N
P University of

Central Lancashire
UCLan

Central Lancashire Online Knowledge (CLoK)

Title A data-driven, machine learning scheme used to predict the structural
response of masonry arches

Type Article

URL https://clok.uclan.ac.uk/id/eprint/49640/

DOI https://doi.org/10.1016/j.engstruct.2023.116912

Date 2023

Citation | Motsa, Siphesihle Mpho, Stavroulakis, Georgios E. and Drosopoulos,
Georgios (2023) A data-driven, machine learning scheme used to predict
the structural response of masonry arches. Engineering Structures, 296.
ISSN 0141-0296

Creators | Motsa, Siphesihle Mpho, Stavroulakis, Georgios E. and Drosopoulos,
Georgios

It is advisable to refer to the publisher’s version if you intend to cite from the work.
https://doi.org/10.1016/j.engstruct.2023.116912

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

W oOo~N O O A W NP

e e e
w N

14

15

16
17
18
19
20
21
22
23
24
25
26
27
28

29

30
31

32
33

A data-driven, machine learning scheme used to predict the structural response of
masonry arches

Siphesihle Mpho Motsa?, Georgios E. Stavroulakis®™, Georgios A. Drosopoulos®?

Discipline of Civil Engineering, University of Kwazulu-Natal, Durban, South Africa

bDepartment of Production Engineering and Management, Technical University of Crete,
Chania, 73100, Greece

“Discipline of Civil Engineering, University of Central Lancashire, Preston, United
Kingdom

* Corresponding author.
E-mail address: gestavroulakis@tuc.gr

Abstract

A data-driven methodology is proposed, for the investigation of the ultimate response of
masonry arches. Aiming to evaluate their structural response in a computationally
efficient framework, machine learning metamodels, in the form of artificial neural
networks, are adopted. Datasets are numerically built, integrating Matlab, Python and
commercial finite element software. Heyman’s assumptions are adopted within non-
linear finite element analysis, incorporating contact-friction laws between adjacent
stones, to capture failure in the arch. The artificial neural networks are trained, validated,
and tested using the least square minimization technique. It is shown that the proposed
scheme can be used to provide a fast and accurate prediction of the deformed geometry,
the collapse mechanism and the ultimate load. Cases studies demonstrate the efficiency
of the method in random, new arch geometries. Relevant Matlab/Python scripts and
datasets are provided. The method can be extended towards structural health monitoring
and the concept of digital twin.

Keywords: FEM, Machine Learning, Artificial Neural Network, Multi-hinge failure,
Damage Prediction, Masonry Arches, Data-driven Mechanics, Digital Twin

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

1. Introduction

Masonry arches have been used widely during centuries to span and enclose space. The
structural benefit of the arch shape is still under investigation even though the technique
was first observed in Mesopotamian brick architecture, dating back to the 2nd
Millennium BC (Anastasio, 2020). Arches are efficient load-bearing structures, which
distribute applied loads through compression in adjacent masonry stones. The arch, as a
method of construction, is directly relevant to the material behaviour of masonry. There
exists a harmonic relation between the masonry stones and the shape of the arch, to
ensure that the structure is mainly under compression. Compression failure of masonry
arches is generally unlikely to take place, thus, the typical failure mode of arches is a
tensile hinge mechanism (Heyman, 1966, Heyman, J. 1982, Drosopoulos et al., 2006,
Grillanda et al., 2021).

In particular, the typical mode of failure for masonry arches is the formation of tension
hinges in-between the masonry stones, activated when the thrust line is tangent to the
masonry arch section edges. The change of the structural state, from equilibrium to
mechanism, can be caused by settlement of supports due to earthquakes, vertical loads
due to vehicles, erosion, or ground bearing failure. This hinge mechanism can result in
damage and eventually partial or total collapse (Bergamo et. al., 2015, Cavalagli et. al.,
2016, Portioli and Cascini, 2017, Sanchez-Aparicio et. al., 2019).

Several investigations have been conducted, to highlight the structural response of
masonry arches. Hooke (1676) has been pioneer for first describing the compression
behaviour of masonry arches under their self-weight and for proposing a rational rule to
estimate the size of masonry stones and the geometry of masonry arches. This rule is
based on the analogy of a hanging chain forming catenary in tension under its self-
weight, and on a masonry arch (inverted chain), standing rigid in compression (Heyman,
1982, Heyman, 1998, O’Dwyer, 1999, Block et al., 2006). In (Poleni, 1748), Hooke’s
hanging chain principle was used to assess the safety of the cracked dome of St. Peter’s
in Rome. More literature is found in the same direction, providing numerical methods
which can be used to determine the thrust line closest to the geometrical axis of a given
arch (Moseley, 1833, Winkler, 1867, Heyman, 1969, Tempesta and Galassi, 2019).
Recently, in (Gaspar et al., 2022) this principle was used in a study which relates the
optimal geometry of a masonry arch and the number of concurrent hinges under self-
weight, at a limit state quantified by minimum thickness.

Among the first approaches used to evaluate the response of masonry arches are those
relying on limit analysis tools. Within these abroaches, masonry blocks are simulated as
rigid blocks and governing equations are often derived using static and kinematic
theorems for limit analysis. Some relevant publications, evaluating the response of
masonry arches under vertical and horizontal loads, as well as settlement of supports, can
be found in (Ochsendorf, 2006, Milani and Lourenco, 2012, Cavalagli et. al. 2016,
Portioli and Cascini, 2017, Cascini et. al., 2018, Galassi, 2023, Galassi and Zampieri,
2023). It is noted that in this work a different methodology, relying on finite element
analysis, is adopted to capture the response of masonry arches. In addition, emphasis is
mainly given in the data-driven nature of the proposed framework. Therefore, limit
analysis techniques could also be adopted, in principle, to provide the structural response
of arches under the suggested data-driven scheme.

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

In the later years, more advanced techniques have been developed, to evaluate the
structural behaviour and ultimate, failure response of masonry arches. Often, the finite
element method is the numerical tool used to simulate detailed two and three-dimensional
geometries of masonry arches. To capture the failure response, different constitutive
descriptions are introduced in these models. The arising computational cost is significant,
in particular for bigger models with more structural parts, higher dimensions and
complex non-linear material laws.

In (Ozmen and Sayin, 2018), three-dimensional finite element models are used to assess
the seismic response of an old masonry arch bridge in the framework of the macro
modelling approach. In (Charalambidi et al., 2022), a finite element model introducing
unilateral interfaces to capture failure between masonry stones, is proposed to identify
and predict the cause of the existing structural damage of a masonry monument in
Greece. In (Tapkin et al., 2022), various non-linear finite element models were used to
simulate the structural response of a three-span masonry arch bridge located in Turkey. In
(Drosopoulos and Stavroulakis, 2018), a computational homogenization method is
proposed, to investigate localization of damage in masonry walls. Macroscopic, structural
scale failure is represented by cohesive cracks in the framework of the extended finite
element method, using the effective material properties obtained from microscopic
simulations. More efforts on numerical modelling of masonry arches using the finite
element method can be found in (Ferrero et al., 2023, Rahimi et al., 2022, Zampieri et al.,
2021, Tubaldi et al., 2020, Stavroulaki et al., 2018, Conde et al., 2016, Sarhosis et al.,
2016, Milani et al., 2006, Lourencgo, 2002).

In the 4™ industrial revolution era, machine learning elements, such as artificial
intelligence (Al), have been adopted to solve complex non-linear engineering problems.
In the recent years, even more machine learning algorithms have been developed to solve
engineering problems. In structural engineering, artificial neural networks have been used
to assess the strength and performance of concrete structures (Chang and Zheng, 2019,
Prakash et al., 2019, Sadowski et al., 2018) and the structural response of steel
(Beskopylny et al., 2020, Wotowiec and Kula, 2012). Other available machine learning
approaches include non-destructive and vision-based measurement techniques, which are
used as a method of structural health monitoring (Yuan et al., 2022, Bekas and
Stavroulakis, 2017, Psychas et al., 2016, Cavaleri et. al., 2022, Grandio et al., 2022,
Ashrafian et. al., 2023).

The main concept of introducing machine learning approaches in structural engineering,
is to use existing data, carrying information for the structural response, in numerical
simulations. Thus, databases are developed and used to train a machine learning
algorithm. The trained algorithm is then used to assess the response of the structural
system. A numerical metamodel is developed within this framework, able to potentially
replace or complete existing structural evaluations, due to missing experiments or
computationally expensive calculations.

In (Jing et al., 2022), an artificial neural network called BridgeNet is proposed, for
automating the segmentation of masonry arch bridge elements obtained from large-scale
point clouds. In (Melchiorre et al., 2021), machine learning algorithms are used to
structurally optimize the cross-section of a circular arch by calculating the internal
stresses and comparing them against the yield stresses of the material. In (Civera et al.,
2022), artificial intelligence and machine learning algorithms are used to interpret

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

operational modal analysis mode shapes, which is normally a computationally expensive
task, aiming in the structural health monitoring of masonry arches. In (Drosopoulos and
Stavroulakis, 2020), machine learning is introduced in multi-scale computational
homogenization to capture the non-linear response of masonry walls. Recent studies
emphasize in using image recognition and deep machine learning tools, including for
instance computer vision and convolutional neural networks (CNN), to generate
geometric digital twins for masonry structures (Dais et al., 2021, Loverdos and Sarhosis,
2023, Loverdos and Sarhosis, 2023).

In this study, a data-driven numerical analysis of masonry arches is proposed, to evaluate
their mechanical response considering different arch geometries (span and thickness of
the masonry stones). The first step of this investigation is to conduct parametric
simulations, in order to develop datasets, using as input and output values geometric and
structural parameters of masonry arches. In a subsequent step, these datasets will be used
to train artificial neural networks. Therefore, the article proposes a methodology for using
machine learning, data-driven techniques, in order to achieve a fast and accurate
prediction of the structural response of masonry arches. It is noted that to the authors’
best knowledge, only limited works can be found, emphasizing in data-driven, machine
learning approaches, for the structural evaluation of masonry arches. Also, the majority
of the published research focuses more on the geometric aspects of the data-driven
approaches, comparing to the structural response and the failure mode prediction which is
the core outcome of this investigation.

In particular, two-dimensional, non-linear finite element models were developed to
perform the parametric assessment, considering the following Heyman’s assumptions: (i)
masonry stones have no tensile strength and, (ii) the compressive strength of the stone is
infinite (Heyman, 1966). The results obtained from the finite element models were used
to train, validate, and test artificial neural networks. This procedure has been
implemented using Python, Matlab and commercial finite element software. The trained
neural networks can provide a fast structural evaluation of random masonry arches, with
limited computational cost, emphasizing in critical and valid information for the ultimate
structure response. Thus, the outputs of the trained neural networks, are, (a) the deformed
geometry depicting potential damage under the self-weight, (b) the deformed geometry,
also depicting potential damage, under self-weight and a vertical point load applied at ¥
of the span and (c) the ultimate load at collapse.

2. Ultimate (failure) response of masonry arches

Goal of this article is to propose a data-driven methodology for the structural evaluation
of masonry arches. According to the overall concept, parametric structural simulations
within non-linear finite element analysis are conducted to generate datasets providing the
ultimate, failure response of masonry arches of various geometries. Machine learning
elements in the form of artificial neural networks are then used to train the set of results
obtained from the parametric finite element analysis. The trained neural networks are
metamodels able to predict the failure response of randomly chosen masonry arch
geometries. The parametric investigations are conducted on circular and parabolic

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

213

214

masonry arches, but any other geometry or even different structural type, could be
adopted using the proposed concept.

In this section, principles of the mechanical response of masonry arches are provided,
emphasizing in the ultimate, failure behaviour of these structures. The classical collapse
mechanism theory as presented in Heyman (1982), has been widely used to determine the
load-bearing capacity of masonry arches. This technique has been adopted by other
analytical methods to estimate the thrust line passing through masonry arch stones. For
arches to be fully under compression, the thrust line must lie within the core (middle
third) of the section (Heyman, 1982). Unreinforced masonry arches form a plastic hinge
when the thrust is tangent to the extrados and/or intrados of the arch. When the thrust line
is tangent at three extrados and/or intrados points of the arch, three hinges are developed.
The introduction of three hinges changes the determinacy of a fixed support arch from
statically indeterminate to statically determinate. Then, the development of a fourth hinge
triggers a kinematic collapse mechanism, widely known as the four-hinge collapse
mechanism (Heyman, 1967).

According to this description, four-hinge collapse mechanism is generally the common
cause of structural failure of masonry arches. In addition, this mechanism may not arise
when a symmetrical arch is subjected to symmetric loading, like self-weight. Heyman
(1967) demonstrated that this response may be obtained on semi-circular arches under
their own weight. Under this condition, at least a 5" hinge must form to trigger a
kinematic collapse.

To simulate the mentioned hinge mechanism between adjacent stones, principles taken
from non-smooth mechanics have been adopted in this article within non-linear finite
element analysis (Panagiotopoulos, 1985, Drosopoulos et al., 2006). In particular, a
unilateral contact and friction law is used to describe the surface contact conditions. This
law introduces a strong nonlinearity, even though the stones are assigned linear material
properties. Therefore, nonlinearity is restricted to the interfaces between the stones,
allowing for the opening and/or sliding along these interfaces. This opening and sliding
that may appear in an interface, give rise to 8 configurations of deformation between two
adjacent stones (Stockdale et al., 2022). These deformation modes include openings,
rotations, slips, and slip/rotation combinations, as shown in figure 1. It is noted, that these
deformation modes can be predicted by the machine learning, data-driven approach
which is proposed in this study.

In this study, relations (1)-(3) are adopted to describe the contact conditions in the
interface between two adjacent masonry blocks. Inequality (1) expresses the non-
penetration condition and inequality (2) states that only compressive stresses can be
developed in the interface, noticing that u is the single degree of freedom, g is the initial
opening of the contacting bodies and t™ is the normal stress at the interface. Equality (3)
expresses the complementarity relation, which states that either zero stresses arise and
opening takes place or non-zero stresses appear, and contact is activated.

h=u—-g<0=h<0 (D
—t">0 (2)
t"(u—g) =0 (3)

215
216
217
218
219

220
221
222
223
224
225
226
227
228
229
230
231
232
233

234
235

In the tangential direction, a static version of the Coulomb friction law is adopted,
indicating that sliding takes place when the shear stress t' in the interface reaches a
critical value t.,., according to relation (4):

tt = Ter = i/,t|tn| (4)

where u is the friction coefficient.

The coefficient of friction assigned to the unilateral contact-friction interfaces of this
article is set equal to 0.5 (Melbourne and Gilbert, 1995). Loading of each arch involves
the self-weight, applied at a first analysis step and a vertical point load applied at a
second step, at the ¥ of the span. It is noted that this is the worst load position, since the
ultimate load derived from this position is the lowest compared to those obtained from
other load positions. This is discussed in several studies, such as in the classical work
presented in (Heyman, 1982), as well as in subsequent studies (Drosopoulos et al., 2006).
The arches are also assigned fixed boundary conditions. The assigned material properties
on the finite element models are as follows: density is equal to 2300kg/m3, modulus of
elasticity is 30GPa and Poisson’s ratio is 0.2. For the implementation of the proposed
data-driven scheme Abaqus commercial finite element software and two programming
codes, namely, Matlab (Matlab, 2021) and Python, have been adopted.

ORIGINAL CONFIGURATION BOTTOM ROTATION TOP ROTATION
)
RIGHTSLIP RIGHT SLIP
RIGHT SLIP + BOTTOM ROTATION + TOP ROTATION
8 3
LEFT SLIP LEFT SLIP
LEFT SUP + BOTTOM ROTATION + TOP ROTATION
Figure 1: Potential deformation modes between two adjacent blocks of an arch (Stockdale et al.,

2022).

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

280

3. Machine learning using artificial neural networks

Machine learning is a branch of artificial intelligence which focuses on training computer
codes on how to make predictions of systems based on available datasets and algorithms.
The ability of machine learning algorithms to recognise patterns from large datasets
allows for their usage in various fields of study such as engineering, business, and
science.

In (Reich, 1997) it was shown that machine learning was still in its infancy stage due to
limitations on machine learning algorithms and computing power, as well as due to the
lack of experimental databases to validate the machine learning models. Recently, it has
been demonstrated a significant increase of using machine learning tools, to solve
complex structural engineering problems (Thai, 2022). In addition, databases like
DataCenterHub, DesignSafe and Mendeley Data can now be used to validate machine
learning models. The number of machine learning algorithms has been significantly
increased and tools like artificial neural networks, decision trees, regression analysis,
support vector machine, random forest and boosting algorithms, have been adopted in
structural engineering applications (Thai, 2022).

In this article, emphasis is given on using artificial neural networks as the numerical tool
which implements data-driven structural assessment. An artificial neural network is
developed by biomimicking the human brain structure, thus, how neurons are
interconnected to imitate thinking, recognition and decision making (Simon, 1999,
Nasrabadi, 2007). It was first invented by (Rosenblatt, 1958) in 1958 and called the
perceptron. Due to improvements to computational power, various algorithms have been
developed such as the feedforward neural network (lvakhnenko, 1971), the radial basis
function neural network (Broomhead and Lowe, 1988), the convolutional neural network
(LeCun et al., 1998), the recurrent neural network (Elman, 1990) and the adaptive neuro-
fuzzy inference system (Jang, 1993). The feedforward neural network is the most
common system, due to its simplicity and robustness to solve multi-variate and nonlinear
modelling problems (Mostafa et al., 2022, Thai, 2022).

In this study, a feedforward neural network is adopted to train the datasets which are built
by finite element simulations. In figure 2 an example of a neural network represented by
x-h-h-y is shown, where x is the number of inputs (variables), h is the number of neurons
for one of the two hidden layers, and y is the number of outputs (prediction) (Mostafa et
al., 2022). In the hidden layers, the input variables are assigned weights which need to be
determined and then used to predict. Activation (sigmoid) functions, such as the
nonlinear continuous sigmoid, the tangent sigmoid, and the logarithmic sigmoid, are also
introduced (Haykin, 2009). The inputs are multiplied by weights to provide the values of
the output layers, within acceptable accuracy (low error margins). The iterative process of
assigning weights is called training. Equation (5) shows a generic neuron j in a hidden
layer, where wl-hj is the weight that connects the i neuron of the current layer to the j™
neuron of the following layer, x!* is the input variable, b is the bias associated with the j
neuron to adjust the output along with the weighted sum, and f is the activation function
(Mostafa et al., 2022). Equations (6) and (7) provide some of the commonly adopted
activation functions, the tangent sigmoid and logarithmic sigmoid, respectively.

) =[Skl ol + 1) ®

281

282

283
284
285
286
287
288
289
290
291

292

293
294

fO) = 14 s (6)

1
(1+e~w)

fw =

(")

In this study, the Levenberg—Marquardt backpropagation algorithm (Hagan and Menhaj,
1994, Marquardt, 1963) is adopted to perform the training. The algorithm consists of two
steps: (a) feed-forward weight values are determined to calculate the error by minimizing
the least squares error function, and (b) propagating back the error to previous layers and
checking if the error value falls outside the acceptable error margin. This iterative process
(epoch) of backpropagation is repeated until the errors from the interconnecting weights
are within the acceptable error margin. The fixed interconnecting weights now form a
neural network which can be used to predict complex problems with certain accuracy. A
schematic diagram of the whole training process is shown in figure 3.

Input layer Hidden layers Outer layer
lxl Ihl Iyl
hl h2
® [}

/D

X1 2
% ® -~ @
X .
é .. \ ® Y
: ®]
X3 % ;
® L]

Figure 2: Feed-forward neural network architecture.

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Build Predict

——

[l

ML model

¥

Testing
dataset

Learning Performance
algorithm evaluation

I Initial Training :
' data dataset i
T Feedback No ' - '

Figure 3: Typical workflow of machine learning (Thai, 2022).

4. The proposed data-driven scheme

The implementation in this article of data-driven structural analysis for masonry arches
using machine learning principles, involves the use of a commercial finite element
software (Abaqus) as well as Matlab (Matlab, 2021) and Python. A code developed in
Matlab is the pillar of the procedure, since it provides the overall definition of the
parameters used by the finite element models, it establishes the connection with the
parametric finite element model, and it implements machine learning. In Appendix 9.1 of
the article, descriptions for this Matlab code are given.

The finite element software is only used to conduct the parametric structural simulations
of masonry arches. A Python script is also introduced within the Matlab code, to call the
finite element model without opening the GUI of the finite element software.
Descriptions for this Python script are provided in Appendix 9.2 of the article. The details
of the proposed scheme are presented below:

e In the first step, a Matlab script (Appendix 9.1) is developed to define the
geometry of the masonry arch and extract the (x) and (y) coordinates of the
vertices of the individual stone blocks that make up the structure. The span of the
arch and the thickness of the masonry blocks are the parameters introduced to
define the geometry and used in the parametric investigation. The extracted
coordinates are saved in a text file.

e In the second step, the Matlab script calls a Python script with the finite element
model (Appendix 9.2), derived from the commercial finite element software,
without the need to open the GUI of the software. The Python script initiates the
solution for the discrete finite element model of the masonry arch, which is
generated by reading the coordinates from the text file (previous step). All the
details of the non-linear finite element model are included in the Python script,
namely, the boundary conditions (fixed supports), the applied loads (step-1: self-
weight and, step-2: a vertical point load applied at ¥ of span), the mesh (bilinear
quadrilateral elements with size equal to 0.05m), and the unilateral
contact/friction laws between the stones.

e In the third step, a second Matlab script (Appendix 9.3) calls the finite element
software and runs a second Python script (Appendix 9.4) which extracts results
from the finite element analysis solutions. The results extracted, include the (x)

9

330
331
332
333
334
335
336
337
338

339
340
341

342
343
344

345

346
347
348
349
350
351
352
353
354
355

and (y) displacements of the four vertices of each stone block after the completion
of the first and second loading steps (self-weight only and self-weight plus
vertical point load, respectively), and the ultimate load at collapse. It is noted that
these (x) and (y) displacements are used to determine the deformed shape of the
arch, after the end of each finite element analysis.

e In the fourth step, the results obtained from the finite element models are sorted
and stored as mat files (Matlab) to form databases. These databases are trained
using an artificial neural network which can then be used to predict the structural
response of any masonry arch within the range of the database values.

A flowchart illustrating the steps of the whole process is shown in figure 4. The path
marked by the dashed-line (red) arrows in figure 4 shows the workflow/application of the
trained neural network.

All the simulations were run on a computer with quad-core Intel® Xeon E5520 at 2.266
GHz and 16 GB RAM. The computational time needed to predict the structural response
using the trained neural networks is about 25.5s.

r r
| | ! :
i i i i
! Defines (x) and (y) ! H Python Scripts: !
H Input: | coordinates of each 1 H o Build and solve !
H Span and thickness "| stone that make up ! i g finite element !
i T the structure H i models !
! . 1 ! 1
1 1

| '] : i
! h 4 I H v 1
I Defines the (x) and ! I - !
i . L . H 1 Python scripts: !
i Machine learning: (y) coordinates of H i Extract (x) and (y) H
1 Training dataset | each stone that | | 1 [extract {xj anc ly -
1 . < | + displacement of each 1
1 and developing the make up the H 1) H
! i ! stone and ultimate load at 1
! neural network structure after load 1 ! 1
i - i ! collapse i
! : application ! H !
1 1

| ' = | =
| v i : E
i Prediction of ! H !
i Structural ! i !
i Response H i H
.. =1 S —

Figure 4: Flowchart of the proposed workflow.

5. Details of the parametric finite element analysis simulations

In this work, unilateral contact-friction interfaces are introduced between adjacent blocks
to simulate the failure modes which are shown in figure 1. Sliding and/or opening of
these interfaces, lead to the formation of hinges (the thrust line falls outside the section of
the stone), depicting failure for two-dimensional masonry arches. To solve this unilateral
contact—friction problem, the Lagrange multipliers method is adopted for simulating
opening in the normal direction of the interfaces and the penalty method is used for

10

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

simulating sliding in the tangential direction. In addition, a surface-to-surface
discretization is adopted for the masonry surfaces (edges) at each unilateral contact and
friction interface. Due to the introduction of the unilateral-contact and friction interfaces
the finite element model is non-linear, noticing that no material non-linearity and small
displacement analysis are also considered. The Newton-Raphson incremental-iterative
procedure is used to solve this problem.

To implement the parametric finite element simulations and generate the datasets, 1862
non-linear finite element models of circular arches and 550 models of parabolic arches
have been developed to provide a holistic insight in the structural response of masonry
arches, emphasizing in potential collapse mechanisms. Within the adopted discrete
approach, 20 two-dimensional masonry blocks have been used to create each masonry
arch. It is noted that in previous studies (Charalambidi et al., 2022, Tapkin et al., 2022), it
has been shown that using more blocks than a chosen number, may not significantly
affect the structural response, while it can increase the computational cost.

Due to its low tensile resistance, the mortar is neglected in the models developed for this
study. Two steps are used to introduce static loads on the structure: the first step
introduces a pure gravity load to simulate the state of inertia of the structure and the
second step adds an incrementally applied point load at ¥ of the span.

Concerning the failure response of the masonry arches, as this arises from the used
discrete finite element models, it is noticed that the ultimate strength is reached when
parts of the structure lose contact and develop rigid body displacements. This happens
due to the fact that the defined unilateral contact/friction boundary constraints (assigned
between stones) become insufficient to equilibrate the loaded structure. On the numerical
model, as collapse is being reached, at least one zero eigenvalue on the tangential
stiffness matrix is introduced which makes the analysis unstable.

6. Building the artificial neural networks

In this study, three neural networks have been trained, validated and tested to predict the
structural response of circular masonry arches. Each trained neural network will provide
a different insight about the structural behaviour of the arch. The first neural network will
be used to predict the deformed geometry of the structure when subjected to self-weight
only. The second neural network will predict the deformed geometry when the structure
is subjected to self-weight plus a vertical load applied at ¥ of span. The third neural
network will be used to predict the ultimate (failure) load at collapse, when the structure
is subjected to self-weight plus a vertical load applied at ¥ of span. The same process is
repeated, and another three neural networks are also trained, to predict the response of
parabolic arches. Then, a variable is introduced in a Matlab script, to establish the
connection between the chosen shape, circular or parabolic, and the corresponding
trained neural networks. For example, when the user selects this variable to be equal to
“circular”, the trained neural networks which correspond to the circular arch datasets is
called and predict the response of a random arch geometry. A similar process is followed
for a parabolic arch shape or any other arch shape that may potentially be added to the
dataset to widen the scope of the scheme.

To train the mentioned artificial neural networks, results derived from the finite element
simulations, were extracted and used. In the input layer of each neural network are added

11

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

421
422
423
424

the span and thickness of the masonry blocks representing the initial geometry of each
arch. Figure 5 shows Matlab plots of the vertices that make up the intrados and extrados
of 5.0m span and 0.25m masonry ring thicknesses for a circular and a parabolic shape.

In the output layer of the first two neural networks, are included the x- and y-
displacements of each vertex on each of the 20 individual masonry stones, representing
the deformed geometry at the end of each loading step of the finite element analysis.

In particular, the x- and y- displacements values at the end of loading step-1 were used to
build the neural network that predicts the deformation of the structure when subjected to
self-weight only and the x- and y- displacements values at the end of loading step-2 were
used to build the neural network that predicts the deformation of the structure when
subjected to self-weight plus a vertical point load.

In the third neural network, the output layer was defined by the ultimate load which is
obtained at the end of the finite element analysis. Figure 6 shows the deformation of a
5.0m span circular arch with 0.25m thickness, subjected to self-weight and a vertical load
applied at ¥4 of the span. This figure is derived from one of the parametric finite element
simulations, developed to create the databases that will be used to train the artificial
neural networks. It is noted, that the opening and sliding between the masonry blocks as
depicted in figure 6, can also be predicted and shown by the trained neural networks.

Height (m}
Height {rm)

Span {m)

(a) (b)
Figure 1: Matlab plot of the vertices that make up the intrados and extrados of a) a circular and b) a
parabolic arch with 5m span and 0.25m ring thickness.

12

425
426

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

U, Magnitude
+2.614e-03
+2.396e-03
+2.178e-03
+1.960e-03
+1.743e-03
+1.523e-03
+1.307e-03
+1.08%-03
+8.713e-04
+6.534e-04
+4,350e-04
+2.178e-04
+0,000e+00

Figure 2: Deformation of 5m span arch with 0.25m thickness subjected to self-weight and a
vertical load applied at 1/4 of the span.

6.1 Methodology and parameters adopted to train the artificial neural networks

In this study, the Levenberg-Marquardt algorithm is adopted to train the neural networks.
This is considered as one of the fastest training algorithms (Matlab, 2021) but requires
more memory than other techniques available. It uses Jacobian matrix to compute the
solution and assumes that the performance function is the mean or sum of square errors.
Like the quasi-Newton methods, second-order training speed can be achieved without
solving the Hessian matrix (Liu et al., 2021). The Hessian matrix is approximated by
equation (8) when the performance function is provided by the sum of squares errors and
the gradient can be computed as Jacobian matrix multiplied by the vector of network
errors, see equation (9).

Equation (10) shows how the Levenberg-Marquardt algorithms approximate the Hessian
matrix (Hagan and Menhaj, 1994, Hagan et al., 1997) by combining the Gradient Descent
and Newton-Raphson method. When p is zero, equation (10) is transformed to Newton’s
method, using the approximate Hessian matrix. When u is large, equation (10) forms
Gradient Descent with a small step size. The algorithm is faster and more accurate when
p is small since Newton’s method is quick when approaching the true value. With each
successful iteration (epoch), the performance function is reduced unless the tentative step
is not successful thus increasing the performance function. The aim to keep reducing u
makes the algorithm fast.

Table 1 shows the parameters used to train the neural networks. It should be noted that
the neural networks were re-trained multiple times to improve the results, since during re-
training different initial conditions and sampling were considered. The 70/15/15 rule was
used during the training process, which states that 70% of the dataset is used for training,
15% is used for validating the neural network and the remaining 15% is reserved for
testing the neural network.

H=]"] (8)
13

455
456
457
458
459
460
461

462
463

464

465
466

467

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489

g=]"e (9)
Xpe1 =X — U7+ pd] e (10)

In equations (8)-(10), H is the approximated Hessian matrix, J is the Jacobian matrix, g is
the gradient, I is the identity matrix, e is the vector of network errors, and wu. is the
adaptive value.

Table 1: Parameters used to train the neural networks.

Parameter name Value
Number of neurons in hidden layer 40
Maximum number of epochs to train 1000
Performance goal 0
Maximum validation failures 100
Minimum performance gradient le-7
Maximum value for u 1e10
Initial u 0.001
Decrease factor for u 0.1
Increase factor for u 10

6.2 Using the artificial neural networks

After training, validating, and testing the neural networks, they can be used to predict the
structural response. The final deformed geometry of the structure is practically
determined using equation (11) where u, is the vector of coordinates of the vertices of the
masonry blocks depicting the undeformed geometry before any load is applied, u; is the
vector of the displacements of the vertices of the masonry blocks after the load
application and C is a user defined scale factor to ensure the deformation of the structure
is easily visible. The vector u; is predicted by the neural network and is dependent on the
geometry of the structure and the load application.

Figure 7 shows the deformation of a 5.0m circular span arch with 0.25m thickness,
subjected to self-weight and a vertical load applied at ¥4 of the span, as derived by using
the equation (11). A scale factor of 100 is used in this example so that the hinge
formation can easily be seen. It should be emphasized that figure 7 indicates the capacity
of the proposed approach to predict the deformed shape and the collapse mechanism of a
masonry arch for a random geometry, using the proposed data-driven scheme. The
Matlab code which is used to generate the deformed geometry, with inputs the vectors of
the initial coordinates of the vertices of the masonry blocks u, and the vector u; of the
displacements of the vertices of the masonry blocks after the load application, is given in
Appendix 9.5.

U =1u, + C.uyy (11)

14

490

491
492
493
494
495
496
497

498

499
500
501
502
503
504
505
506
507
508
509
510
511
512

Height (m)

0 05 1 15 2 25 E] as 4 45 5
Span im)

Figure 3: Deformation of 5m circular span arch with 0.25m thickness subjected to self-weight and a vertical
load applied at 1/4 of the span, as derived by using equation (7).

7. Results and discussions

In this section, the performance and training accuracy of the developed neural networks
are discussed. Then, it is shown how the trained neural networks can be used to predict
the structural response of masonry arches of random geometry. Relevant results are
provided and compared with existing output from literature.

7.1 Performance of the trained artificial neural networks
7.1.1 Circular arches

Three neural networks, namely, A, B and C, were trained by using 1304 data points,
validated by 279, and tested by 279 data points respectively. In all neural networks, 2
input variables were used, namely, the span and the thickness of the masonry blocks that
represent the arch geometry. In the first 2 neural networks (A and B) which are used to
predict the deformed geometry under self-weight or self-weight and vertical loading, 160
output variables were used, namely, the displacements of the vertices of each of the 20
individual blocks making up the arches: 20 blocks x 4 vertices per block x 2
displacements per vertex. The deformed geometry of the arches can then be determined
using theses 160 output variables, according to relation (11). In the third neural network
(©), 1 output variable is considered, namely, the ultimate load.

In table 2, are provided details related to the training of the three neural networks. The
neural network A in table 2 refers to the neural network that predicts the deformation due

15

513
514
515
516
517
518
519
520
521
522
523
524
525

526
527

528
529
530
531
532
533
534
535
536
537

to self-weight only, the neural network B refers to the one predicting the deformation due
to self-weight and a vertical point load and the neural network C refers to the neural
network that predicts the ultimate load at collapse.

Regarding the training times given in table 2, neural network C depicted a shorter
training time as compared to the other two networks, since the output layer of network C
had only one variable, the ultimate load at collapse, comparing to the 160 variables of the
output layer of the neural networks A and B of table 2.

As shown in table 2, the training, validation, and testing of the neural networks are
accurate, with neural networks A and C showing more than 98% accuracy and with
neural network B showing more than 95% accuracy. The neural networks were trained
four times to increase accuracy, with each proceeding training done from the previously
trained neural network without reinitializing and starting weights from zero. In addition,
the mean squared error obtained from the training of the networks is very small.

Table 2: Summary information from the training process of the three neural networks (circular arches).

Neural Network A | Neural Network B | Neural Network C
Training time 1hr:10min:04sec 2hr:26min:41sec 15min:12sec
Iterations of 19 126 218
train(epoch)
Training accuracy 98.63% 95.92% 99.23%
Validation accuracy 99.91% 96.14% 99.15%
Testing accuracy 99.86% 94.91% 99.26%
Mean Squared 0.0001% 0.039% 0.0005%
Error (MSE)

Figures 8-10, show the regression plots for the training, validation and testing of the
neural networks and how the trained neural network fit the dataset. From these figures, it
is observed that the regression for training, validation and testing of the neural networks
is almost 1, with 1 representing zero error in the trained neural network.

16

538
539

Validation: R=0.99907

o
—

&
0.1 o Data &
Fit g

1
o
—

Output ~= 0.95*Target + -4.6e-05
o

Output ~= 0.98*Target + 5.6e-06
o

Target
0 0
S S
2 Test: R=0.99855 S All: R=0.99064
o~)
N 0.17] o D.ata L 01 @ D.ata
= Fit = Fit
> Y=T 2 |- Y=T
80 ‘ S0
© ©
o <
o o
|!| -0.1 Itl -0.1
H 3 ¢
= 01 0 01 £ 01 0 01
o Target o Target

Figure 4: Regression plot for neural network A (circular arches).

M~ P~
S Training: R=0.9592 2 Validation: R=0.9614
i A S 06
+ + Y
“g, 0.5 % 0.4
L E 0.2
& S
= = 0
|] [}
t t 02
2 2
S 5 02 0 0.2 0.4 06
o o
Target

& ©
S b= All: R=0.95755
2 08 S

o
¥ os +
[T} L4
S 0.4 S 0.5
d @
£ 02 =

(7]
2 o0 S 0
¥ 0.2 !
3 -0.4 2-05¢
5 04 0 04 083 05
o

Target

Figure 5: Regression plot for neural network B (circular arches).

17

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558

‘i’ Training: R=0.99233 3 Validation: R=0.9915

- B +

5 1000 £ 1000 [Oog

8 e Fit @;@%’ ©

O

s ° S 9 &

IQI 1] o

L Y

o 3 &

£ 0 - | |

o 0 500 1000 © 0 500 1000
Target Target

- Test: R=0.9926 3 All: R=0.99228

. .

« 1000 + 1000

S o Data 2 -g

= —Fit e =

Iy Y =T =

& 500 & 500

o o

' ',-

g o/ L2 old

8 0 500 1000 8 0 500 1000
Target Target

Figure 6: Regression plot for neural network C (circular arches).
7.1.2 Parabolic arches

In table 3 are provided details related to the training of the three neural networks. As
previously mentioned, the neural network A in table 3 refers to the neural network that
predicts the deformation due to self-weight only, the neural network B refers to the one
predicting the deformation due to self-weight and a vertical point load and the neural
network C refers to the neural network that predicts the ultimate load at collapse.
Regarding the training times given in table 3, neural network C depicted a shorter
training time as compared to the other two networks, since the output layer of network C
had only one variable, the ultimate load at collapse, comparing to the 160 variables of the
output layer of the neural networks A and B of table 3.

As shown in table 3, the training, validation, and testing of the neural networks are
accurate, with neural networks A and C showing more than 99% accuracy and with
neural network B showing more than 98% accuracy. The neural networks were trained
four times to increase accuracy, with each proceeding training done from the previously
trained neural network without reinitializing and starting weights from zero. In addition,
the mean squared error obtained from the training of the networks is very small.

18

559

560
561
562
563
564
565
566
567
568
569
570

Table 3: Summary information from the training process of the three neural networks (parabolic arches).

Neural Network A

Neural Network B

Neural Network C

Training time 46min:30sec 4hr:29min:15sec 15min:12sec
Iterations of 9 54 471
train(epoch)

Training accuracy 99.32% 98.79% 99.99%
Validation accuracy 99.34% 98.63% 99.96%
Testing accuracy 98.89% 98.63% 99.999%
Mean Squared 0.0005% 0.0002% 0.00001%

Error (MSE)

Figures 11-13, show the regression plots for the training, validation and testing of the
neural networks and how the trained neural network fit the dataset. From these figures, it
is observed that the regression for training, validation and testing of the neural networks

is almost 1, with 1 representing zero error in the trained neural network.

19

[(=}
o
n}:‘l’ Training: R=0.99323 Validation: R=0.99341
+ © Data o Data
ol 0.01 . 0.01 Fit
s -Y=T
|—
© 0 0
[=2]
=3
1l
-0.01 -0.01

-0.01 0 0.01
Target

-0.01 0 0.01
Target

All: R=0.9906

Test: R=0.98887]

0.01¢ 0.01

0.85*Target + -2.4e-05 Output ~

-0.01] g -0.01]

-0.01 0 0.01
Target

-0.01 0 0.01
Target

Output ~= 0.93*Target + -9.5e-06 Output ~= 1*Target + 5.3e-06

Qutput ~

Figure 11: Regression plot for neural network A (parabolic arches).

Validation: R=0.99957

Training: R=0.99993 _

-0.2 0 0.2 -0.2 0 0.2
Target Target

Output ~= 1*Target + -9.2e-07
Output ~= 1*Target + 7.4e-07

Test: R=0.99994 All: R=0.99991

o Data
0.1 —Fit
oY = T

o Data
0.1t Fit

Output ~= 1*Target + -7.7e-06
o

Output ~= 1*Target + -2.5e-06
o

o
SR
N \“‘.,:.,.

-0.2 0 0.2 0 0.2

571 Target Target

Figure 12: Regression plot for neural network B (parabolic arches).

o
N Training: R=0.99998 & Validation: R=0.99982
S 100 g 2 3100 3
. d o
: :]
-]
:'%’a 2 —Y=T O@(&?
- L- 50 &
X - &
]
I : ﬁ
E 2 &
5 5 0
o 0 50 100 © 0 50 100
Target Target
4 Test: R=0.9999 = All: R=0.99994
= 100 S 100
+ o Data 3 o Data 4
"u's Fit @ qq-; Fit
(] po © 4
= 50 = 50
- -
I I
=1 Q& 5 e
o 0 50 100 © 0 50 100
Target Target
Figure 13: Regression plot for neural network C (parabolic arches).
572
573

o574

575
576

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595

596
597
598

7.2 Predicting the response of random masonry arches using the proposed data-driven

scheme

This section investigates the structural behaviour of eight masonry arches, six circular
and two parabolic arches, as predicted by the trained neural networks. The dimensions of
the selected structures are within the range of the dataset values (1.5m-to-50m span, and
0.1m-to-1m masonry ring thickness). For the masonry arch geometries 5, 6 and 7 shown
in table 4, the predicted by the proposed metamodel collapse mechanism and ultimate
load, are compared with the results obtained from finite element analysis using
commercial software.

In addition, arches 1 and 3 in table 4 are based on the minimum stone thickness for a
circular arch to maintain stability under self-weight as proposed by (Couplet, 1729) and
(Milankovitch, 1904, Milankovitch, 1907), respectively. (Couplet, 1729) proposed that
the theoretical minimum thickness, t, of a circular masonry arch with radius, R, should be
t/R=0.1075. Several years later, (Milankovitch, 1904, Milankovitch, 1907) proposed that
the theoretical minimum thickness for a monolith arch should is t/R=0.10748.

In table 4 below, are provided the geometry of the selected arches as well as the ultimate
load at collapse, which is predicted from the neural networks, when a vertical point load
is applied at the quarter span.

Table 4: Geometry of masonry arches tested on neural networks and predicted ultimate load.

Span Height Stone Ultimate Load Source
Name (m) (m) thickness (kN)
(m)

Arch 1 2.3 1.15 0.12 0 (Couplet, 1729)
(circular)

Arch 2 16.0 8.0 1.0 100 -
(circular)

Arch 3 6.0 3.0 0.32 13.4 (Milankovitch,
(circular) 1904,

Milankovitch,
1907)

Arch 4 12.0 6.0 0.5 9.1 -
(circular)

Arch 5 20.2 10.1 0.84 35.9 -
(circular)

Arch 6 10.4 5.2 0.45 8.8 -
(circular)

Arch 7 10.4 5.2 0.82 96.05 -
(parabolic)

Arch 8 15.25 7.63 0.45 20.7 -
(parabolic)

The deformed shape of the arch 1 which is presented in figure 14, shows that the arch is
highly unstable, since it collapses under its self-weight. It is noted that the deformation of

22

599
600
601
602
603
604
605
606
607
608
609
610

611
612

this arch is derived using the neural network which predicts the deformation due to the
self-weight loading (neural network A of table 2). Then, once the neural network which
predicts the ultimate load is used (neural network C of table 2), a zero load is obtained. A
classical hinge failure mechanism of 5 hinges is obtained due to self-weight loading. This
is a potential type of collapse, as found in literature when a symmetric, circular arch is
subjected to symmetrical loading, e.g. self-weight (Cocchetti et al., 2012, Foce and
Huerta, 2005, Heyman, 1995). A similar, five-hinge collapse mechanism is depicted in
Figure 15 for a circular arch with the theoretical minimum thickness, as proposed in
(Milankovitch, 1904, Milankovitch, 1907, Couplet, 1729).

15} 2
10
1 L
E | -2
S 0.5
s -4
0 6
05} . | | | | 8
0 0.5 1 15 2 %107
Span (m)

Figure 14: Deformation (m) of the arch 1 of table 4 (2.3m span, 0.12m thickness) due to self-
weight only, when scale factor = 200.

23

613

- »
- »

Figure 75: Five hinge mechanism for a circular masonry arch under self-weight based on
literature. (McLean et al., 2021).

614

615

616 In figures 16-17, the deformed geometries of the arch 2 of table 4 due to self-weight only,
617 as well as due to self-weight and a vertical point load, are shown. From the deformed
618 shape due to self-weight (figure 16), is noticed that no hinge formation can be seen.
619 According to figure 17, though some hinges have been developed in the arch, the four
620 hinges mechanism is not fully developed at this load level, indicating that the arch is able
621 to fully support the total applied load.

622
10+ 0
8)
£ 57
D
o -4
0 6
0 5 10 15 %107
Span (m)

Figure 16: Deformation (m) of the arch 2 of table 4 (16m span, 1.0m thickness) due to self-
weight only, when scale factor = 1. 24

623
624

625
626

627
628
629
630
631
632
633
634
635
636

0 5 10 15 %107

Figure 17: Deformation (m) of the arch 2 of table 4 (16m span, 1.0m thickness) due to self-weight and
vertical load, when scale factor = 100.

In figures 18 and 20, the deformed geometries of arches 3 and 4 due to self-weight only
are shown. These are followed by figures 19 and 21 depicting the deformed geometry of
the same arches, due to self-weight and the vertical point load. When arches 3 and 4 are
subjected to self-weight and a vertical point load, the deformed shapes of both arches as
shown in figures 19 and 21, indicate that the four-hinge mechanism is developed. Thus,
the arches fail to support the overall vertical load. The predicted ultimate loads at
collapse, as obtained by the neural network C of table 2, are 13.4kN and 9.1kN for arches
3 and 4, respectively.

25

637
638
639
640

4
0
3_
E o} 2
=
D
T 1
-4
0
At 6
0 2 4 6 %10

Span (m)
Figure 18: Deformation (m) of the arch 3 of table 4 (6m span, 0.32m thickness) due to self-
weight only, when scale factor = 300.

12
4
3 1
B
~._12—
= 0
=)
21
-1
0
L -2
0 2 4 6 %1073

Span (m)

Figure 19: Deformation (m) of the arch 3 of table 4 (6m span, 0.32m thickness) due to self-weight and
vertical load, when scale factor = 100.

26

641
642
643

644
645
646
647

8_

6 10
€ Ll
=4 5
e
D 5
L))
T -10

0

15
2t
0 5 10 %107

Span (m)

Figure 20: Deformation (m) of the arch 4 of table 4 (12.0m span, 0.5m thickness) due to self-weight
only, when scale factor = 300.

%107

8 4

° 2
e 4m
-.51 0
2

0 -2

> -4

0 5 10

Span (m)

Figure 21: Deformation (m) of the arch 4 of table 4 (12.0m span, 0.5m thickness) due to self-weight
and vertical load, when scale factor = 100.

27

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662

663

In figures 22a and 23a, the deformed geometries of the arch 5 of table 4 due to self-
weight only, as well as due to self-weight and the vertical point load, are shown, as
obtained from the trained neural networks. To provide a comparison of the results which
are derived by the predictions of the trained neural networks, the same arch has been
simulated using finite element analysis implemented by the commercial software. Figures
22b and 23b show the deformed geometry of the arch 5 due to self-weight as well as due
to self-weight and the point load, as obtained by finite element analysis.

The geometry of the arch is stable under its self-weight as a symmetrical 3-hinge
formation can be observed in figure 22. When the arch is subjected to self-weight and a
vertical point load, the classical four-hinge collapse mechanism can be observed in figure
23. The predicted ultimate load (35.9kN, table 4) at collapse is comparable with the
ultimate load (34.1kN) obtained from finite element analysis. It is noted that the ultimate
load predicted by the neural network C of table 2 is slightly overestimated by 5.3%. The
position of hinges, which are depicted in the neural network prediction and in the finite
element analysis results, is also similar.

0
10 - L
R ’i@ gy Vi Q?“‘» U, Magnitude
e P 4 -
e \> 1 y) N £y
= LA/ oy i
% L”] s A ,/:‘-/ \\)\ EZ'EE%
3 ‘ | N L 15e-03
i i P o e o
) +5.5¢-04
N n I P l HEd
-3
0 5 10 15 20 x10°
Span (m)
@ (b)

Figure 22: Deformation (m) of the arch 5 of table 4 (20.2m span, 0.84m thickness) due to self-weight
only derived (a) from the trained artificial neural network (scale factor= 250), (b) from the finite
element analysis (scale factor= 250).

28

664
665
666
667
668
669
670
671
672
673
674
675
676
677

678

Height (m)

0.02
10y 0.01
U, Magn;:usfoz
o e
X
0 -0.01 %%ﬁ%
0) 10 15 20
Span (m)
(a) (b)

Figure 23: Deformation (m) of the arch 5 of table 4 (20.2m span, 0.84m thickness) due to self-weight and a
vertical load derived (a) from the trained artificial neural network (scale factor= 45), (b) from the finite element
analysis (scale factor= 45).

Another example is presented, providing a comparison of the ultimate failure load and
collapse mechanism obtained from finite element analysis and the proposed metamodel.
Figure 24 shows the deformed geometry of arch 6 due to self-weight and vertical point
load as obtained from finite element analysis and as predicted by the neural network B of
table 2, respectively. It can be noted that in both cases, the classical four-hinge collapse
mechanism can be observed. The predicted ultimate load (8.8kN) at collapse is
comparable with the ultimate load (10.4kN) obtained from the finite element model. It is
noted that the ultimate load predicted by the neural network C of table 2 is conservative.

U, Magnitude

Height (m)
[e] [\ E-Y
B 20
I{.) o h*]

0 2 4 6 8 10

Figure 24: Deformation (m) of the arch 6 of table 4 (10.4m span, 0.45m thickness) due to self-weight
and a vertical load derived (a) from the trained artificial neural network (scale factor=100), (b) from

Span (m)
(a)

the finite element analysis (scale factor= 100).

(b)

+5.68-03
+5.1e-03
+46e-03

+0.0e+00

29

679 To provide a holistic representation of the response of masonry arches obtained from
680 different geometry shapes, results derived for parabolic arches, are presented next. In
681 particular, the prediction of the response of the randomly chosen arch 7 of table 4 is given
682 in figures 25 and 26, for self-weight and vertical point loading, respectively. As shown in
683 these figures, the comparison between the machine learning prediction and finite element
684 analysis is satisfactory in terms of the deformed shape, for both self-weight and vertical
685 point loading, respectively. For the point load, a four-hinge mechanism arises as shown in
686 figure 26. The ultimate load which is obtained from the machine learning scheme is equal
687 to 96.05kN, that is close to the one derived from the finite element simulation (99.33kN).

688

689 8 [u, Magm].tu;e_w
690 0 e
692 g4} 4 it 4
693 = +0.0e+00 AN N
694 :?;!; ol -6 /7 A
695 8 i
696 0 -10 1
697 Jl PP
698 0o 2 4 6 8 10 s
x 10
699 Span (m)
700 @) (b)
701 Figure 25: Deformation (m) of the arch 7 of table 4 (10.4m span, 0.82m thickness) due to self-weight derived (a) from the
702 trained artificial neural network (scale factor=80), (b) from the finite element analysis (scale factor= 80).
703 al
704
705
| 5
706 o
707 E
708 £ 0
709 £
710 5
711 ,
712
2 : s s - -10
;ii 0 2 4 6 8 10 %10
Span (m)
715 @ (b)
igure 26: Deformation (m) of the arc .4m span, 0.82m thickness) due to self-weight and a vertical load derived (a) from
716 Fi 26: Def ion (m) of th h7(10.4 0.82m thickness) d If-weight and ical load derived (a) f
717 the trained artificial neural network (scale factor=80), (b) from the finite element analysis (scale factor= 50).
718

719 A last example is presented, providing the ultimate failure load and the collapse
720 mechanism for the parabolic masonry arch 8 (table 4), using the proposed metamodel.
721 Figure 27 shows the deformed geometry of arch 8 due to self-weight loading as well as
722 due to self- weight and a vertical point load, as predicted by the neural networks A and B
723 of table 3, respectively. It is noted that the classical four-hinge collapse mechanism can

30

724 be observed in this case too. The predicted ultimate load (20.7kN) is lower than the

725 ultimate load derived for the parabolic arch 7.

726

127 10} 0 10.02

728 I

729

730

731

732

733

734

735

- N N
-4 =L . . . -0.02

738 ° ° Snan (m\10 15 =10 0 5 10 15

739 Span (m)

740 @ (b)

741 Figure 27: Deformation (m) of the arch 8 (15.25m span, 0.45m thickness) obtained from the trained artificial neural network

742 (a) due to self-weight (scale factor=50), (b) due to self-weight and a vertical load (scale factor=50).

743
744 7.3 Summary of the results and datasets output

745

746 An effort to summarize the results provided in the datasets, reflecting holistically the
747 structural response of masonry arches, is made in this section. In particular, it was
748 observed that the structural response of a masonry arch varies with the span and masonry
749 ring thickness. Therefore, both the span and the ring thickness values, which have been
750 tested in the parametric simulations and included in the datasets for circular arches, are
751 provided in figures 28 and 29. In both figures, unstable and stable masonry arch
752 geometries are denoted. The unstable geometries correspond to arches which fail under
753 their self-weight and thus, cannot support any vertical loading. Stable geometries are the
754 ones which support their self-weight and potentially fail under the vertical loading.

755 In figure 28, masonry ring thickness versus span values are provided for unstable and
756 stable geometries. It is shown that for higher spans, ring thicknesses significantly increase
757 in order to provide a stable geometry. For example, for a span of 20m, ring thicknesses
758 higher than 0.75m lead to stable arches.

759 In figure 29, thickness/span ratio versus the number of dataset points, called dataset node
760 values in the graph, are provided for unstable and stable geometries. According to this
761 graph, 400 dataset points from the parametric simulations (approximately) lead to stable
762 masonry geometries, while more than 1300 dataset points lead to unstable geometries. In
763 addition, for a masonry ring thickness to span ratio lower than 0.0383, as indicated by the
764 average line in figure 29, unstable masonry arch geometries arise. For higher values of
765 this ratio, depicting a dispersion of increased thicknesses (or reduced spans), stable
766 masonry arches arise. It is noted that the datasets for stable and unstable masonry arch
767 geometries, providing also the ultimate loads, accompany this article. Relevant
768 descriptions can be found in Appendix 9.6.

10.01

(o]
Height (m)

-0.01

Height (m)
N O N A O o

31

Masonry thickness (m)

t/s (thickness/span)

0.9 G00 G000 O COG0C000000000000 C0000000000 COCOO000
0.8 GO00000000 G0 CO000000000 O O COOEOEEEEE000
0.7 CO00000 00 00 COO0NORNNRON® 80 (T CCTTCTTCTTTTTTITICTITTITIITIITTTIITTITTTTITTTTTTT T
0.6 CO00000000000 © C0000 G000 COCCOE00
0.5 (A ___________________JCO0000000sttttrottotrittivttituittsitiittustrtuttutiittrttsiustustsousous)
0.4 GO CO000
0.3 L___________ JOCOSOSSISS00IS000UStott0000ttotttttotittittottttittittittititttttotritostsstesees)
0.2 GB00000 CCCCTTCCTITTTTTTTTTtrooctTTtoTTTrrrorTroToTtTorctroToTTTtTonTTTTtTTTTtTTTTTTTOtTNITTCITRXDY

0.1 CO00

Span (m)

@ Unstable Geometry @ Stable Geometry
Figure 28: Plot of masonry thickness against span for stable and unstable circular masonry arch geometry.
0.45

04 ©

I

0 200 400 600 800 1000 1200
Dataset node

@ Stable Geometry @ Unstable Geometry ~ @ Average Line (t/s=0.0382)

Figure 89: Plot of ratio of masonry thickness and span for stable and unstable circular masonry arch geometry.

770
771
772
773
774
775
776
77
778
779
780

In figure 30, masonry ring thickness versus span values are provided for unstable and
stable parabolic arch geometries. In figure 31, thickness/span ratio versus the number of
dataset points, called dataset node values in the graph, are provided for unstable and
stable parabolic geometries. According to this graph, 500 dataset points from the
parametric simulations (approximately) lead to stable masonry geometries, while more
than 40 dataset points lead to unstable geometries. For a masonry ring thickness to span
ratio lower than 0.01081, as indicated by the average line in figure 31, unstable masonry
arch geometries arise. For higher values of this ratio, depicting a dispersion of increased
thicknesses (or reduced spans), stable masonry arches are obtained.

33

Masonry thickness (m)
© 0o 0 o 0o o o o o
o = N w H (9] [e)] ~ [ole] Vo] =

1.2

t/s (thickness/span)
o o
(o)} (o]

°
>

5 10 15 20 25 30
Span (m)

® Unstable Geometry @ Stable Geometry

Figure 30: Plot of masonry thickness against span for stable and unstable parabolic masonry arch geometry.

0 100 200 300 400 500
Dataset node

©® Stable Geometry @ Unstable Geometry @ Average Line (t/s= 0.01081)

Figure 31: Plot of ratio of masonry thickness and span for stable and unstable parabolic masonry arch %zometry.

782
783
784
785
786
787
788

789
790

791

792

793
794

795

796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

Finally, comparisons of the displacements, ultimate loads and computational times, as
obtained from the trained neural networks and finite element simulations, are provided.
Table 5 shows the comparison of the ultimate loads and table 6 presents the comparison
of the maximum displacement in the arch at an intermediate load level (self-weight) and
at the ultimate state. It appears that results obtained from machine learning and finite
element analysis are close.

Table 5: Comparison of ultimate loads obtained from the trained artificial neural networks (ANN) and finite element
analysis (FEM).

Ultimate load from FEM Ultimate load predicted by
Name (kN) ANN (kN)
Arch 5 34.10 35.9
Arch 6 10.40 8.80
Arch 7 99.33 96.05

Table 6: Comparison of displacements, intermediate at the end of self-weight and final displacements at the ultimate

load, obtained from the trained artificial neural networks (ANN) and finite element analysis (FEM).

Intermediate displacement at | Displacement at the ultimate
Name the end of self-weight (mm) load (mm)
ANN FEM ANN FEM
Arch 5 3 3.54 20 36.2
Arch 6 1 1.1 4 6
Arch 7 1.2 1.3 10 11

Data-driven analysis is also efficient in terms of the computation time compared to
traditional finite element analysis, as given in table 7. Within traditional finite element
analysis, it is estimated that an experienced user would need some hours to develop a
model for one masonry arch like those investigated in this study. It is noted that setting
up the model includes modelling the individual stones that make up the geometry of the
arch (probably in CAD environment), assigning material properties to the stones,
applying a surface-to-surface contact-law for each interface between adjacent stones,
assigning boundary conditions, meshing the geometry and applying loads (gravity and
point load). The same steps should be repeated for developing any other, randomly
chosen arch geometry.

Concerning the proposed data-driven scheme, according to tables 2 and 3, some hours are
needed to train the artificial neural networks. Some hours are also needed for the
parametric finite element investigation of the different arch geometries, to create the
datasets. However, this process takes place offline, and thus, it is implemented just once.
When training of the neural networks is complete, the trained neural networks can be
used as ready-to-use tools, in order to predict the response of random arches. According

35

812
813

814
815

816

817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851

to table 7, a trained neural network can make a prediction of the ultimate load and
collapse mechanism in less than a minute.

Table 7: Comparison of the computation time which is needed to use an artificial neural networks (ANN) and run a
finite element (FEM) simulation.

Computational time for one Computational time for one
Name FEM simulation (minutes) ANN prediction (minutes)
Arch 5 11.3 0.4
Arch 6 2.1 0.4
Arch 7 0.5 0.4

8. Conclusions

A data-driven methodology, relying on machine learning and finite element analysis is
proposed in this article, to investigate the structural behaviour of masonry arches. The
structures are subjected to two loading steps, the self-weight and the self-weight plus a
vertical point load applied at the quarter span. Parametric, non-linear finite element
simulations were conducted to generate datasets providing the ultimate response. These
datasets were then used to train artificial neural networks which stand as metamodels,
providing the ultimate load and the collapse mechanism of random masonry arches.
Two-dimensional geometries of masonry arches were developed using a Matlab script,
where the coordinates of each of the vertices of the masonry stones is extracted. The
structural, finite element models were created using Python scripts called within Matlab
to drive, a commercial finite-element software. The Python scripts provide the geometry
of the structure by reading the extracted coordinates of the masonry stones vertices. The
script also adds the mechanical boundary conditions, the subjected loads, and a unilateral
law, used to simulate potential damage due to opening/sliding (contact-friction) between
the masonry stones. Due to the nonlinearity of the models, the Newton—Raphson
incremental—iterative process was used to solve the numerical problem. Python scripts
within Matlab were also used to extract the results from the models. A total of 1862
dataset points for circular and 550 dataset points for parabolic arch shapes were used to
train the neural networks. The training, validation and testing of the network neural
networks were within acceptable tolerance.

The investigation shows that the proposed data-driven structural analysis of masonry
arches can be used to provide accurate representation of the ultimate, failure response.
The developed metamodel, can be used to predict the response of random masonry
arches. The methodology can be extended to more complex three-dimensional
geometries.

The article also proposes a numerical scheme to generate numerical datasets using Matlab
and Python scripts as well as commercial finite element software. A complete set of
relevant codes accompanies the article. Relevant descriptions can be found in the
Appendix of the article.

The following conclusions can also be drawn:
e Machine learning can be a useful structural tool, in solving highly complex
structural problems within a few seconds.

36

852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897

e The deformed geometries of the arches, which are predicted from the proposed
process, are comparable with literature as well as with results obtained from finite
element analysis.

e The developed structural tool can be used to investigate the structural behaviour
of masonry arches without the need for extensive computational cost. Once the
metamodel is built, predictions of the structural response can be provided in few
seconds. Little or no structural knowledge is required since inputs of the
metamodels are the span and the ring thickness of the structure. Thus, the
proposed methodology can be extended and used for a first, fast and accurate
representation of the ultimate response of similar structural systems.

Future work may involve the incorporation of image identification algorithms to the
developed neural networks. With an image identification algorithm added, a photograph
of a masonry arch can simply be supplied, read the geometry of the structure and feed it
to the developed machine learning tool to predict the structural response. This would
make the proposed methodology useful in structural health monitoring and site
assessment for masonry arches. A system that quickly evaluates the remaining strength
using these concepts could be helpful for the maintenance of these structures or during
emergency situations after earthquakes or other disasters.

9. Appendices

In this section are provided descriptions of the source codes which have been developed
to generate the dataset points for circular arch shapes. The interested reader can use, as
well as extend the codes, for instance to generate more sophisticated (e.g. three-
dimensional) geometries. All the source Matlab and Python files that have been used to
create the parametric finite element simulations, as well as the datasets which have been
used to train the artificial neural networks, accompany this article.

9.1 Central Matlab script

The central code in Matlab, which is used to create the parametric investigation of several
geometries of masonry arches, is included in the Matlab script: Appendix-1.m.

Within this script, the commercial finite element software (Abaqus) is called, using a
Python script (Appendix-2.py), to run a non-linear finite element simulation, for each arch
geometry. The coordinates of the four vertices of each masonry block of each arch, are
generated in Appendix-1.m script and saved in .txt files.

9.2 Python script implementing non-linear finite element analysis

The Python code, which is used to implement the non-linear finite element analysis of
each parametric masonry arch geometry, is provided in the Python script: Appendix-2.py.
Each parametric geometry, defined in Appendix-1.m script, is imported in Appendix-2.py
script. In this script, all the steps of a finite element model can also be identified,
including the material properties, the mesh, the loading and boundary conditions, as well
as the unilateral contact-friction interfaces between the masonry blocks.

37

898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941

9.3 Matlab script generating results

The Matlab code which is used to generate results, is provided in the Matlab script:
Appendix-3.m. Within this script, the commercial finite element software (Abaqus) is
called via a Python script (Appendix-4.py), to provide the solution of the finite element
analysis. Appendix-3.m script also runs a built-in code which reads the ultimate load
obtained from the output files of the finite element simulations, generated in the previous
steps.

9.4 Python script generating results

The Python code, which is used to extract the results from the finite element simulations,
is included in the Python script: Appendix-4.py. The extracted results are the
displacements at the four vertices of each masonry block.

9.5 Matlab script generating the deformed geometry of each masonry arch

The Matlab code, which is used to generate and visualize the deformed geometry of each
masonry arch, is included in the Matlab script: Appendix-5.m. Inputs to generate one
geometry, are the initial coordinates of the four vertices of each masonry block, as well as
the displacements of the vertices of the masonry blocks at the end of each finite element
simulation.

9.6 Datasets

The generated datasets, which have been used to train the artificial neural networks are
also attached to this article in the form of an Excel spreadsheet. In particular, the datasets
corresponding to circular arch shapes are included in DataSet.xIsx spreadsheet, while
those corresponding to parabolic arch shapes are given in DataSetParabolic.xIsx. Within
the datasets, stable and unstable geometries are identified.

At each column of the Excel spreadsheets, the following dataset points, derived from
each parametric simulation, are provided: span of the masonry arch, thickness, ultimate
load, thickness/span ratio, deformed geometry of the arch due to self-weight, deformed of
the arch due to point load (for the stable geometries).

Acknowledgments

Siphesihle Mpho Motsa has been supported by Erasmus+ Program within the
framework of action “International Credit Mobility” between the Technical University
of Crete, School of Production Engineering and Management and the University of
KwaZulu-Natal, department of Civil engineering under Structural Engineering &
Computational Mechanics (SECM) Group.

38

942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

References

Anastasio, S. 2020. Building between the two rivers: an introduction to the building
archaeology of ancient Mesopotamia. Building between the Two Rivers, 1-220.

Ashrafian, A., Panahi, E., Salehi, S., Karoglou, M., Asteris, P.G. 2023. Mapping the
strength of agro-ecological lightweight concrete containing oil palm by-product
using artificial intelligence techniques. Structures, 48, 1209-1229.

Bekas, G.K. & Stavroulakis, G.E. 2017. Machine learning and optimality in multi storey
reinforced concrete frames. Infrastructures, 2, 6.

Bergamo, O., Campione, G., Donadello, S., & Russo, G. 2015. In-situ NDT testing
procedure as an integral part of failure analysis of historical masonry arch bridges.
Engineering Failure Analysis, 57, 31-55.

Beskopylny, A., Lyapin, A., Anysz, H., Meskhi, B., Veremeenko, A. & Mozgovoy, A.
2020. Artificial Neural Networks in Classification of Steel Grades Based on Non-
Destructive Tests. Materials (Basel), 13.

Block, P., DeJong, M. & Ochsendorf, J. 2006. As Hangs the Flexible Line: Equilibrium
of Masonry Arches. Nexus Network Journal, 8, 13-24.

Broomhead, D. S. & Lowe, D. 1988. Radial basis functions, multi-variable functional
interpolation and adaptive networks. Royal Signals and Radar Establishment
Malvern (United Kingdom).

Cascini, L., Gagliardo, R., & Portioli, F. 2018. LiABlock 3D: A Software tool for
collapse mechanism analysis of historic masonry structures, Int. J. Archit. Herit.
14,1, 75-94.

Cavalagli, N., Gusella, V., & Severini, L. 2016. Lateral loads carrying capacity and
minimum thickness of circular and pointed masonry arches, Int. J. Mech. Sci. 115,
645-656.

Cavaleri, L., Barkhordari, M.S., Repapis, C.C., Armaghani, D.J., Ulrikh, D.V., & Asteris,
P.G. 2022. Convolution-based ensemble learning algorithms to estimate the bond
strength of the corroded reinforced concrete. Construction and Building
Materials, 359, 129504.

Chang, W. & Zheng, W. 2019. Estimation of compressive strength of stirrup-confined
circular columns using artificial neural networks. Structural Concrete, 20, 1328-
1339.

Charalambidi, B., Koutsianitis, P., Motsa, S. M., Tairidis, G., Kasampali, A.,
Drosopoulos, G., Stavroulaki, M. & Stavroulakis, G. 2022. Modelling,
identification and structural damage investigation of the Neoria monument in
Chania. Developments in the Built Environment, 10, 100069.

Civera, M., Mugnaini, V. & Zanotti Fragonara, L. 2022. Machine learning-based
automatic operational modal analysis: A structural health monitoring application
to masonry arch bridges. Structural Control and Health Monitoring, 29, e3028.

Cocchetti, G., Colasante, G. & Rizzi, E. 2012. On the Analysis of Minimum Thickness in
Circular Masonry Arches. Applied Mechanics Reviews, 64.

Conde, B., Drosopoulos, G., Stavroulakis, G., Riveiro, B. & Stavroulaki, M. 2016.
Inverse analysis of masonry arch bridges for damaged condition investigation:
Application on Kakodiki bridge. Engineering Structures, 127, 388-401.

39

988

989

990

991

992

993

994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Couplet, P. 1729. De la poussée des voltes. Histoire de I’Académie royale des sciences,
79, 117-141.

Dais, D., Bal, I. E., Smyrou, E., & Sarhosis, V. 2021. Automatic crack classification and
segmentation on masonry surfaces using convolutional neural networks and
transfer learning. Automation in Construction, 125, 103606.

Drosopoulos, G., Stavroulakis, G. & Massalas, C. 2006. Limit analysis of a single span
masonry bridge with unilateral frictional contact interfaces. Engineering
Structures, 28, 1864-1873.

Drosopoulos, G. A. & Stavroulakis, G. E. 2018. A computational homogenization
approach for the study of localization of masonry structures using the XFEM.
Archive of Applied Mechanics, 88, 2135-2152.

Drosopoulos, G. A. & Stavroulakis, G. E. 2020. Data-driven computational
homogenization using Neural Networks, Journal on Computing and Cultural
Heritage, 14, 1-19.

Elman, J. L. 1990. Finding structure in time. Cognitive Science, 14, 179-211.

Ferrero, C., Calderini, C. & Roca, P. 2023. Effect of joint deformability on the
experimental and numerical response of dry-joint masonry arches subjected to
large support displacements. Engineering Structures, 275, 115236.

Foce, F. & Huerta, S. 2005. On the safety of the masonry arch. Different formulations
from the history of structural mechanics. Essays in the History of Theory of
Structures, 117-142.

Galassi, S. 2023. An alternative approach for limit analysis of masonry arches on moving
supports in finite small displacements, Eng. Fail. Anal., 145, 107004.

Galassi, S., Zampieri, P. 2023. A new automatic procedure for nonlinear analysis of
masonry arches subjected to large support movements, Engineering Structures,
276, 115359.

Gaspar, O., Sajtos, I. & Sipos, A. A. 2022. Multi-Hinge Failure Mechanisms of Masonry
Arches Subject to Self-Weight as Derived from Minimum Thickness Analysis.
International Journal of Architectural Heritage, 1-29.

Grandio, J., Riveiro, B., Soilan, M., Arias, P. 2022. Point cloud semantic segmentation of
complex railway environments using deep learning. Automation in Construction,
141, 104425.

Grillanda, N., Milani, G., Ghosh, S., Halani, B. & Varma, M. 2021. SHM of a severely
cracked masonry arch bridge in India: Experimental campaign and adaptive
NURBS limit analysis numerical investigation. Construction and Building
Materials, 280, 122490.

Hagan, M. T., Demuth, H. B. & Beale, M. 1997. Neural network design, PWS Publishing
Co.

Hagan, M. T. & Menhaj, M. B. 1994. Training feedforward networks with the Marquardt
algorithm. IEEE transactions on Neural Networks, 5, 989-993.

Haykin, S. 2009. Neural networks and learning machines, 3/E, Pearson Education India.

Heyman, J. 1966. The stone skeleton. International Journal of solids and structures, 2,
249-279.

Heyman, J. 1967. On shell solutions for masonry domes. International Journal of Solids
and Structures, 3, 227-241.

Heyman, J. 1969. The safety of masonry arches, Int. J. Mech. Sci., 11,4, 363-85.

40

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Heyman, J. 1982. The Mansonry Arch, Chichester, UK: Ellis Horwood.

Heyman, J. 1995. The stone skeleton: structural engineering of masonry structures.
Cambridge University Press, Cambridge, UK.

Heyman, J. 1998. Structural analysis: a historical approach, Cambridge University
Press.

Hooke, R. 1676. A description of helioscopes, and some other instruments, London,
printed by T.R. for John Martyn.

Ivakhnenko, A. G. 1971. Polynomial theory of complex systems. IEEE transactions on
Systems, Man, and Cybernetics, 364-378.

Jang, J.-S. 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE
transactions on systems, man, and cybernetics, 23, 665-685.

Jing, Y., Sheil, B. & Acikgoz, S. 2022. Segmentation of large-scale masonry arch bridge
point clouds with a synthetic simulator and the BridgeNet neural network.
Automation in Construction, 142, 104459.

LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86, 2278-2324.

Liu, D., Tang, Z., Bao, Y. & Li, H. 2021. Machine-learning-based methods for output-
only structural modal identification. Structural Control and Health Monitoring,
28, €2843.

Lourenco, P. B. 2002. Computations on historic masonry structures. Progress in
Structural Engineering and Materials, 4, 301-319.

Loverdos, D., Sarhosis, V. 2022. Automatic image-based brick segmentation and crack
detection of masonry walls using machine learning. Automation in Construction,
140, 1043809.

Loverdos, D., Sarhosis, V. 2023. Geometrical digital twins of masonry structures for
documentation and structural assessment using machine learning. Engineering
Structures, 275, Part A, 115256.

Marquardt, D. W. 1963. An algorithm for least-squares estimation of nonlinear
parameters. Journal of the society for Industrial and Applied Mathematics, 11,
431-441.

Matlab 2021. release R2021a. Natick, Massachusetts: The MathWorks Inc.

McLean, T., Malaga-Chuquitaype, C., Kalapodis, N. & Kampas, G. 2021. OpenArch: An
open-source package for determining the minimum-thickness of arches under
seismic loads. SoftwareX, 15, 100731.

Melbourne, C. & Gilbert, M. 1995. The behaviour of multiring brickwork arch bridges.
Structural Engineer, 73.

Melchiorre, J., Manuello, A. & Marano, G. 2021. Application of a Machine Learning
Algorithm for the Structural Optimization of Circular Arches with Different
Cross-Sections. Journal of Applied Mathematics and Physics, 09, 1159-1170.

Milani, G., Lourenco, P. & Tralli, A. 2006. Homogenization Approach for the Limit
Analysis of Out-of-Plane Loaded Masonry Walls. Journal of Structural
Engineering-asce - J STRUCT ENG-ASCE, 132.

Milani, G., Lourenco, P.B. 2012. 3D non-linear behavior of masonry arch bridges,
Comput. Struct. 110-111, 133-150.

Milankovitch, M. 1904. Beitrag zur Theorie der Druckkurven. Dissertation zur Erlangung
der Doktorwiirde, KK Technische Hochschule Vienna

41

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125

Milankovitch, M. 1907. Theorie der druckkurven, éditeur inconnu.

Moseley, H. 1833. On a new principle in statics called the principle of least pressure, The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 3,16,

285-88.

Mostafa, K., Zisis, I. & Moustafa, M. A. 2022. Machine Learning Techniques in
Structural Wind Engineering: A State-of-the-Art Review. Applied Sciences, 12,
5232.

Nasrabadi, N. M. 2007. Book Review: Pattern Recognition and Machine Learning. SPIE.

Ochsendorf, J. 2006. The masonry arch on spreading supports, Struct. Eng. 84,2, 29-34.

O’Dwyer, D. 1999. Funicular analysis of masonry vaults. Computers & Structures, 73,
187-197.

Ozmen, A. & Sayin, E. 2018. Linear dynamic analysis of a masonry arch bridge.

Panagiotopoulos, P. D. 1985. Inequality Problems in Mechanics and Applications:
Convex and nonconvex energy functions, Springer Science & Business Media.

Poleni, G. 1748. Memorie istoriche della Gran Cupola del Tempio Vaticano, Padua:
Nella Stamperia del seminario.

Portioli, F., Cascini, L. 2017. Large displacement analysis of dry-jointed masonry
structures subjected to settlements using rigid block modelling, Eng. Struct. 148,
485-496.

Prakash, M., Manikandan, S., Surenther, I., Aswin Kumar, M., llakkiya, S. & Menaka, D.
2019. Speculation of compressive strength of concrete in real-time. International
Journal of Recent Technology and Engineering, 7, 988-992.

Psychas, 1.D., Schauer, M., Béhrnsen, J.U., Marinaki, M., Marinakis, Y., Langer, S.C.,
Stavroulakis G.E. 2016. Detection of defective pile geometries using a coupled
FEM/SBFEM approach and an ant colony classification algorithm. Acta
Mechanica 227, 1279-1291.

Rahimi, A., Aval, S. B. B., Noori, M., Sarhosis, V., Wu, Z., Nikkhoo, A. & Altabey, W.
A. 2022. A simplified beam model for the numerical analysis of masonry arch
bridges —A case study of the Veresk railway bridge. Structures, 45, 1253-1266.

Reich, Y. 1997. Machine learning techniques for civil engineering problems. Computer-
Aided Civil and Infrastructure Engineering, 12, 295-310.

Rosenblatt, F. 1958. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65, 386.

Sadowski, L., Nikoo, M. & Nikoo, M. 2018. Concrete compressive strength prediction
using the imperialist competitive algorithm. Computers and Concrete, An
International Journal, 22, 355-363.

Sanchez-Aparicio, L.J., Bautista-De Castro, A., Conde, B., Carrasco, P., & Ramos, L.F.
2019. Non-destructive means and methods for structural diagnosis of masonry
arch bridges. Automation in Construction, 104, 360-382.

Sarhosis, V., Bagi, K., Lemos, J. V. & Milani, G. Computational Modeling of Masonry
Structures Using the Discrete Element Method. 2016.

Simon, H. 1999. Neural networks: a comprehensive foundation, Prentice hall.

Simulia, D. S. 2013. ABAQUS 6.13 User’s manual. Dassault Systems, Providence, RI,
305, 306.

Stavroulaki, M. E., Drosopoulos, G. A., Tavlopoulou, E., Skoutelis, N. & Stavroulakis,
G. E. 2018. Investigation of the structural behaviour of a masonry castle by

42

1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152

considering the actual damage. International Journal of Masonry Research and
Innovation, 3, 1-33.

Stockdale, G., Yuan, Y. & Milani, G. 2022. The behavior mapping of masonry arches
subjected to lumped deformations. Construction and Building Materials, 319,
126069.

Tapkin, S., Tercan, E., Motsa, S. M., Drosopoulos, G., Stavroulaki, M., Maravelakis, E.
& Stavroulakis, G. 2022. Structural Investigation of Masonry Arch Bridges Using
Various Nonlinear Finite-Element Models. Journal of Bridge Engineering, 27.

Tempesta, G., Galassi, S. 2019. Safety evaluation of masonry arches. A numerical
procedure based on the thrust line closest to the geometrical axis, Int. J. Mech.
Sci., 155, 206-21.

Thai, H.-T. 2022. Machine learning for structural engineering: A state-of-the-art review.
Structures, 38, 448-491.

Tubaldi, E., Minga, E., Macorini, L. & lzzuddin, B. A. 2020. Mesoscale analysis of
multi-span masonry arch bridges. Engineering Structures, 225, 111137.

Winkler, E. 1867. Die Lebre von der Elasticitat und Festigkeit, Dominicus, Prague.

Wolowiec, E. & Kula, P. Practical Application of Artificial Neural Networks in
Designing Parameters of Steel Heat Treatment Processes. In: RUTKOWSKI, L.,
KORYTKOWSKI, M., SCHERER, R., TADEUSIEWICZ, R., ZADEH, L. A. &
ZURADA, J. M., eds. Atrtificial Intelligence and Soft Computing, 2012// 2012
Berlin, Heidelberg. Springer Berlin Heidelberg, 196-203.

Yuan, Y., Stockdale, G. & Milani, G. A novel fast and low-cost masonry monitoring
strategy for masonry arches. 2022 IEEE International Workshop on Metrology
for Living Environment (MetroLivEn), 2022. IEEE, 149-153.

Zampieri, P., Tetougueni, C. D. & Pellegrino, C. 2021. Nonlinear seismic analysis of
masonry bridges under multiple geometric and material considerations:
Application to an existing seven-span arch bridge. Structures, 34, 78-94.

43

