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Airborne Vision-Based Remote Sensing
Imagery Datasets From Large Farms Using
Autonomous Drones For Monitoring Livestock

Kaya Kuru?, Darren Ansel® and David Jones!
1School of Engineering and Computing, University of Central Lancashire, Preston PR1 2HE, U.K.

Abstract

Livestock have high economic value and monitoring of them in large farms regularly is a labour-intensive task
and costly. The emergence of smart data on individual animals and their surroundings opens up new
opportunities for early detection and disease prevention, better animal care and traceability, better
sustainability and farm economics. Precision Livestock Farming (PLF) relies on the constant and automated
gathering of livestock data to support the expertise and management decisions made by farmers, vets, and
authorities. The high mobility of UAVs combined with a high level of autonomy, sensor-driven technologies
and Al decision-making abilities can provide many advantages to farmers in exploiting instant information
from every corner of a large farm. The key objectives of this research are to i) explore various drone-mounted
vision-based remote sensing modalities, particularly, visual band sensing and a thermal imager, ii) develop
UAV-assisted autonomous PLF technologies and ii) collect data with various parameters for the researchers
to establish further advanced Al-based approaches for monitoring livestock in large farms effectively by fusing
a rich set of features acquired using vision-based multi-sensor modalities. The collected data suggest that the
fuse of distinctive features of livestock obtained from multiple sensor modalities can be exploited to help
farmers experience better livestock management in large farms through PLF.

Keywords: Precision Livestock Farming (PLF); livestock health monitoring; livestock management,
unmanned aerial vehicles (UAV), autonomous drones, thermal imagery; active RFID, livestock
image processing.

1. INTRODUCTION

The emergence of smart data on individual animals and their surroundings opens up new
opportunities for early detection and disease prevention, better animal care and traceability, better
sustainability and farm economics. Precision Livestock Farming (PLF) is the development of smart
animal farming through the use of sensors and information technologies to improve animal health,
animal welfare and production, and to reduce the impact on the environment [1]. PLF relies on the
constant and automated gathering of livestock data to support the expertise and management
decisions made by farmers, vets, and authorities. UAV-assisted smart farming within large farms has
gained momentum in managing large farms effectively by avoiding high costs and increasing the
quality of monitoring. To this end, the high mobility of UAVs combined with a high level of autonomy,
sensor-driven technologies and Al decision-making abilities can provide many advantages to farmers
in exploiting instant information from every corner of a large farm. The key objective of this research
is to i) explore various drone-mounted vision-based remote sensing modalities, particularly, visual
band sensing and a thermal imager and ii) collect data with various parameters for the researchers to
establish further advanced Al-based approaches to monitor livestock in large farms effectively by
fusing the acquired multi-sensor datasets. These advanced approaches, enabling accurate detection
of animals and health anomalies, can help farmers to take targeted or preemptive action, and improve
the health, welfare, and productivity of their livestock. In today's dairy world, farm sizes are growing



larger and larger and the larger the farms, the more difficult it is to manage them using the
conventional farm management approaches [2]. To successfully operate any large farm, effective
livestock management is crucial and monitoring them in large farms is a labour-intensive task and
costly [1]. Smart farming with livestock is an emerging high-tech area focused on automating
production and, thus, reducing the cost of the human (manual) effort involved in daily tasks, which
makes animal welfare an increased concern [3]. Vehicles are becoming increasingly automated by
taking on more and more tasks [4], [5] under improving intelligent control systems equipped with
enhancing sensor technologies and Artificial Intelligence (Al) techniques [6], [7], [8]. Autonomous
Uninhabited Aerial Vehicles (UAVs) (A-UAVs), as flying autonomous robots, with self-learning and self-
decision-making abilities by executing non-trivial sequences of events with decimetre-level accuracy
based on a set of rules, control loops and constraints using dynamic flight plans involving autonomous
take-off and landing are taking their indispensable parts with little or no human in the loop [9], [10]
to accomplish various automated tasks [11], [12], [13], [14], [15], [16], [17]. Precision Livestock
Farming is one of the most promising applications showing the benefits of using drones [18] where a
lack of human element in the farming industry is becoming evident [19]. Remote detection and
counting is safe, cost-effective and could be easily and frequently repeated, providing prompt
information about livestock's population size and their instant location [20]. The key objectives of this
research are to i) explore various drone-mounted vision-based remote sensing modalities,
particularly, visual band sensing and a thermal imager, ii) develop UAV-assisted autonomous PLF
technologies and ii) collect data with various parameters for the researchers to establish advanced Al-
based approaches for monitoring livestock in large farms effectively by fusing a rich set of features
acquired using vision-based multi-sensor modalities. UAV-mounted loT technologies equipped with
Al-based approaches, enabling fully automated decision support tools can detect changes in livestock
behaviour and their physiological conditions for providing early indications of potential disease
outbreaks or other stress events and allowing farmers to take targeted or preemptive action, and
improve the health, welfare, and productivity of their livestock.

|Help Automated detection and counting Split positive and negative images with cows Count sheep Count cows Split positive and negative images with sheep ¥

Figure 1: Main interface of the application being developed in this research

2. METHODS



The University of Central Lancashire (UCLan) facilitates the research and development of drone
technology and Al software, provides drones, and assists with integrating drone inspections into the
farmer's workflow. In this research, an automated drone solution (Fig. 1) with a cross-discipline
approach within the concept of Automation of Everything and Internet of Everything [21], [22] has
been deployed to collect datasets from large farms in an automated manner using vision-based sensor
modalities involving both standard visual band sensing and a thermal imager. The images/videos are
aimed to be processed using artificial intelligence (Al) based software to detect stock numbers, and
individual animal temperatures to indicate the presence of infection or stage in the fertility cycle. A
number of supervised and unsupervised [23] Machine Learnineg (ML) and Deep Learning (DL)
techniques can be examined through data fusion based on the features of the datasets (videos,
images) collected in both visible band wavelengths and thermal imagery. As an essential physiological
index, animal body surface temperature can be used to accurately evaluate the physiological state of
animals under stress, fertility, welfare, metabolism, health, and disease [24]. An Al-based application
using an ensemble of Al techniques can be highly beneficial to performing image classification and
clustering to achieve the objectives of animal analytics using the datasets provided in this research.
The onboard loT platforms enable the drone to be operated consistently and reliably by automating
many key functions that could otherwise be subject to human error. The developed applications by
the research community using the datasets provided in this research help report any abnormal
situation to the farmers to improve the adverse conditions. The camera models by which datasets
were collected are shown in Figs. 2, 3, and 4. The properties of these models are explicated below
with example images acquired from various large farms. Acquired datasets from the aforementioned
sensor modalities are placed in the supplementary materials of this document.

Figure 2: DJI Zenmuse H20T Figure 3: DJI Zenmuse L1



a) b)
Figure 4: a) Drone (Matrice 300 RTK) with DJI Zenmuse L1; b) Drone (Mavic 2) with FC2403 camera
a. H20T

H20T with quad-sensor solution provides four sensors — 1) a 20 MP Zoom Camera (23x Hybrid
Optical Zoom, 200x Max Zoom, 20 MP 1/1.7” CMOS Sensor, Video Resolution: 4K/30fps), ii) a 12 MP
Wide Camera (Equivalent Focal Length: 24mm, DFOV: 82.9°, 12 MP 1/2.3” CMOS Sensor), iii) 1200 m
Laser Rangefinder (LRF) (Range: 3 m — 1200 m, Accuracy: * (0.2 m + Dx0.15%)), and iv) a 640 X 512 px
Radiometric Thermal Camera (DFOV: 40.6°, Resolution: 640x512, Frame Rate: 30fps, Thermal
Sensitivity: < 50mk@f1.0 (NEDT)) — in one package at a time. An integrated laser rangefinder (LRF)
measures the distance to an object at up to 1200 m away. A powerful, integrated payload that
unleashes advanced intelligent capabilities for DJI’s industrial drone platforms.

Figure 5: Image from 20 MP Zoom Camera



Figure 6: Image from 12 MP Wide Camera

Figure 7: Image from 1200 m LRF



Figure 8: Image from 640 X 512 px Radiometric Thermal Camera

Figure 9: Use of different planner: Image from 1200 m LRF



Figure 10: Use of different planner: Image from 1200 m LRF

Figure 11: Use of different planner: Image from 1200 m LRF

Figure 12: Use of different planner: Image from 1200 m LRF



Figure 13: Use of different planner: Image from 1200 m LRF

Figure 14: Use of different planner: Image from 1200 m LRF

Figure 15: Use of different planner: Image from 1200 m LRF



Figure 16: Use of different planner: Image from 1200 m LRF

The headings of the images have altitude information as well as latitude and longitude
information stored in the container of the metadata of images to stitch the images to form the
whole farm and perform the monitoring accordingly without taking the same animal into processing
multiple times. More datasets will be uploaded as the project progresses for the researchers to
construct their applications with trained classifier models using supervised ML and/or Deep Learning
(DL) techniques.

b) Mavic 2 camera (FC2403)

The camera is composed of two sensing abilities, namely, thermal sensing and standard RGB
sensing. Readers are referred to https://www.dji.com/uk/mavic-2-enterprise/specs for further
specifications.



https://www.dji.com/uk/mavic-2-enterprise/specs

Figure 17: Image from FC2403
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Figure 18: Image from FC2403 using thermal sensing

c) DJI Zenmuse L1

The Zenmuse L1 integrates a Livox Lidar module, a high-accuracy IMU, and a camera with a 1-
inch CMOS on a 3-axis stabilized gimbal. When used with Matrice 300 RTK and DJI Terra, the L1 forms
a solution that provides real-time 3D data, efficiently capturing the details of complex structures and
delivering accurate 3D models. Data can be visualised as the drone flies in an autonomous mode using
the Livox Lidar module. This module provides i) Frame Lidar with up to 100% effective point cloud
results, ii) Detection Range: 450m (80% reflectivity, 0 kix) / 190 m (10% reflectivity, 100 klx), ii)
Effective Point Rate: 240,000 pts/s, iv) Supports 3 Returns, and v) Non-repetitive scanning pattern,
Repetitive scanning pattern. With Zenmuse L1, High-accuracy IMU can be acquired using the vision
sensor for positioning accuracy by fusing GNSS, IMU, and RGB data. This property can be highly useful
for stitching consecutive images to form the whole farm. Readers are referred to
https://enterprise.dji.com/zenmuse-I1 for detailed information about this sensor modality. We will be
uploading more datasets using this modality.

3. RESULTS

The portion of the electromagnetic spectrum extending from approximately 0.1 to 100mm, (the
visible and the infrared spectrum) is named thermal radiation [25]. Thermal cameras collect infrared
radiation emitted by the surface, convert it into electrical signals and create a thermal image showing
the body’s superficial temperature distribution [25]. In this process, each colour expresses a specific
temperature range, related to the defined scale. Infrared thermal imaging (ITI) has high-temperature
sensitivity and spatial resolution, uses a non-contact method, and can quickly and efficiently collect
animal surface temperature without direct physical contact with animals [26]. This sensor technology
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can be used to evaluate several different clinical syndromes not only in the diagnosis of inflammation
but also to monitor the progression of healing [27]. The collected data suggest that the fuse of
distinctive features of livestock obtained from multiple sensor modalities can be exploited to help
farmers experience better livestock management in large farms. The datasets regarding the animal
body heat signatures obtained from the thermal imagery show promising results in detecting disease-
related cases. Using drones with highly automated flights provides on-demand accurate information
to the farmer that enables early interventions with high-accuracy detection and classification of
livestock should an animal go missing or need attention on the grounds of animal health and welfare.
The research demonstrates how highly integrated technologies with drones can help the farming
industry to overcome the challenging issues in the management of livestock, particularly, health
monitoring of livestock in very large farms in an eco-friendly and sustainable way. The benefits of
autonomous, Al-based, UAV-assisted loT applications in the management of livestock large farms, by
providing farmers with more efficient and accurate ways of gathering data on animal health,
movement patterns, and behaviour, can i) reduce farmers' time spent on covering large spaces more
efficiently and quickly than traditional methods by using drones for livestock inspection, ii) Improve
farm productivity by quickly and accurately counting all animals and monitoring their welfare, and iii)
reduce reliance on fossil fuels using battery-operated drones contributing to a lower carbon footprint.

4, CONCLUSION

With the expanding global population, there is now an urgent need to produce more food, more
efficiently with the available existing finite resources [28]. Efficient, affordable, and scalable livestock
management solutions play an increasingly important role in modern farming, as the number of farms
decreases, but the number of livestock on each increases [29] with the growing trend of increasing
farm sizes [30]. Annually, over 2.5 million US cattle valued at $1.5 billion die from diseases [31]. This
high rate of death toll caused by various diseases necessitates the need for effective livestock health
management that paves the way for disease detection at an early stage [32]. PLF aims to provide
farmers with effective tools equipped with high technologies in livestock management while
improving the welfare of animals paving the way for satisfying the demands of consumers in a
sustainable way. UAV-based loT technologies are now becoming more accessible and affordable for
farmers, allowing them to gather valuable data more efficiently and make better business decisions.
While drones are usually used in agriculture for crop spraying, mapping, and crop monitoring, their
application in monitoring animal health and livestock is a highly promising research avenue in the
agriculture industry. This research is a productivity and sustainability-focused pilot to investigate and
demonstrate how drones and artificial intelligence software can provide a better way to regularly
inspect animals on a large farm to avoid high costs and increase monitoring quality. The use of sensors
for continuous real-time monitoring helps reduce the time-consuming human observation, making
PLF day-by-day more important and sustainable concerning the need for an expensive workforce [33].
The integration of UAVs embedded with loT applications that are equipped with sensor-driven
technologies can help survey large farms regularly in a timely manner with advanced Al tools, improve
the early diagnosis of livestock diseases and reduce disease-related deaths significantly. To this end,
the high mobility of UAVs combined with a high level of autonomy and Al decision-making abilities
can provide many advantages to farmers in exploiting instant information from a large farm. Not only
does the use of drones reduce our reliance on fossil-fuelled vehicles, but there are also labour cost
savings from a reduced labour requirement so we can allocate more time and valuable resources to
other tasks that will boost productivity. The livestock datasets provided, acquired from large farms in
this research, using various vision-based sensor modalities can help researchers to develop PLF by
fusing the distinctive features of livestock, which paves the way for developing effective Al-based
approaches for farmers to experience better livestock management in large farms.
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