, G. (2020). Occurrence
- and distribution of microplastics in domestic, industrial, agricultural and aquacultural
- wastewater sources: A case study in Changzhou, China. Water Research, 182(115956), 1–
- 592 10. doi:10.1016/j.watres.2020.115956

- 593 [52] Wei, S., Luo, H., Zou, J., Chen, J., Pan, X., Rousseau, D. P. L., & Li, J. (2020). Characteristics
- and removal of microplastics in rural domestic wastewater treatment facilities of China.
- Science of The Total Environment, 739(139935), 1–9. doi:10.1016/j.scitotenv.2020.139935
- 596
- 597 [53] Long, Z., Wang, W., Yu, X., Lin, Z., & Chen, J. (2021). Heterogeneity and contribution of
- microplastics from industrial and domestic sources in a wastewater treatment plant in
- 599 Xiamen, China. Frontiers in Environmental Science, 9(770634), 1–12.
- doi:10.3389/fenvs.2021.770634
- 601 [54] Amrutha, K., Unnikrishnan, V., Shajikumar, S., & Warrier, A. K. (2021). Current State of
- Microplastics Research in SAARC countries—A Review. Sustainable Textiles: Production,
- Processing, Manufacturing & Emp; Chemistry, 27–63. doi:10.1007/978-981-16-0297-9 2
- 604 [55] Sevwandi Dharmadasa, W. L. S., Andrady, A. L., Kumara, P. B. T., Maes, T., &
- Gangabadage, C. S. (2021). Microplastic pollution in marine protected areas of southern Sri
- 606 Lanka. Marine Pollution Bulletin, 168(112462), 1–10.
- doi:10.1016/j.marpolbul.2021.112462
- [56] Athapaththu, A. M. A. I. K., Thushari, G. G. N., Dias, P. C. B., Abeygunawardena, A. P.,
- Egodauyana, K. P. U. T., Liyanage, N. P. P., ... Senevirathna, J. D. M. (2020). Plastics in
- surface water of southern coastal belt of Sri Lanka (Northern Indian Ocean): Distribution
- and characterization by ftir. Marine Pollution Bulletin, 161(111750), 1–19.
- doi:10.1016/j.marpolbul.2020.111750
- [57] Sewwandi, M., Hettithanthri, O., Egodage, S. M., Amarathunga, A. A. D., & Vithanage, M.
- 614 (2022). Unprecedented marine microplastic contamination from the X-Press Pearl Container

Science The Total 615 Vessel disaster. of Environment, 828(154374), 1-10.doi:10.1016/j.scitotenv.2022.154374 616 [58] Nawalage, N. S., & Bellanthudawa, B. K. (2022). Synthetic polymers in personal care and 617 618 cosmetics products (pccps) as a source of microplastic (MP) pollution. Marine Pollution Bulletin, 182(113927), 1–12. doi:10.1016/j.marpolbul.2022.113927 619 [59] Kapukotuwa, R. W. M. G. K., Jayasena, N., Weerakoon, K. C., Abayasekara, C. L., & 620 621 Rajakaruna, R. S. (2022). High levels of microplastics in commercial salt and Industrial in Sri Pollution Bulletin, Salterns Lanka. Marine 174(113239), 1-10.622 doi:10.1016/j.marpolbul.2021.113239 623