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Abstract In the framework of generalized Oppenheim expansions, almost sure convergence
results for lightly trimmed sums are proven. First, a particular class of expansions is identified
for which a convergence result is proven assuming that only the largest summand is deleted
from the sum; this result generalizes a strong law recently proven for the Liiroth digits and also
covers some new cases that have never been studied before. Next, any assumptions concern-
ing the structure of the Oppenheim expansions are dropped and a result concerning trimmed
sums is proven when at least two summands are trimmed; combining this latter theorem with
the asymptotic behavior of the r-th maximum term of the expansion, a convergence result is
obtained for the case in which only the largest summand is deleted from the sum.

Keywords Oppenheim expansion, infinite expectation, lightly trimmed sum, largest
summand, good sequence, Liiroth series, Engel series, Sylvester series

2020 MSC 60F15, 60G70

1 Introduction

The framework of this work has been introduced and generalized in [7] and [8], re-
spectively, and is described as follows: let (B,),>1 be a sequence of integer-valued
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2 R. Giuliano, M. Hadjikyriakou

random variables defined on (€2, A, P), where Q = [0, 1], A is the o -algebra of the
Borel subsets of [0, 1] and P is the Lebesgue measure on [0, 1]. Let {F,,,n > 1} be
a sequence of probability distribution functions with F,(0) = 0, F,(1) = 1 Vn and,
moreover, let ¢, : N* — RT be a sequence of functions. Furthermore, let (Gn)n=1

with ¢, = gn(h1, ..., h,) be a sequence of nonnegative numbers (i.e. possibly de-
pending on the n integers hy, ..., h,) such that, for hy > 1 and h; > @;_1(hj_1),
j=2,...,n, we have

P(Buy1 = hpg1|By = hy, ..., By = h1) = F,(By) — Fu(ay),
where

o =8, (hp, hu1 +1,q0),  Bu = 8p(hn, 1, gn)

. @i ()1 +q)
h i = - < -
with §;(h, k, q) k+@;(h)q

Let Q, = qu(Bi1, ..., By), and define

Bn+1 + §0n(Bn)Qn _ 1
on(Br)(1 + Oy) 8, (By, Bpt1, Qn)

In [8] (see Lemma 3 there) it has been proven that for any integer n and x > 1,

R, =

P(R, > x) < Fn<l>a
X

which implies that if U, is a random variable with distribution F,, and Y¥,, = Ul for
every integer n, then

PR, >x) <P, >x), Vx=>1,

i.e. the sequence (R, ),>1 is stochastically dominated by the sequence (¥);>1.
Since the random variables (R;),>1, in general, are not independent and do not
have finite expectations, a traditional strong law for the quantity é > ' R; cannot
be proven. However, in [7], under some conditions for the involved distributions, the
convergence in probability of @ > ' | R; is established. This result, raises the
question whether a strong law of large numbers can be proven, after deleting finitely
many of the largest summands from the partial sums. Particularly, let » be a fixed

integer. We are interested in studying the almost sure convergence of

(V)Sn
nlogn’

where S, = Y' R — Y., MP and M denotes the r-th maximum of
Ry, ..., R, (in decreasing order, i.e. M,gl) denotes the maximum). In the literature,
the sequence () Sn)n>1 1s known as the lightly trimmed sum process. Note that in the
case where r is substituted by a sequence (r,,),>1 such that r, - ocand r,/n — 0
asn — oo we have the so-called moderate trimming while in the case where r,, /n —
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¢ € (0, 1) the resulting sequence is said to be heavily trimmed. For more details we
refer the interested reader to [3] (and references therein). Convergence results for
moderately trimmed sums of Oppenheim expansions can be found [9].

The problem of trimming has been extensively studied in the literature: we cite
here [12, 11, 10, 4, 5, 3], where i.i.d. sequences are considered, and [1], which studies
stationary sequences. It is worth to be stressed that generic Oppenheim expansions,
besides not being independent, are not stationary either, a fact that highlights the
novelty of the current work.

The structure of the paper is as follows. In Section 2 we state the main results
of this paper, i.e. Theorems 1, 2 and 3; the first result is a strong law for the lightly
trimmed sum processes for the case r = 1 and concerns a special class of Oppenheim
expansions. It is worth mentioning that Theorem 1 covers the Liiroth, Engel and the
Sylvester sequences of digits (already studied in the literature) but also concerns some
new examples, leading to asymptotic results that have never appeared in the literature
before. See Remark | for details. Theorem 2 and Theorem 3 address the general case,
i.e. we do not impose any condition on the sequence of expansions taken into account.
Theorem 2 is an asymptotic result for » > 2 which becomes instrumental for proving
another asymptotic law for » = 1, that is, Theorem 3 which, though being weaker
than Theorem 1, is proven under more general conditions since any assumptions for
the structure of the Oppenheim expansion are dropped and we impose more relaxed
conditions for the involved distribution functions. The special class of expansions
mentioned above is studied in greater detail in Section 3, where we provide some
preliminary results that will be utilized in the proof of Theorem 1. A detailed proof
of Theorem 1 is discussed in Section 4. Section 5 contains some preliminaries for the
proofs of Theorems 2 and 3, which are contained in Section 6.

2 The main results

In this section we state the main results of this paper.

2.1 A strong law

The first result presented (Theorem 1), is a strong law for the trimmed sums of a
special class of generalized Oppenheim expansions (discussed also in the subsequent
Proposition 4) in the case where only the maximum term is excluded, i.e. we provide
an a.s. convergence result for (VS,,.

We call a sequence A = (4;) jen good if it is strictly increasing and tends to +00,
with ; > 1 forevery j > 1 and Ao = 0.

Theorem 1. Consider the random variables (R,),>1 and assume that there exists a
good sequence A = (Aj) jen such that, for every x € A and for every n, x@, (By) +
(x — 1) 0, ¢n(By) is an integer. Moreover, assume the following:

(i)
sup(Ap+1 — Ap) = £ < 400;
n
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(ii) F, = F for all integers n and there exists a constant o > 0 such that

F(
lim F® =« (1)
t—0 t
Then
S, — MV
—_ > o a.s.,
nlogn

where S, =Y _!_| R; and MY = max(R; ..., Ry).

Remark 1. It is important to identify functions ¢,, for which the conditions imposed
in Theorem 1 are satisfied. First, recall that the notation g, stands for the sequence of
nonnegative numbers such that g, (By, ..., B,) = Q,. As a first example, consider
positive integers ay, .. ., a, and assume that

ngerj,]:l/aj, fork e N, j=1,...,p.

Define k = L.C.M.(ay, ..., ap) and A = (kn),>1 and assume that g, = ¢, where
(cn)n>1 1s a sequence of positive numbers chosen from the set A. Then, for any
X € A,

X@u(Bp) + (x — 1) 004 (By)

is an integer.

Moreover, the conditions of the Theorem are satisfied if A = N*, g, = 0 and
on(h) =Y 4, h* for some integer m. Note that for m = 1 we get the corresponding
¢ function for the Engel series while for m = 2 we have the Sylvester expansion. If
on(h) = Z?:o h¥, the case of m = 0 covers the Liiroth case (see [7] for details).
Notice that also Theorem 3 of [6] also covers these three cases (see Remark 6) and
[2] studies the Liiroth case, but our theorem is more general than the ones provided
in [6] and [2] because we make no assumptions on the involved distributions.

The proof of Theorem 1 is given in Section 4.

2.2 A general upper bound

In Theorem | we consider the case in which only the largest summand is deleted from
the sum of Oppenheim random variables that satisfy a specific condition. Although
Theorem 1 covers a large subclass of Oppenheim random variables and well-known
expansions, we are interested in studying if convergence can be established in the
general framework. To this end, we drop any assumption concerning the structure
of the Oppenheim expansions and we present an upper bound concerning trimmed
sums when at least two summands are trimmed, i.e. in Theorem 2 we provide con-
ditions under which convergence is established for the trimmed partial sums of any
generalized Oppenheim expansion.

As a direct consequence of Theorem 2 we obtain another asymptotic result (The-
orem 3) for the particular case where r = 1. The fact that Theorems 2 and 3 are
proven without imposing any constraints on the structure of the Oppenheim random
variables leads to convergence to zero rather than to a positive constant and as a re-
sult Theorem 2 and Theorem 3 are most probably far from being optimal; our aim
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is merely to get some kind of information anyway and, if possible, to indicate a new
line of research, see the discussion in Remark 5.

We start with some notation and state some assumptions that are crucial for ob-
taining the desired results. For every integer n we denote m,, = [log, n| (where |x ]
is the greatest integer less than or equal to x), for a given positive increasing function

h we set t,gh) = h(2™"), while ¢ will denote a fixed positive function such that:

(A1) for some 8 € [0, 1) we have

, ¢ (x)
1m sup
X—>00 logﬁ X

log x

(A2) x —~ 70 is ultimately nondecreasing.
Let
Bo = inf{ﬂ >0: (Al) holds}
and define | .
rg, =minir e N:r > = + 1. 2)
7o { 1—/30} L—ﬂoJ

and rg, = 2. Examples are ¢ (x) = loglog - - - log x or any bounded ¢.

Remark 2. Obviously rg, > 2. If ¢ (x) = o(logﬁ x) forevery 8 € [0, 1), then yp =0

Remark 3. Observe that assumption (A1) implies that

o k r
2
Z("’(k )> <00 Vr=rg. 3)
k=1
We shall denote hg(x) = 2 (;(()f)x and
nlogn
a, ;= ho(n) = . @)
! ¢ (n)

Theorem 2. Consider the random variables (Rp)n>1 and assume that for the in-
volved distribution functions (F),>1 the following condition is satisfied:

. Fy(x)
sup lim sup < 00
n>1 x—0 X

&)

Then, for every p > 2 and for every r > rg,,

(V)Sn
lim 7 =0, P-as.
n—oo an

where ay, is defined in (4) and rg, in (2).
Theorem 3. Let the assumptions of Theorem 2 hold. Then, for every p > 2,

Sy — M

W¢(ﬂ)p — 0, P-a.s.



6 R. Giuliano, M. Hadjikyriakou

Remark 4. As mentioned at the beginning of this subsection, although the last result
is weaker than the one presented in 2.1 (the convergence is to zero and not to a posi-
tive constant), it is obtained without imposing any conditions on the structure of the
random variables R,,. Moreover, the involved variables are not assumed to follow the
same law and condition (1) is relaxed to condition (5).

Remark 5. Notice that in Theorem 2 (and Theorem 3) we can take any p > 2 and

¢ (x) = log” x, with any y < 1. If Theorem 2 were true also fory = 1 and p = 2, we
g,
n2

would get that

G . . .
to "8, ie. (f)" — 1, might be some q,(,r) = 0,(n?) (at least in some instances), but
q

— 0. This observation may suggest that the “correct” equivalent

at present this remains an open problem.

3 Preliminaries for Theorem 1

For the random variables (R;),>1 defined above, the following two relations were
proven (see Lemma 2 relation (5) and Lemma 3, respectively, in [8]): for x, y > 1
and m < n,

PRy, > x) = E[Fm< om(Bm)(1 + Om) >]
[x@m (Bu) + (¢ = D) Qi @m (Bu) 1 + Qunpin (Bun)
PRy, >x,R, > y) ©

=E|:IR F( on(B)(1+ 0,) )}
Er= T Ty0n(Ba) + 6 = 1D Qugn(Ba)1 + Qugn(Bi) )|

where [x] denotes the least integer greater than or equal to x. Then the following
proposition is obvious.

Proposition 1. For the random variables (R,),>1, the following results hold true:

(a) Assume that x > 1 and m € N are such that X, (By) + (x — 1) Q1n@m (Byp) is

an integer. Then

P(R, > x) = Fm<l)
X

(b) Assume in addition that y > 1 and n € N are such that yp,(B,) + (y —
1) Q00 (By) is an integer. Then

1 1
PRy >x,R, >y) = Fm<—)Fn(—).
X y

The following result provides a generalization of relation (6) which will be used
for obtaining Proposition 3.

Proposition 2. Consider the random variables (R,),>1 and assume that x; > 1,
Vi=1,2,...,n. Then,

PRy > x1,..., R, > x3)

B E[F ( on(By)(1 + Q) )1 }
T\ 2 0n (B + Gon — D 0n@n(Ba)] + @n(By) Q) K171 Rni=nn) |
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Proof. The proof follows by applying similar steps as in the case of n = 2 (Lemmas 2

and 3 in [8]). |
Proposition 3. Consider the random variables (R,),>1. Then, for every integer n
and for every finite set of numbers x; > 1, Vi = 1,2, ..., n, such that xyor(Br) +
(xx — D Yror (By) is an integer for every k = 1,2, ..., n, we have

1 1
P(Ry > x1,..., R, >xn)=F]<—)...Fn<—).
X1 Xn

Proof. The result follows by induction. The case n = 2 is discussed in Proposition 1.
Assume that the statement is true for n — 1. Then by Proposition 2 we can write

PRy > x1,..., Ry, > xy)
on(Bn)(1 + Oy)
=F Fn I(R] >X1yees Ry 1>Xp—1)
[Xn®n(Bn) + (cn — 1) Qnn(Bn)1 + 0 (By) On
1
= Fn<—>P(R1 > X1y, Ry—1 > Xp—1)
Xn
which leads to the conclusion, by the induction hypothesis. O

Let A = (A;)jen be a good sequence (defined in Subsection 2.1) and, for u €
[1, +00), let j, be the only integer such that A ;, -1 < u < Aj, (i.e. A}, is the minimum
element in A larger than or equal to u).

The proposition that follows will be a “key” result for obtaining the convergence
theorem of this section: by employing a subclass of Oppenheim expansions that sat-
isfies a particular condition we define a sequence of discrete random variables that
is proven to consist of independent random variables the densities of which can be
easily calculated.

Proposition 4. Consider the random variables (R,)n>1 and assume that there exists
a good sequence A such that, for every x € A and for every n, xp,(B,) + (x —
D) Qnen(By) is an integer. For every n, denote

Ty = g, - 7

Then T, takes values in A, and the sequence (T,,),>1 consists of independent random
variables. Moreover, the discrete density of T, is given by the formula

F, ! F, : e N*
n A1 n s , S .

Proof. Observe the relation A, > A, < r > Ay, for any integer n. Thus, for every
finite set of integers {i1, ..., it} and for every finite set of integers {n;, ..., n; } we
have

P(T;, > Anil,..., i > )Lnik) = P(R;, > Xnil,...,Rik > )L,,l.k)

1 1
=F;, A e Fy - ,
n,’l n,-k
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which proves the independence of the random variables (7,),. For the density, note
that, for every integer s € N*, we have

1 1
P(T, = ig) = P(Ty, > As—1) — P(T}; > &) = Fn(—) - Fn<_)
)\v—l As

O
Remark 6. The result above is a generalization of Theorem 3 in Galambos [6], in
which y, =0, A =Nand F,(x) = F(x) = x1jo,1]-
Last we present, without proof, the result which is part of Theorem 1 in [12], and
it is instrumental for the proof of the convergence result we are interested in.

Theorem 4. Let (X,),>1 be a sequence of i.i.d. random variables and S, denote
the n-th sample sum with the first r largest terms removed. Let A be an absolutely
continuous increasing function defined on [0, +00), with A(0) = 0 and satisfying
(i) Lf) is non decreasing for some o € (0, 2),
xa
.. A2
(ii) sup,.q ﬁ < 09,

and let B be its inverse function. For every s > 0, denote

Js = / TPt = o]dE )
1

and assume that J,+1 < +00; then there exists a sequence (cp)neN of numbers such
that
(r) Sy
lim
n—oo A(n)

—c, =0, P-as.

Moreover, the constants c,, can be chosen to be

n

Cp =
An) Jixi<cAm)

xd(P(X1 < x)),
where T > 0 is an arbitrary constant.

4 Proof of Theorem 1

By utilizing the results proved in Section 3, we are now ready to prove Theorem 1
presented in Section 2.

Proof. Following the notation introduced in (7), let 7,, = X iRy and define 1\;1,(,1) =
max{T} ..., T,}. Then,

T,—L<R,<T, and MV —t<MP <mD,
Thus,

(1 1 (1
Yhoi Te— My —tn _ S =M Y Ti— (M — )
nlogn ~ nlogn nlogn

’
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so it is sufficient to study the convergence of
n (1)
Zk:l Tk -M n
nlogn '

By Proposition 4, the sequence (7,),>1 defined in (7) consists of independent and
identically distributed random variables and therefore Theorem 4 can be employed;
to this extent, since we are interested in the case r = 1 and A(x) = x log x, first we
have to check that

o
J =/ [P(T) > )] dB*(x) < o,
1
where B(x) is the inverse of A(x) = x logx.

Note that dB2(x) = 2B(x)B’(x)dx while P(T} > x) = F(%) (by Proposition 4).
Hence, due to (1), we have that

vz =/ F2(1>2B(x)3’(x)dx <Ci +C2/ (%)B(x)B/(x)dx.
1 x 1 x

Now use the change of variables B(x) = y; since x = A(y) and dy = B’(x)dx, we
have that

o0 C+C
J2§C1+C2/ 2y y= 1 2 <
By A=(y) log B(1)

Hence, by Theorem 4, there is ¢, such that as n — 0o
n_ T, — M(l)
Zim T MiZ o pas,
nlogn
where

1
logn

n A(n) nlogn
A0 /1 xd(P(T1 < x)) = — /1 xd(P(T1 > x))

1 nlogn 1
=— / xdF(—).
logn Ji X

Using integration by parts we have that

1 1 1 nlogn 1
cp = — nlognF —-1)+ / Fl — |dx
logn nlogn logn J; X

which can be equivalently written as

1 F(#) 1 1 nlogn 1
Cp = — < niogn )—l— + / F<—>dx=11 + DL+ Is.
logn logn  logn J4 X

nlogn

Cn

Obviously, I — 0 and by employing (1) we have that I; — 0 for n — oo. For I3,
we start by observing that

nlogn 1 m F 1 F
/ F<—)dx=f ¢ —@dy:/ @dy.
1 X 1 y 1 y

nlogn
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By (1), for fixed e > 0let§ € (0, 1) be such that, for y € (0, §),
F(y)

od—€e < — <ua-+e€

and let ng be sufficiently large such that @ < § for Vn > ng. Then

s _ s B
/ (o E)dy</ F(zy)dy</ (Ot+6)dy
S 1 y 1y

nlogn nlogn nlogn

which leads to

1 S F
(a—e)logS—(a—e)log(nlogn> </I %dy

nlogn

1
<(¢+¢€)logé — (x +e)log<nlogn).

Hence, due to the arbitrariness of ¢,

> F(
L —dy~ a(logn + log(logn)). 8)
nlogn
Moreover, for n — 00,
1 L'F
[0 o
logn Js
Relations (8) and (9) together give that /3 — « as n — oo. This concludes the
proof. O

5 Preliminaries for Theorems 2 and 3

Before proving Theorems 2 and 3, we prove some preliminary results.

Lemma 1. Consider the random variables (Ry,)n>1, and let the related distributions
(Fy)n>1 satisfy assumption (5). Moreover, assume that h is a positive increasing func-
tion with the following property: there exists an integer p (that depends on h) such
that

0 2k N &2k
Z(W) = Z(W) <00, Vr=>p. (10)
m=1 k=1 Mok

Then, for r > p, we have
P(M,(l’) > () io.) =0.

Proof. In the proof we write simply #, in place of t,Eh). Let r > p. For any integer
Jj = 0 we define the event

Aj = {R; > t,, for at least r indices such that i < 2/*!}
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and, for any integer n > 1,
Bn = {M,,(lr) > tn}.

Let j be fixed and note that, for every n such that 2/ <n <2/t wehave B, C A i3
thus
U Bn - Aj,

{n:mn=j}

which implies that

e = niol=AUs <N U s=-NU( U )

s n>s s {nimy=mg) s j=mg Mnimy=j}
c U Aa=NU4; =14, io..
S j>my k j>k

The first “C” holds true since for s > 1 we have that {n : n > s} C {n : m,, > my},
while the third equality is valid based on the observation

N(Y)-0f N (U000 (Y»)1-0us)

s=1 “j=myg k=0" g=2k “j=my k=0" g=2k “j>k k=0 “j>k
Now, for every integer k,
P(Ap) < Z P(Ri, > tok, ..., Ri, > ty)

1<iy <ig<---<iy <2k+1

Z H Fy <f2k>

1<iy<ip<--<ip<2k+l j=1

1 2k+1 1 2k r
<C Z <C <cl=).
- y . (tp)" — ( r )(fzk)r - (fzk)

1<iy<ip<---<i, <2k+1

IA

where the second inequality is due to Proposition 3 and the third one to condition (5).

Thus,
o0 o0 2k r
Y P <C Z(—) :
k=1 i1 N2
which is finite because of (10). The result follows by the Borel-Cantelli lemma. [

Remark 7. Lemma 1 is satisfied in particular by /¢ since for this function we have
rh0) = o and

2k ¢(2k>>’
Xk:(ho(Zk)) ;( k)T rEm

by (3).
The corollary that follows studies the asymptotic behavior of the r-th maximum
term of the Oppenheim expansion.
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Corollary 1. For every r > rg, we have

(r)
M,
lim—2— =0, P-as.
n ay

Proof. We prove that, for every ¢ > 0,
P(M,Y) > gay i.o.) =0, Vr=>rg.

Assuming that ¢ < 1 (which is not restrictive), this can be derived by the previous
Lemma | by choosing i (x) = eho(x), for x > 1 (recall Remark 7), since for this
(k) < ga,;, due to (A2), and therefore

function we can easily obtain tnh
P(M" > ea, io.) < P(MP >t io.). (11)
The conclusion follows by observing that

o om N\’ o (2m) r
Z((T)) SZ<¢m ) <00, r=rp,. O

m=1 Nom m=1

Lemma 2. Assume the conditions of Lemma I and, additionally, h(x) > x ultimately.

For every m, denote by N,, the number of indices j < 2™+ for which R; > t(ff,).

Then, for every integer s such that s > r,
P(Npy, = s i.0.)=0.
Proof. Observe that
P(Np, > s i0) < P(M{ >t i0.),

and we can apply the Borel-Cantelli lemma because of Lemma 1: in fact, ultimately,

2" \* 2"\
<
<h(2’”)) B <h(2’")> ’

whence
00 om s
Z < h(Zm) ) < 00,
m=1
due to Lemma 1. O

Lemma 3. Let h(x) = xlog®x, a > 0, and t"” = h(2"n) = 2" (log2"n)?. Let
P, q > 0 be fixed with p > 2 + %. Then the series

(¢ (n))?rd 2 n2g
n24p=24+1 (log n)2p4 X;(Zj )

converges.
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Proof. For the sake of simplicity, we shall drop the superscript and write #, in place
(h)

of t, ’. Observe that
n mp+1 2k my+1 my+1
2 _ 2q (Hk\ ) _ k(2q+1) k\2eq k(2q+1) 7,2
OEED 3 D SWEC) B SET AU SE LS
j=1 k=0 j=k k=0 k=0
By an application of the Cesaro theorem, it is not difficult to see that
N
sz(2q+1)k2aq ~C- 2N(2q+1)N2aq’ N — 00.
k=0

Hence, ultimately,

n
Zt?q < C- 2(2q+l)mnm30‘q < C. 2(2q+1)10g2n(10g2 n)20tq —C. n2q+l(10gn)2qa’
j=1

and
(¢(n))*P Z 2o C@um)r
n2qr—2q+1 (log n)2qp — J n2rqa—4q (IOg n)2qp—2q<x
j=
C
n2r9—44 (log n)24p—2q2—2fpq
due to (A1). The claim follows by known results on the Bertrand series. O

Corollary 2. Let (t,sh))nz 1 be the sequence defined in Lemma 3 and consider the
random variables (Rp)n>1. Then, for every p > 2,

n
Lp Y RjI(R; <1t{") >0, Pas.
j=1

) . h
Proof. We write ¢, in place of t,g ). we set R} =R;jI(Rj <tj)and S, = Z?:l R;..

Let p > 2 and g be large enough so that 2¢(p — 2) > 1 (which means p > 2 4 ﬁ).
Then

P(IS), — an|® = e%a;"?)
1

P(IS; — anl > eay)

2
- 82qa2pqE[(Sr/l _a") q]
n
22q—1 2 22q—l
— quaZPqE[(Sn) ]+ 82q Zq(p—l)

22(1 1 n 22q71
(2 B) e
82qa zqanq(p— )
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22q—1n2q—1

n 2 22q—1
/
= £2042P4 (ZE[(R/) ])+ 2q(p—1)
n j:] n

g 22‘“( (¢ (n)*7 e, (@MY )

g2 \ n2ar—2a+1(logn)2rq 4 ‘ J (nlogn)2a(p=b
J:

The result follows by applying the Borel-Cantelli lemma, since

n
(¢ (n)2r4 24
n2ap—2q+1 (logn)qu —~ J
J:

converges by Lemma 3, and

¢ (n)xar=b - 1
Z (n logn)Z‘I(P*I) - Z nzq(P*I)(]()g n)Zq(pfl)(lfﬁ)

n n

converges, since 2g(p — 1) > 2q(p —2) > 1. O

6 The proofs of Theorems 2 and 3

By utilizing the results proven in the previous section we are ready for the proofs of
Theorems 2 and 3; we start obviously with Theorem 2 which will serve as the source
result for Theorem 3.

Proof. The proof is motivated by the proof of Theorem 1 in [12]. In detail: since

rgy > ﬁ, there exists B satisfying assumption (A2) such that rg, > ﬁ; take

o € (%, 1 — B) and set h(x) = xlog® x, for x > 1. Then arg, > 1 and Lemma 2
0

can be applied to 4. Recall the notation used before, i.e.

1 n
tn=h(2™), R, =RyI(Ry <t,). ay= ”¢‘()f)" and 5, =Y R
i=1

Furthermore, for every ¢ > 0, put

n
Su(e) =Y R;I(R; < eay).
j=1

Since
th = h(2™) < h(2°2") = h(n) = nlog®n,

and recalling that < 1 — 8, we have that

Thus, for fixed ¢ > 0, we can take n sufficiently large such that 7, < ¢a,,. Then

mp
<eayNp, + Z EQymp—k+1 N, —k
k=1

n
> ORIt < Rj < £ay)
j=1

|Su(e) = S| =
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my 1 k—1 my 1 k—1
<con(Mnt2(3) Wes) ool (Mt 2(3) M)
= k=1

my k—1
<5“nNmn<1+Z<) )

where the third relation is due to the inequality H“T” < % Take any s > r; then, by
Lemma 2, we obtain, ultimately,

mMp k—1
|Su(e) — S| < ealls (1 —i—Z( > ) <3eals, P-as.

Moreover,

n r
Zle(Rj > eay) — ZM,W

i=1 k=2

n r
< ZRjI(Rj > eay) + ZM,SI‘).
i=1 k=2

|Sa(e) = 5, | =

By (1 1), the first summand is finite for sufficiently large n while Corollary 1 ensures
that - Dy , M — 0. Then, as n — oo,

a, ' |Su(e) — S, — 0
and so |S,(¢) — ")S,| < ea,. Finally,
|08, = 8] < [Su(e) = S| +|Su(e) = 78,| < eal Bs + 1)

and Corollary 2 gives the conclusion, by the arbitrariness of ¢. ]
Now we give the proof of Theorem 3.

Proof. First, observe that for any r > rg, > 2,

S, — MV g r ()

oz ? ™’ = iogmp ™’ T Z(l P’

The convergence of the latter expression is established by Theorem 2 and Corol-
lary 1. O
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