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Abstract 15 

A data-driven methodology is proposed, for the investigation of the ultimate response of 16 

masonry arches. Aiming to evaluate their structural response in a computationally 17 

efficient framework, machine learning metamodels, in the form of artificial neural 18 

networks, are adopted. Datasets are numerically built, integrating Matlab, Python and 19 

commercial finite element software. Heyman’s assumptions are adopted within non-20 

linear finite element analysis, incorporating contact-friction laws between adjacent 21 

stones, to capture failure in the arch. The artificial neural networks are trained, validated, 22 

and tested using the least square minimization technique. It is shown that the proposed 23 

scheme can be used to provide a fast and accurate prediction of the deformed geometry, 24 

the collapse mechanism and the ultimate load. Cases studies demonstrate the efficiency 25 

of the method in random, new arch geometries. Relevant Matlab/Python scripts and 26 

datasets are provided. The method can be extended towards structural health monitoring 27 

and the concept of digital twin.  28 

 29 

Keywords: FEM, Machine Learning, Artificial Neural Network, Multi-hinge failure, 30 

Damage Prediction, Masonry Arches, Data-driven Mechanics, Digital Twin  31 

 32 
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1. Introduction 34 

 35 

Masonry arches have been used widely during centuries to span and enclose space. The 36 

structural benefit of the arch shape is still under investigation even though the technique 37 

was first observed in Mesopotamian brick architecture, dating back to the 2nd 38 

Millennium BC (Anastasio, 2020). Arches are efficient load-bearing structures, which 39 

distribute applied loads through compression in adjacent masonry stones. The arch, as a 40 

method of construction, is directly relevant to the material behaviour of masonry. There 41 

exists a harmonic relation between the masonry stones and the shape of the arch, to 42 

ensure that the structure is mainly under compression. Compression failure of masonry 43 

arches is generally unlikely to take place, thus, the typical failure mode of arches is a 44 

tensile hinge mechanism (Heyman, 1966, Heyman, J. 1982, Drosopoulos et al., 2006, 45 

Grillanda et al., 2021).  46 

In particular, the typical mode of failure for masonry arches is the formation of tension 47 

hinges in-between the masonry stones, activated when the thrust line is tangent to the 48 

masonry arch section edges. The change of the structural state, from equilibrium to 49 

mechanism, can be caused by settlement of supports due to earthquakes, vertical loads 50 

due to vehicles, erosion, or ground bearing failure. This hinge mechanism can result in 51 

damage and eventually partial or total collapse (Bergamo et. al., 2015, Cavalagli et. al., 52 

2016, Portioli and Cascini, 2017, Sánchez-Aparicio et. al., 2019).  53 

Several investigations have been conducted, to highlight the structural response of 54 

masonry arches. Hooke (1676) has been pioneer for first describing the compression 55 

behaviour of masonry arches under their self-weight and for proposing a rational rule to 56 

estimate the size of masonry stones and the geometry of masonry arches. This rule is 57 

based on the analogy of a hanging chain forming catenary in tension under its self-58 

weight, and on a masonry arch (inverted chain), standing rigid in compression (Heyman, 59 

1982, Heyman, 1998, O’Dwyer, 1999, Block et al., 2006). In (Poleni, 1748), Hooke’s 60 

hanging chain principle was used to assess the safety of the cracked dome of St. Peter’s 61 

in Rome. More literature is found in the same direction, providing numerical methods 62 

which can be used to determine the thrust line closest to the geometrical axis of a given 63 

arch (Moseley, 1833, Winkler, 1867, Heyman, 1969, Tempesta and Galassi, 2019). 64 

Recently, in (Gáspár et al., 2022) this principle was used in a study which relates the 65 

optimal geometry of a masonry arch and the number of concurrent hinges under self-66 

weight, at a limit state quantified by minimum thickness.  67 

Among the first approaches used to evaluate the response of masonry arches are those 68 

relying on limit analysis tools. Within these abroaches, masonry blocks are simulated as 69 

rigid blocks and governing equations are often derived using static and kinematic 70 

theorems for limit analysis. Some relevant publications, evaluating the response of 71 

masonry arches under vertical and horizontal loads, as well as settlement of supports, can 72 

be found in (Ochsendorf, 2006, Milani and Lourenço, 2012, Cavalagli et. al. 2016, 73 

Portioli and Cascini, 2017, Cascini et. al., 2018, Galassi, 2023, Galassi and Zampieri, 74 

2023). It is noted that in this work a different methodology, relying on finite element 75 

analysis, is adopted to capture the response of masonry arches. In addition, emphasis is 76 

mainly given in the data-driven nature of the proposed framework. Therefore, limit 77 

analysis techniques could also be adopted, in principle, to provide the structural response 78 

of arches under the suggested data-driven scheme. 79 
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In the later years, more advanced techniques have been developed, to evaluate the 80 

structural behaviour and ultimate, failure response of masonry arches. Often, the finite 81 

element method is the numerical tool used to simulate detailed two and three-dimensional 82 

geometries of masonry arches. To capture the failure response, different constitutive 83 

descriptions are introduced in these models. The arising computational cost is significant, 84 

in particular for bigger models with more structural parts, higher dimensions and 85 

complex non-linear material laws. 86 

In (Özmen and Sayın, 2018), three-dimensional finite element models are used to assess 87 

the seismic response of an old masonry arch bridge in the framework of the macro 88 

modelling approach. In (Charalambidi et al., 2022), a finite element model introducing 89 

unilateral interfaces to capture failure between masonry stones, is proposed to identify 90 

and predict the cause of the existing structural damage of a masonry monument in 91 

Greece. In (Tapkın et al., 2022), various non-linear finite element models were used to 92 

simulate the structural response of a three-span masonry arch bridge located in Turkey. In 93 

(Drosopoulos and Stavroulakis, 2018), a computational homogenization method is 94 

proposed, to investigate localization of damage in masonry walls. Macroscopic, structural 95 

scale failure is represented by cohesive cracks in the framework of the extended finite 96 

element method, using the effective material properties obtained from microscopic 97 

simulations. More efforts on numerical modelling of masonry arches using the finite 98 

element method can be found in (Ferrero et al., 2023, Rahimi et al., 2022, Zampieri et al., 99 

2021, Tubaldi et al., 2020, Stavroulaki et al., 2018, Conde et al., 2016, Sarhosis et al., 100 

2016, Milani et al., 2006, Lourenço, 2002).  101 

In the 4th industrial revolution era, machine learning elements, such as artificial 102 

intelligence (AI), have been adopted to solve complex non-linear engineering problems. 103 

In the recent years, even more machine learning algorithms have been developed to solve 104 

engineering problems. In structural engineering, artificial neural networks have been used 105 

to assess the strength and performance of concrete structures (Chang and Zheng, 2019, 106 

Prakash et al., 2019, Sadowski et al., 2018) and the structural response of steel 107 

(Beskopylny et al., 2020, Wołowiec and Kula, 2012). Other available machine learning 108 

approaches include non-destructive and vision-based measurement techniques, which are 109 

used as a method of structural health monitoring (Yuan et al., 2022, Bekas and 110 

Stavroulakis, 2017, Psychas et al., 2016, Cavaleri et. al., 2022, Grandio et al., 2022, 111 

Ashrafian et. al., 2023).  112 

The main concept of introducing machine learning approaches in structural engineering, 113 

is to use existing data, carrying information for the structural response, in numerical 114 

simulations. Thus, databases are developed and used to train a machine learning 115 

algorithm. The trained algorithm is then used to assess the response of the structural 116 

system. A numerical metamodel is developed within this framework, able to potentially 117 

replace or complete existing structural evaluations, due to missing experiments or 118 

computationally expensive calculations. 119 

In (Jing et al., 2022), an artificial neural network called BridgeNet is proposed, for 120 

automating the segmentation of masonry arch bridge elements obtained from large-scale 121 

point clouds. In (Melchiorre et al., 2021), machine learning algorithms are used to 122 

structurally optimize the cross-section of a circular arch by calculating the internal 123 

stresses and comparing them against the yield stresses of the material. In (Civera et al., 124 

2022), artificial intelligence and machine learning algorithms are used to interpret 125 
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operational modal analysis mode shapes, which is normally a computationally expensive 126 

task, aiming in the structural health monitoring of masonry arches. In (Drosopoulos and 127 

Stavroulakis, 2020), machine learning is introduced in multi-scale computational 128 

homogenization to capture the non-linear response of masonry walls. Recent studies 129 

emphasize in using image recognition and deep machine learning tools, including for 130 

instance computer vision and convolutional neural networks (CNN), to generate 131 

geometric digital twins for masonry structures (Dais et al., 2021, Loverdos and Sarhosis, 132 

2023, Loverdos and Sarhosis, 2023). 133 

In this study, a data-driven numerical analysis of masonry arches is proposed, to evaluate 134 

their mechanical response considering different arch geometries (span and thickness of 135 

the masonry stones). The first step of this investigation is to conduct parametric 136 

simulations, in order to develop datasets, using as input and output values geometric and 137 

structural parameters of masonry arches. In a subsequent step, these datasets will be used 138 

to train artificial neural networks. Therefore, the article proposes a methodology for using 139 

machine learning, data-driven techniques, in order to achieve a fast and accurate 140 

prediction of the structural response of masonry arches. It is noted that to the authors’ 141 

best knowledge, only limited works can be found, emphasizing in data-driven, machine 142 

learning approaches, for the structural evaluation of masonry arches. Also, the majority 143 

of the published research focuses more on the geometric aspects of the data-driven 144 

approaches, comparing to the structural response and the failure mode prediction which is 145 

the core outcome of this investigation. 146 

In particular, two-dimensional, non-linear finite element models were developed to 147 

perform the parametric assessment, considering the following Heyman’s assumptions: (i) 148 

masonry stones have no tensile strength and, (ii) the compressive strength of the stone is 149 

infinite (Heyman, 1966). The results obtained from the finite element models were used 150 

to train, validate, and test artificial neural networks. This procedure has been 151 

implemented using Python, Matlab and commercial finite element software. The trained 152 

neural networks can provide a fast structural evaluation of random masonry arches, with 153 

limited computational cost, emphasizing in critical and valid information for the ultimate 154 

structure response. Thus, the outputs of the trained neural networks, are, (a) the deformed 155 

geometry depicting potential damage under the self-weight, (b) the deformed geometry, 156 

also depicting potential damage, under self-weight and a vertical point load applied at ¼ 157 

of the span and (c) the ultimate load at collapse.  158 

 159 

 160 

2. Ultimate (failure) response of masonry arches 161 

 162 

Goal of this article is to propose a data-driven methodology for the structural evaluation 163 

of masonry arches. According to the overall concept, parametric structural simulations 164 

within non-linear finite element analysis are conducted to generate datasets providing the 165 

ultimate, failure response of masonry arches of various geometries. Machine learning 166 

elements in the form of artificial neural networks are then used to train the set of results 167 

obtained from the parametric finite element analysis. The trained neural networks are 168 

metamodels able to predict the failure response of randomly chosen masonry arch 169 

geometries. The parametric investigations are conducted on circular and parabolic 170 
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masonry arches, but any other geometry or even different structural type, could be 171 

adopted using the proposed concept.  172 

In this section, principles of the mechanical response of masonry arches are provided, 173 

emphasizing in the ultimate, failure behaviour of these structures. The classical collapse 174 

mechanism theory as presented in Heyman (1982), has been widely used to determine the 175 

load-bearing capacity of masonry arches.  This technique has been adopted by other 176 

analytical methods to estimate the thrust line passing through masonry arch stones. For 177 

arches to be fully under compression, the thrust line must lie within the core (middle 178 

third) of the section (Heyman, 1982). Unreinforced masonry arches form a plastic hinge 179 

when the thrust is tangent to the extrados and/or intrados of the arch. When the thrust line 180 

is tangent at three extrados and/or intrados points of the arch, three hinges are developed. 181 

The introduction of three hinges changes the determinacy of a fixed support arch from 182 

statically indeterminate to statically determinate. Then, the development of a fourth hinge 183 

triggers a kinematic collapse mechanism, widely known as the four-hinge collapse 184 

mechanism (Heyman, 1967).  185 

According to this description, four-hinge collapse mechanism is generally the common 186 

cause of structural failure of masonry arches. In addition, this mechanism may not arise 187 

when a symmetrical arch is subjected to symmetric loading, like self-weight. Heyman 188 

(1967) demonstrated that this response may be obtained on semi-circular arches under 189 

their own weight. Under this condition, at least a 5th hinge must form to trigger a 190 

kinematic collapse.  191 

To simulate the mentioned hinge mechanism between adjacent stones, principles taken 192 

from non-smooth mechanics have been adopted in this article within non-linear finite 193 

element analysis (Panagiotopoulos, 1985, Drosopoulos et al., 2006). In particular, a 194 

unilateral contact and friction law is used to describe the surface contact conditions. This 195 

law introduces a strong nonlinearity, even though the stones are assigned linear material 196 

properties. Therefore, nonlinearity is restricted to the interfaces between the stones, 197 

allowing for the opening and/or sliding along these interfaces. This opening and sliding 198 

that may appear in an interface, give rise to 8 configurations of deformation between two 199 

adjacent stones (Stockdale et al., 2022). These deformation modes include openings, 200 

rotations, slips, and slip/rotation combinations, as shown in figure 1. It is noted, that these 201 

deformation modes can be predicted by the machine learning, data-driven approach 202 

which is proposed in this study. 203 

In this study, relations (1)-(3) are adopted to describe the contact conditions in the 204 

interface between two adjacent masonry blocks. Inequality (1) expresses the non-205 

penetration condition and inequality (2) states that only compressive stresses can be 206 

developed in the interface, noticing that 𝑢 is the single degree of freedom, 𝑔 is the initial 207 

opening of the contacting bodies and 𝑡𝑛 is the normal stress at the interface. Equality (3) 208 

expresses the complementarity relation, which states that either zero stresses arise and 209 

opening takes place or non-zero stresses appear, and contact is activated. 210 

 211 

ℎ = 𝑢 − 𝑔 ≤ 0 ⟹ ℎ ≤ 0                                        (1) 212 

−𝑡𝑛 ≥ 0                                                                       (2) 213 

𝑡𝑛(𝑢 − 𝑔) = 0                                                            (3) 214 
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In the tangential direction, a static version of the Coulomb friction law is adopted, 215 

indicating that sliding takes place when the shear stress 𝑡𝑡 in the interface reaches a 216 

critical value 𝜏𝑐𝑟, according to relation (4): 217 

 218 

𝑡𝑡 = 𝜏𝑐𝑟 = ±𝜇|𝑡𝑛|                                                    (4) 219 

where μ is the friction coefficient.  220 

The coefficient of friction assigned to the unilateral contact-friction interfaces of this 221 

article is set equal to 0.5 (Melbourne and Gilbert, 1995). Loading of each arch involves 222 

the self-weight, applied at a first analysis step and a vertical point load applied at a 223 

second step, at the ¼ of the span. It is noted that this is the worst load position, since the 224 

ultimate load derived from this position is the lowest compared to those obtained from 225 

other load positions. This is discussed in several studies, such as in the classical work 226 

presented in (Heyman, 1982), as well as in subsequent studies (Drosopoulos et al., 2006). 227 

The arches are also assigned fixed boundary conditions. The assigned material properties 228 

on the finite element models are as follows: density is equal to 2300kg/m3, modulus of 229 

elasticity is 30GPa and Poisson’s ratio is 0.2. For the implementation of the proposed 230 

data-driven scheme Abaqus commercial finite element software and two programming 231 

codes, namely, Matlab (Matlab, 2021) and Python, have been adopted.    232 

 233 

Figure 1: Potential deformation modes between two adjacent blocks of an arch (Stockdale et al., 234 
2022). 235 
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3.  Machine learning using artificial neural networks 236 

 237 

Machine learning is a branch of artificial intelligence which focuses on training computer 238 

codes on how to make predictions of systems based on available datasets and algorithms. 239 

The ability of machine learning algorithms to recognise patterns from large datasets 240 

allows for their usage in various fields of study such as engineering, business, and 241 

science. 242 

In (Reich, 1997) it was shown that machine learning was still in its infancy stage due to 243 

limitations on machine learning algorithms and computing power, as well as due to the 244 

lack of experimental databases to validate the machine learning models. Recently, it has 245 

been demonstrated a significant increase of using machine learning tools, to solve 246 

complex structural engineering problems (Thai, 2022). In addition, databases like 247 

DataCenterHub, DesignSafe and Mendeley Data can now be used to validate machine 248 

learning models. The number of machine learning algorithms has been significantly 249 

increased and tools like artificial neural networks, decision trees, regression analysis, 250 

support vector machine, random forest and boosting algorithms, have been adopted in 251 

structural engineering applications (Thai, 2022).  252 

In this article, emphasis is given on using artificial neural networks as the numerical tool 253 

which implements data-driven structural assessment. An artificial neural network is 254 

developed by biomimicking the human brain structure, thus, how neurons are 255 

interconnected to imitate thinking, recognition and decision making (Simon, 1999, 256 

Nasrabadi, 2007). It was first invented by (Rosenblatt, 1958) in 1958 and called the 257 

perceptron. Due to improvements to computational power, various algorithms have been 258 

developed such as the feedforward neural network (Ivakhnenko, 1971), the radial basis 259 

function neural network (Broomhead and Lowe, 1988), the convolutional neural network 260 

(LeCun et al., 1998), the recurrent neural network (Elman, 1990) and the adaptive neuro-261 

fuzzy inference system (Jang, 1993). The feedforward neural network is the most 262 

common system, due to its simplicity and robustness to solve multi-variate and nonlinear 263 

modelling problems (Mostafa et al., 2022, Thai, 2022).  264 

In this study, a feedforward neural network is adopted to train the datasets which are built 265 

by finite element simulations. In figure 2 an example of a neural network represented by 266 

x-h-h-y is shown, where x is the number of inputs (variables), h is the number of neurons 267 

for one of the two hidden layers, and y is the number of outputs (prediction) (Mostafa et 268 

al., 2022). In the hidden layers, the input variables are assigned weights which need to be 269 

determined and then used to predict. Activation (sigmoid) functions, such as the 270 

nonlinear continuous sigmoid, the tangent sigmoid, and the logarithmic sigmoid, are also 271 

introduced (Haykin, 2009). The inputs are multiplied by weights to provide the values of 272 

the output layers, within acceptable accuracy (low error margins). The iterative process of 273 

assigning weights is called training. Equation (5) shows a generic neuron j in a hidden 274 

layer, where 𝑤𝑖𝑗
ℎ  is the weight that connects the ith neuron of the current layer to the jth 275 

neuron of the following layer, 𝑥𝑖
ℎ

 is the input variable, b is the bias associated with the jth 276 

neuron to adjust the output along with the weighted sum, and 𝑓 is the activation function 277 

(Mostafa et al., 2022). Equations (6) and (7) provide some of the commonly adopted 278 

activation functions, the tangent sigmoid and logarithmic sigmoid, respectively.  279 

𝑦𝑗
ℎ = 𝑓(∑ 𝑤𝑖𝑗

ℎ𝑛
𝑖=1 𝑥𝑖

ℎ + 𝑏𝑗
𝑘)         (5) 280 
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𝑓(𝑢) = −1 +
2

(1+𝑒−2𝑢)
             (6) 281 

𝑓(𝑢) =
1

(1+𝑒−𝑢)
           (7) 282 

In this study, the Levenberg–Marquardt backpropagation algorithm (Hagan and Menhaj, 283 

1994, Marquardt, 1963) is adopted to perform the training. The algorithm consists of two 284 

steps: (a) feed-forward weight values are determined to calculate the error by minimizing 285 

the least squares error function, and (b) propagating back the error to previous layers and 286 

checking if the error value falls outside the acceptable error margin. This iterative process 287 

(epoch) of backpropagation is repeated until the errors from the interconnecting weights 288 

are within the acceptable error margin. The fixed interconnecting weights now form a 289 

neural network which can be used to predict complex problems with certain accuracy. A 290 

schematic diagram of the whole training process is shown in figure 3.  291 

 292 

 293 

 294 

Figure 2: Feed-forward neural network architecture. 
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 295 

 296 

4. The proposed data-driven scheme 297 

 298 

The implementation in this article of data-driven structural analysis for masonry arches 299 

using machine learning principles, involves the use of a commercial finite element 300 

software (Abaqus) as well as Matlab (Matlab, 2021) and Python. A code developed in 301 

Matlab is the pillar of the procedure, since it provides the overall definition of the 302 

parameters used by the finite element models, it establishes the connection with the 303 

parametric finite element model, and it implements machine learning. In Appendix 9.1 of 304 

the article, descriptions for this Matlab code are given. 305 

The finite element software is only used to conduct the parametric structural simulations 306 

of masonry arches. A Python script is also introduced within the Matlab code, to call the 307 

finite element model without opening the GUI of the finite element software. 308 

Descriptions for this Python script are provided in Appendix 9.2 of the article. The details 309 

of the proposed scheme are presented below:  310 

• In the first step, a Matlab script (Appendix 9.1) is developed to define the 311 

geometry of the masonry arch and extract the (x) and (y) coordinates of the 312 

vertices of the individual stone blocks that make up the structure. The span of the 313 

arch and the thickness of the masonry blocks are the parameters introduced to 314 

define the geometry and used in the parametric investigation. The extracted 315 

coordinates are saved in a text file.   316 

• In the second step, the Matlab script calls a Python script with the finite element 317 

model (Appendix 9.2), derived from the commercial finite element software, 318 

without the need to open the GUI of the software. The Python script initiates the 319 

solution for the discrete finite element model of the masonry arch, which is 320 

generated by reading the coordinates from the text file (previous step). All the 321 

details of the non-linear finite element model are included in the Python script, 322 

namely, the boundary conditions (fixed supports), the applied loads (step-1: self-323 

weight and, step-2: a vertical point load applied at ¼ of span), the mesh (bilinear 324 

quadrilateral elements with size equal to 0.05m), and the unilateral 325 

contact/friction laws between the stones.  326 

• In the third step, a second Matlab script (Appendix 9.3) calls the finite element 327 

software and runs a second Python script (Appendix 9.4) which extracts results 328 

from the finite element analysis solutions. The results extracted, include the (x) 329 

Figure 3: Typical workflow of machine learning (Thai, 2022). 
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and (y) displacements of the four vertices of each stone block after the completion 330 

of the first and second loading steps (self-weight only and self-weight plus 331 

vertical point load, respectively), and the ultimate load at collapse. It is noted that 332 

these (x) and (y) displacements are used to determine the deformed shape of the 333 

arch, after the end of each finite element analysis. 334 

• In the fourth step, the results obtained from the finite element models are sorted 335 

and stored as mat files (Matlab) to form databases. These databases are trained 336 

using an artificial neural network which can then be used to predict the structural 337 

response of any masonry arch within the range of the database values.      338 

A flowchart illustrating the steps of the whole process is shown in figure 4. The path 339 

marked by the dashed-line (red) arrows in figure 4 shows the workflow/application of the 340 

trained neural network.  341 

All the simulations were run on a computer with quad-core Intel® Xeon E5520 at 2.266 342 

GHz and 16 GB RAM. The computational time needed to predict the structural response 343 

using the trained neural networks is about 25.5s.  344 

 345 

 346 

 347 

5. Details of the parametric finite element analysis simulations 348 

 349 

In this work, unilateral contact-friction interfaces are introduced between adjacent blocks 350 

to simulate the failure modes which are shown in figure 1. Sliding and/or opening of 351 

these interfaces, lead to the formation of hinges (the thrust line falls outside the section of 352 

the stone), depicting failure for two-dimensional masonry arches. To solve this unilateral 353 

contact–friction problem, the Lagrange multipliers method is adopted for simulating 354 

opening in the normal direction of the interfaces and the penalty method is used for 355 

Figure 4: Flowchart of the proposed workflow. 
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simulating sliding in the tangential direction. In addition, a surface-to-surface 356 

discretization is adopted for the masonry surfaces (edges) at each unilateral contact and 357 

friction interface. Due to the introduction of the unilateral-contact and friction interfaces 358 

the finite element model is non-linear, noticing that no material non-linearity and small 359 

displacement analysis are also considered. The Newton-Raphson incremental-iterative 360 

procedure is used to solve this problem.  361 

To implement the parametric finite element simulations and generate the datasets, 1862 362 

non-linear finite element models of circular arches and 550 models of parabolic arches 363 

have been developed to provide a holistic insight in the structural response of masonry 364 

arches, emphasizing in potential collapse mechanisms. Within the adopted discrete 365 

approach, 20 two-dimensional masonry blocks have been used to create each masonry 366 

arch. It is noted that in previous studies (Charalambidi et al., 2022, Tapkın et al., 2022), it 367 

has been shown that using more blocks than a chosen number, may not significantly 368 

affect the structural response, while it can increase the computational cost.  369 

Due to its low tensile resistance, the mortar is neglected in the models developed for this 370 

study. Two steps are used to introduce static loads on the structure: the first step 371 

introduces a pure gravity load to simulate the state of inertia of the structure and the 372 

second step adds an incrementally applied point load at ¼ of the span.  373 

Concerning the failure response of the masonry arches, as this arises from the used 374 

discrete finite element models, it is noticed that the ultimate strength is reached when 375 

parts of the structure lose contact and develop rigid body displacements. This happens 376 

due to the fact that the defined unilateral contact/friction boundary constraints (assigned 377 

between stones) become insufficient to equilibrate the loaded structure. On the numerical 378 

model, as collapse is being reached, at least one zero eigenvalue on the tangential 379 

stiffness matrix is introduced which makes the analysis unstable.  380 

  381 

6. Building the artificial neural networks 382 

  383 

In this study, three neural networks have been trained, validated and tested to predict the 384 

structural response of circular masonry arches. Each trained neural network will provide 385 

a different insight about the structural behaviour of the arch. The first neural network will 386 

be used to predict the deformed geometry of the structure when subjected to self-weight 387 

only. The second neural network will predict the deformed geometry when the structure 388 

is subjected to self-weight plus a vertical load applied at ¼ of span. The third neural 389 

network will be used to predict the ultimate (failure) load at collapse, when the structure 390 

is subjected to self-weight plus a vertical load applied at ¼ of span. The same process is 391 

repeated, and another three neural networks are also trained, to predict the response of 392 

parabolic arches. Then, a variable is introduced in a Matlab script, to establish the 393 

connection between the chosen shape, circular or parabolic, and the corresponding 394 

trained neural networks. For example, when the user selects this variable to be equal to 395 

“circular”, the trained neural networks which correspond to the circular arch datasets is 396 

called and predict the response of a random arch geometry. A similar process is followed 397 

for a parabolic arch shape or any other arch shape that may potentially be added to the 398 

dataset to widen the scope of the scheme. 399 

To train the mentioned artificial neural networks, results derived from the finite element 400 

simulations, were extracted and used. In the input layer of each neural network are added 401 
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the span and thickness of the masonry blocks representing the initial geometry of each 402 

arch. Figure 5 shows Matlab plots of the vertices that make up the intrados and extrados 403 

of 5.0m span and 0.25m masonry ring thicknesses for a circular and a parabolic shape.  404 

In the output layer of the first two neural networks, are included the x- and y- 405 

displacements of each vertex on each of the 20 individual masonry stones, representing 406 

the deformed geometry at the end of each loading step of the finite element analysis.  407 

In particular, the x- and y- displacements values at the end of loading step-1 were used to 408 

build the neural network that predicts the deformation of the structure when subjected to 409 

self-weight only and the x- and y- displacements values at the end of loading step-2 were 410 

used to build the neural network that predicts the deformation of the structure when 411 

subjected to self-weight plus a vertical point load.  412 

In the third neural network, the output layer was defined by the ultimate load which is 413 

obtained at the end of the finite element analysis. Figure 6 shows the deformation of a 414 

5.0m span circular arch with 0.25m thickness, subjected to self-weight and a vertical load 415 

applied at ¼ of the span. This figure is derived from one of the parametric finite element 416 

simulations, developed to create the databases that will be used to train the artificial 417 

neural networks. It is noted, that the opening and sliding between the masonry blocks as 418 

depicted in figure 6, can also be predicted and shown by the trained neural networks. 419 

 420 

  421 

 422 

 423 

 424 

Figure 1:  Matlab plot of the vertices that make up the intrados and extrados of a) a circular and b) a 

parabolic arch with 5m span and 0.25m ring thickness. 

(b) (a) 
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 425 

6.1 Methodology and parameters adopted to train the artificial neural networks 426 

 427 

In this study, the Levenberg-Marquardt algorithm is adopted to train the neural networks. 428 

This is considered as one of the fastest training algorithms (Matlab, 2021) but requires 429 

more memory than other techniques available. It uses Jacobian matrix to compute the 430 

solution and assumes that the performance function is the mean or sum of square errors. 431 

Like the quasi-Newton methods, second-order training speed can be achieved without 432 

solving the Hessian matrix (Liu et al., 2021). The Hessian matrix is approximated by 433 

equation (8) when the performance function is provided by the sum of squares errors and 434 

the gradient can be computed as Jacobian matrix multiplied by the vector of network 435 

errors, see equation (9).  436 

Equation (10) shows how the Levenberg-Marquardt algorithms approximate the Hessian 437 

matrix (Hagan and Menhaj, 1994, Hagan et al., 1997) by combining the Gradient Descent 438 

and Newton-Raphson method. When 𝜇 is zero, equation (10) is transformed to Newton’s 439 

method, using the approximate Hessian matrix. When 𝜇 is large, equation (10) forms 440 

Gradient Descent with a small step size. The algorithm is faster and more accurate when 441 

𝜇 is small since Newton’s method is quick when approaching the true value. With each 442 

successful iteration (epoch), the performance function is reduced unless the tentative step 443 

is not successful thus increasing the performance function. The aim to keep reducing 𝜇 444 

makes the algorithm fast.  445 

Table 1 shows the parameters used to train the neural networks.  It should be noted that 446 

the neural networks were re-trained multiple times to improve the results, since during re-447 

training different initial conditions and sampling were considered.  The 70/15/15 rule was 448 

used during the training process, which states that 70% of the dataset is used for training, 449 

15% is used for validating the neural network and the remaining 15% is reserved for 450 

testing the neural network.  451 

 452 

 453 

𝐻 = 𝐽𝑇𝐽       (8) 454 

Figure 2: Deformation of 5m span arch with 0.25m thickness subjected to self-weight and a 

vertical load applied at 1/4 of the span. 
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𝑔 = 𝐽𝑇𝑒         (9) 455 

𝑥𝑘+1 = 𝑥𝑘 − [𝐽𝑇𝐽 + 𝜇𝐼]−1𝐽𝑇𝑒        (10) 456 

 457 

 458 

In equations (8)-(10), 𝐻 is the approximated Hessian matrix, 𝐽 is the Jacobian matrix, 𝑔 is 459 

the gradient, 𝐼 is the identity matrix, 𝑒 is the vector of network errors, and 𝜇. is the 460 

adaptive value. 461 

 462 
Table 1: Parameters used to train the neural networks. 463 
 464 

Parameter name Value 

Number of neurons in hidden layer 40 

Maximum number of epochs to train 1000 

Performance goal 0 

Maximum validation failures 100 

Minimum performance gradient 1e-7 

Maximum value for  𝜇 1e10 

Initial 𝜇 0.001 

Decrease factor for  𝜇 0.1 

Increase factor for 𝜇 10 

 465 

 466 

6.2 Using the artificial neural networks 467 

 468 

After training, validating, and testing the neural networks, they can be used to predict the 469 

structural response. The final deformed geometry of the structure is practically 470 

determined using equation (11) where 𝑢𝑜  is the vector of coordinates of the vertices of the 471 

masonry blocks depicting the undeformed geometry before any load is applied, 𝑢𝑖  is the 472 

vector of the displacements of the vertices of the masonry blocks after the load 473 

application and C is a user defined scale factor to ensure the deformation of the structure 474 

is easily visible. The vector ui is predicted by the neural network and is dependent on the 475 

geometry of the structure and the load application.  476 

Figure 7 shows the deformation of a 5.0m circular span arch with 0.25m thickness, 477 

subjected to self-weight and a vertical load applied at ¼ of the span, as derived by using 478 

the equation (11). A scale factor of 100 is used in this example so that the hinge 479 

formation can easily be seen. It should be emphasized that figure 7 indicates the capacity 480 

of the proposed approach to predict the deformed shape and the collapse mechanism of a 481 

masonry arch for a random geometry, using the proposed data-driven scheme. The 482 

Matlab code which is used to generate the deformed geometry, with inputs the vectors of 483 

the initial coordinates of the vertices of the masonry blocks 𝑢𝑜 and the vector 𝑢𝑖  of the 484 

displacements of the vertices of the masonry blocks after the load application, is given in 485 

Appendix 9.5. 486 

 487 

                                                             𝑢𝑗 = 𝑢𝑜 + 𝐶. 𝑢𝑖                         (11)  488 

 489 
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 490 

7. Results and discussions  491 

 492 

In this section, the performance and training accuracy of the developed neural networks 493 

are discussed. Then, it is shown how the trained neural networks can be used to predict 494 

the structural response of masonry arches of random geometry. Relevant results are 495 

provided and compared with existing output from literature. 496 

 497 

7.1 Performance of the trained artificial neural networks 498 

7.1.1 Circular arches 499 

 500 

Three neural networks, namely, A, B and C, were trained by using 1304 data points, 501 

validated by 279, and tested by 279 data points respectively. In all neural networks, 2 502 

input variables were used, namely, the span and the thickness of the masonry blocks that 503 

represent the arch geometry. In the first 2 neural networks (A and B) which are used to 504 

predict the deformed geometry under self-weight or self-weight and vertical loading, 160 505 

output variables were used, namely, the displacements of the vertices of each of the 20 506 

individual blocks making up the arches: 20 blocks x 4 vertices per block x 2 507 

displacements per vertex. The deformed geometry of the arches can then be determined 508 

using theses 160 output variables, according to relation (11). In the third neural network 509 

(C), 1 output variable is considered, namely, the ultimate load.  510 

In table 2, are provided details related to the training of the three neural networks. The 511 

neural network A in table 2 refers to the neural network that predicts the deformation due 512 

Figure 3: Deformation of 5m circular span arch with 0.25m thickness subjected to self-weight and a vertical 

load applied at 1/4 of the span, as derived by using equation (7). 
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to self-weight only, the neural network B refers to the one predicting the deformation due 513 

to self-weight and a vertical point load and the neural network C refers to the neural 514 

network that predicts the ultimate load at collapse. 515 

Regarding the training times given in table 2, neural network C depicted a shorter 516 

training time as compared to the other two networks, since the output layer of network C 517 

had only one variable, the ultimate load at collapse, comparing to the 160 variables of the 518 

output layer of the neural networks A and B of table 2.  519 

As shown in table 2, the training, validation, and testing of the neural networks are 520 

accurate, with neural networks A and C showing more than 98% accuracy and with 521 

neural network B showing more than 95% accuracy. The neural networks were trained 522 

four times to increase accuracy, with each proceeding training done from the previously 523 

trained neural network without reinitializing and starting weights from zero. In addition, 524 

the mean squared error obtained from the training of the networks is very small.  525 

 526 
Table 2: Summary information from the training process of the three neural networks (circular arches).   527 

 Neural Network A Neural Network B Neural Network C 

Training time  1hr:10min:04sec 2hr:26min:41sec 15min:12sec 

Iterations of 

train(epoch) 

19 126 218 

Training accuracy 98.63% 95.92% 99.23% 

Validation accuracy 99.91% 96.14% 99.15% 

Testing accuracy 99.86% 94.91% 99.26% 

Mean Squared 

Error (MSE) 

0.0001% 0.039% 0.0005% 

Figures 8-10, show the regression plots for the training, validation and testing of the 528 

neural networks and how the trained neural network fit the dataset. From these figures, it 529 

is observed that the regression for training, validation and testing of the neural networks 530 

is almost 1, with 1 representing zero error in the trained neural network.  531 

 532 

 533 

 534 

 535 

 536 

 537 
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 538 

 539 

Figure 5: Regression plot for neural network B (circular arches). 

Figure 4: Regression plot for neural network A (circular arches). 
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 540 

7.1.2 Parabolic arches 541 

 542 

In table 3 are provided details related to the training of the three neural networks. As 543 

previously mentioned, the neural network A in table 3 refers to the neural network that 544 

predicts the deformation due to self-weight only, the neural network B refers to the one 545 

predicting the deformation due to self-weight and a vertical point load and the neural 546 

network C refers to the neural network that predicts the ultimate load at collapse. 547 

Regarding the training times given in table 3, neural network C depicted a shorter 548 

training time as compared to the other two networks, since the output layer of network C 549 

had only one variable, the ultimate load at collapse, comparing to the 160 variables of the 550 

output layer of the neural networks A and B of table 3.  551 

As shown in table 3, the training, validation, and testing of the neural networks are 552 

accurate, with neural networks A and C showing more than 99% accuracy and with 553 

neural network B showing more than 98% accuracy. The neural networks were trained 554 

four times to increase accuracy, with each proceeding training done from the previously 555 

trained neural network without reinitializing and starting weights from zero. In addition, 556 

the mean squared error obtained from the training of the networks is very small.  557 

 558 

Figure 6: Regression plot for neural network C (circular arches). 
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Table 3: Summary information from the training process of the three neural networks (parabolic arches).   559 

 Neural Network A Neural Network B Neural Network C 

Training time  46min:30sec 4hr:29min:15sec 15min:12sec 

Iterations of 

train(epoch) 

9 54 471 

Training accuracy 99.32% 98.79% 99.99% 

Validation accuracy 99.34% 98.63% 99.96% 

Testing accuracy 98.89% 98.63% 99.999% 

Mean Squared 

Error (MSE) 

0.0005% 0.0002% 0.00001% 

 560 

Figures 11-13, show the regression plots for the training, validation and testing of the 561 

neural networks and how the trained neural network fit the dataset. From these figures, it 562 

is observed that the regression for training, validation and testing of the neural networks 563 

is almost 1, with 1 representing zero error in the trained neural network.  564 

 565 

 566 

 567 

 568 

 569 

  570 
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 571 

Figure 11: Regression plot for neural network A (parabolic arches). 

Figure 12: Regression plot for neural network B (parabolic arches). 
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 572 

 573 

  574 

Figure 13: Regression plot for neural network C (parabolic arches). 
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7.2 Predicting the response of random masonry arches using the proposed data-driven 575 

scheme 576 

 577 

This section investigates the structural behaviour of eight masonry arches, six circular 578 

and two parabolic arches, as predicted by the trained neural networks. The dimensions of 579 

the selected structures are within the range of the dataset values (1.5m-to-50m span, and 580 

0.1m-to-1m masonry ring thickness). For the masonry arch geometries 5, 6 and 7 shown 581 

in table 4, the predicted by the proposed metamodel collapse mechanism and ultimate 582 

load, are compared with the results obtained from finite element analysis using 583 

commercial software. 584 

In addition, arches 1 and 3 in table 4 are based on the minimum stone thickness for a 585 

circular arch to maintain stability under self-weight as proposed by (Couplet, 1729) and 586 

(Milankovitch, 1904, Milankovitch, 1907), respectively. (Couplet, 1729) proposed that 587 

the theoretical minimum thickness, t, of a circular masonry arch with radius, R, should be 588 

t/R=0.1075. Several years later, (Milankovitch, 1904, Milankovitch, 1907) proposed that 589 

the theoretical minimum thickness for a monolith arch should is t/R=0.10748. 590 

In table 4 below, are provided the geometry of the selected arches as well as the ultimate 591 

load at collapse, which is predicted from the neural networks, when a vertical point load 592 

is applied at the quarter span.  593 

 594 
Table 4: Geometry of masonry arches tested on neural networks and predicted ultimate load. 595 

Name 

Span 

(m) 

Height 

(m) 

Stone 

thickness 

(m) 

Ultimate Load 

(kN) 

Source 

Arch 1 

(circular) 

2.3 1.15 0.12 0 (Couplet, 1729) 

Arch 2 

(circular) 

16.0 8.0 1.0  100 - 

Arch 3 

(circular) 

6.0 3.0 0.32 13.4 (Milankovitch, 

1904, 

Milankovitch, 

1907) 

Arch 4 

(circular) 

12.0 6.0 0.5 9.1 - 

Arch 5 

(circular) 

20.2 10.1 0.84 35.9 - 

Arch 6 

(circular) 

10.4 5.2 0.45 8.8 - 

Arch 7 

(parabolic) 

10.4 5.2 0.82 96.05 - 

Arch 8 

(parabolic) 

15.25 7.63 0.45 20.7 - 

 596 

The deformed shape of the arch 1 which is presented in figure 14, shows that the arch is 597 

highly unstable, since it collapses under its self-weight. It is noted that the deformation of 598 
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this arch is derived using the neural network which predicts the deformation due to the 599 

self-weight loading (neural network A of table 2). Then, once the neural network which 600 

predicts the ultimate load is used (neural network C of table 2), a zero load is obtained. A 601 

classical hinge failure mechanism of 5 hinges is obtained due to self-weight loading. This 602 

is a potential type of collapse, as found in literature when a symmetric, circular arch is 603 

subjected to symmetrical loading, e.g. self-weight (Cocchetti et al., 2012, Foce and 604 

Huerta, 2005, Heyman, 1995). A similar, five-hinge collapse mechanism is depicted in 605 

Figure 15 for a circular arch with the theoretical minimum thickness, as proposed in 606 

(Milankovitch, 1904, Milankovitch, 1907, Couplet, 1729).  607 

 608 

 609 

 610 

 611 

 612 

Figure 14: Deformation (m) of the arch 1 of table 4 (2.3m span, 0.12m thickness) due to self-

weight only, when scale factor = 200. 
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 613 

 614 

 615 

In figures 16-17, the deformed geometries of the arch 2 of table 4 due to self-weight only, 616 

as well as due to self-weight and a vertical point load, are shown. From the deformed 617 

shape due to self-weight (figure 16), is noticed that no hinge formation can be seen. 618 

According to figure 17, though some hinges have been developed in the arch, the four 619 

hinges mechanism is not fully developed at this load level, indicating that the arch is able 620 

to fully support the total applied load.  621 

 622 

Figure 75: Five hinge mechanism for a circular masonry arch under self-weight based on 

literature. (McLean et al., 2021). 

Figure 16: Deformation (m) of the arch 2 of table 4 (16m span, 1.0m thickness) due to self-

weight only, when scale factor = 1. 
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 623 

 624 

  625 
 626 

 627 

In figures 18 and 20, the deformed geometries of arches 3 and 4 due to self-weight only 628 

are shown. These are followed by figures 19 and 21 depicting the deformed geometry of 629 

the same arches, due to self-weight and the vertical point load. When arches 3 and 4 are 630 

subjected to self-weight and a vertical point load, the deformed shapes of both arches as 631 

shown in figures 19 and 21, indicate that the four-hinge mechanism is developed. Thus, 632 

the arches fail to support the overall vertical load. The predicted ultimate loads at 633 

collapse, as obtained by the neural network C of table 2, are 13.4kN and 9.1kN for arches 634 

3 and 4, respectively. 635 

  636 

Figure 17: Deformation (m) of the arch 2 of table 4 (16m span, 1.0m thickness) due to self-weight and 

vertical load, when scale factor = 100. 
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 637 

 638 

 639 

 640 

Figure 18: Deformation (m) of the arch 3 of table 4 (6m span, 0.32m thickness) due to self-

weight only, when scale factor = 300. 

Figure 19: Deformation (m) of the arch 3 of table 4 (6m span, 0.32m thickness) due to self-weight and 

vertical load, when scale factor = 100. 



27 

 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

Figure 20: Deformation (m) of the arch 4 of table 4 (12.0m span, 0.5m thickness) due to self-weight 

only, when scale factor = 300. 

Figure 21: Deformation (m) of the arch 4 of table 4 (12.0m span, 0.5m thickness) due to self-weight 

and vertical load, when scale factor = 100. 
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In figures 22a and 23a, the deformed geometries of the arch 5 of table 4 due to self-648 

weight only, as well as due to self-weight and the vertical point load, are shown, as 649 

obtained from the trained neural networks. To provide a comparison of the results which 650 

are derived by the predictions of the trained neural networks, the same arch has been 651 

simulated using finite element analysis implemented by the commercial software. Figures 652 

22b and 23b show the deformed geometry of the arch 5 due to self-weight as well as due 653 

to self-weight and the point load, as obtained by finite element analysis. 654 

The geometry of the arch is stable under its self-weight as a symmetrical 3-hinge 655 

formation can be observed in figure 22. When the arch is subjected to self-weight and a 656 

vertical point load, the classical four-hinge collapse mechanism can be observed in figure 657 

23. The predicted ultimate load (35.9kN, table 4) at collapse is comparable with the 658 

ultimate load (34.1kN) obtained from finite element analysis.  It is noted that the ultimate 659 

load predicted by the neural network C of table 2 is slightly overestimated by 5.3%. The 660 

position of hinges, which are depicted in the neural network prediction and in the finite 661 

element analysis results, is also similar. 662 

  663 

(a) (b) 

Figure 22: Deformation (m) of the arch 5 of table 4 (20.2m span, 0.84m thickness) due to self-weight 

only derived (a) from the trained artificial neural network (scale factor= 250), (b) from the finite 

element analysis (scale factor= 250). 
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 664 

 665 

 666 

 667 

 668 

 669 

Another example is presented, providing a comparison of the ultimate failure load and 670 

collapse mechanism obtained from finite element analysis and the proposed metamodel. 671 

Figure 24 shows the deformed geometry of arch 6 due to self-weight and vertical point 672 

load as obtained from finite element analysis and as predicted by the neural network B of 673 

table 2, respectively. It can be noted that in both cases, the classical four-hinge collapse 674 

mechanism can be observed. The predicted ultimate load (8.8kN) at collapse is 675 

comparable with the ultimate load (10.4kN) obtained from the finite element model.  It is 676 

noted that the ultimate load predicted by the neural network C of table 2 is conservative.  677 

  678 

(b) 

(b) 

(a) 

(a) 

Figure 23: Deformation (m) of the arch 5 of table 4 (20.2m span, 0.84m thickness) due to self-weight and a 

vertical load derived (a) from the trained artificial neural network (scale factor= 45), (b) from the finite element 

analysis (scale factor= 45). 

Figure 24: Deformation (m) of the arch 6 of table 4 (10.4m span, 0.45m thickness) due to self-weight 

and a vertical load derived (a) from the trained artificial neural network (scale factor=100), (b) from 

the finite element analysis (scale factor= 100). 
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To provide a holistic representation of the response of masonry arches obtained from 679 

different geometry shapes, results derived for parabolic arches, are presented next. In 680 

particular, the prediction of the response of the randomly chosen arch 7 of table 4 is given 681 

in figures 25 and 26, for self-weight and vertical point loading, respectively. As shown in 682 

these figures, the comparison between the machine learning prediction and finite element 683 

analysis is satisfactory in terms of the deformed shape, for both self-weight and vertical 684 

point loading, respectively. For the point load, a four-hinge mechanism arises as shown in 685 

figure 26. The ultimate load which is obtained from the machine learning scheme is equal 686 

to 96.05kN, that is close to the one derived from the finite element simulation (99.33kN). 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 

 699 

  700 

 701 

 702 

 703 

 704 

 705 

 706 

 707 

 708 

 709 

 710 

 711 

 712 

 713 

 714 

 715 

 716 

 717 

 718 

A last example is presented, providing the ultimate failure load and the collapse 719 

mechanism for the parabolic masonry arch 8 (table 4), using the proposed metamodel. 720 

Figure 27 shows the deformed geometry of arch 8 due to self-weight loading as well as 721 

due to self- weight and a vertical point load, as predicted by the neural networks A and B 722 

of table 3, respectively. It is noted that the classical four-hinge collapse mechanism can 723 

Figure 26: Deformation (m) of the arch 7 (10.4m span, 0.82m thickness) due to self-weight and a vertical load derived (a) from 

the trained artificial neural network (scale factor=80), (b) from the finite element analysis (scale factor= 50). 

 

(a) (b) 

Figure 25: Deformation (m) of the arch 7 of table 4 (10.4m span, 0.82m thickness) due to self-weight derived (a) from the 

trained artificial neural network (scale factor=80), (b) from the finite element analysis (scale factor= 80). 

 

 

(a) (b) 
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be observed in this case too. The predicted ultimate load (20.7kN) is lower than the 724 

ultimate load derived for the parabolic arch 7.  725 

 726 

 727 

 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

7.3 Summary of the results and datasets output 744 

 745 

An effort to summarize the results provided in the datasets, reflecting holistically the 746 

structural response of masonry arches, is made in this section. In particular, it was 747 

observed that the structural response of a masonry arch varies with the span and masonry 748 

ring thickness. Therefore, both the span and the ring thickness values, which have been 749 

tested in the parametric simulations and included in the datasets for circular arches, are 750 

provided in figures 28 and 29. In both figures, unstable and stable masonry arch 751 

geometries are denoted. The unstable geometries correspond to arches which fail under 752 

their self-weight and thus, cannot support any vertical loading. Stable geometries are the 753 

ones which support their self-weight and potentially fail under the vertical loading. 754 

In figure 28, masonry ring thickness versus span values are provided for unstable and 755 

stable geometries. It is shown that for higher spans, ring thicknesses significantly increase 756 

in order to provide a stable geometry. For example, for a span of 20m, ring thicknesses 757 

higher than 0.75m lead to stable arches. 758 

In figure 29, thickness/span ratio versus the number of dataset points, called dataset node 759 

values in the graph, are provided for unstable and stable geometries. According to this 760 

graph, 400 dataset points from the parametric simulations (approximately) lead to stable 761 

masonry geometries, while more than 1300 dataset points lead to unstable geometries. In 762 

addition, for a masonry ring thickness to span ratio lower than 0.0383, as indicated by the 763 

average line in figure 29, unstable masonry arch geometries arise. For higher values of 764 

this ratio, depicting a dispersion of increased thicknesses (or reduced spans), stable 765 

masonry arches arise. It is noted that the datasets for stable and unstable masonry arch 766 

geometries, providing also the ultimate loads, accompany this article. Relevant 767 

descriptions can be found in Appendix 9.6. 768 

(a) (b) 

Figure 27: Deformation (m) of the arch 8 (15.25m span, 0.45m thickness) obtained from the trained artificial neural network 

(a) due to self-weight (scale factor=50), (b) due to self-weight and a vertical load (scale factor=50).  
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Figure 28: Plot of masonry thickness against span for stable and unstable circular masonry arch geometry. 
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Figure 89: Plot of ratio of masonry thickness and span for stable and unstable circular masonry arch geometry. 
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In figure 30, masonry ring thickness versus span values are provided for unstable and 770 

stable parabolic arch geometries. In figure 31, thickness/span ratio versus the number of 771 

dataset points, called dataset node values in the graph, are provided for unstable and 772 

stable parabolic geometries. According to this graph, 500 dataset points from the 773 

parametric simulations (approximately) lead to stable masonry geometries, while more 774 

than 40 dataset points lead to unstable geometries. For a masonry ring thickness to span 775 

ratio lower than 0.01081, as indicated by the average line in figure 31, unstable masonry 776 

arch geometries arise. For higher values of this ratio, depicting a dispersion of increased 777 

thicknesses (or reduced spans), stable masonry arches are obtained. 778 

 779 

 780 
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Figure 30: Plot of masonry thickness against span for stable and unstable parabolic masonry arch geometry. 

Figure 31: Plot of ratio of masonry thickness and span for stable and unstable parabolic masonry arch geometry. 
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Finally, comparisons of the displacements, ultimate loads and computational times, as 782 

obtained from the trained neural networks and finite element simulations, are provided. 783 

Table 5 shows the comparison of the ultimate loads and table 6 presents the comparison 784 

of the maximum displacement in the arch at an intermediate load level (self-weight) and 785 

at the ultimate state. It appears that results obtained from machine learning and finite 786 

element analysis are close. 787 

 788 

Table 5: Comparison of ultimate loads obtained from the trained artificial neural networks (ANN) and finite element 789 
analysis (FEM). 790 

 

Name 
Ultimate load from FEM 

(kN) 
Ultimate load predicted by 

ANN (kN) 

Arch 5 34.10 35.9 

Arch 6 10.40 8.80 

Arch 7 99.33 96.05 

 791 

 792 

Table 6: Comparison of displacements, intermediate at the end of self-weight and final displacements at the ultimate 793 
load, obtained from the trained artificial neural networks (ANN) and finite element analysis (FEM). 794 

 

Name 
Intermediate displacement at 

the end of self-weight (mm) 
Displacement at the ultimate 

load (mm) 

 ANN FEM ANN FEM 

Arch 5 3 3.54 20 36.2 

Arch 6 1 1.1 4 6 

Arch 7 1.2 1.3 10 11 

 795 

Data-driven analysis is also efficient in terms of the computation time compared to 796 

traditional finite element analysis, as given in table 7. Within traditional finite element 797 

analysis, it is estimated that an experienced user would need some hours to develop a 798 

model for one masonry arch like those investigated in this study. It is noted that setting 799 

up the model includes modelling the individual stones that make up the geometry of the 800 

arch (probably in CAD environment), assigning material properties to the stones, 801 

applying a surface-to-surface contact-law for each interface between adjacent stones, 802 

assigning boundary conditions, meshing the geometry and applying loads (gravity and 803 

point load). The same steps should be repeated for developing any other, randomly 804 

chosen arch geometry.  805 

Concerning the proposed data-driven scheme, according to tables 2 and 3, some hours are 806 

needed to train the artificial neural networks. Some hours are also needed for the 807 

parametric finite element investigation of the different arch geometries, to create the 808 

datasets.  However, this process takes place offline, and thus, it is implemented just once. 809 

When training of the neural networks is complete, the trained neural networks can be 810 

used as ready-to-use tools, in order to predict the response of random arches. According 811 
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to table 7, a trained neural network can make a prediction of the ultimate load and 812 

collapse mechanism in less than a minute. 813 

Table 7: Comparison of the computation time which is needed to use an artificial neural networks (ANN) and run a 814 
finite element (FEM) simulation. 815 

 

Name 
Computational time for one 

 FEM simulation (minutes) 

Computational time for one  

ANN prediction (minutes) 

Arch 5 11.3 0.4 

Arch 6 2.1 0.4 

Arch 7 0.5 0.4 

 816 

8. Conclusions 817 

 818 

A data-driven methodology, relying on machine learning and finite element analysis is 819 

proposed in this article, to investigate the structural behaviour of masonry arches. The 820 

structures are subjected to two loading steps, the self-weight and the self-weight plus a 821 

vertical point load applied at the quarter span. Parametric, non-linear finite element 822 

simulations were conducted to generate datasets providing the ultimate response. These 823 

datasets were then used to train artificial neural networks which stand as metamodels, 824 

providing the ultimate load and the collapse mechanism of random masonry arches. 825 

Two-dimensional geometries of masonry arches were developed using a Matlab script, 826 

where the coordinates of each of the vertices of the masonry stones is extracted. The 827 

structural, finite element models were created using Python scripts called within Matlab 828 

to drive, a commercial finite-element software. The Python scripts provide the geometry 829 

of the structure by reading the extracted coordinates of the masonry stones vertices. The 830 

script also adds the mechanical boundary conditions, the subjected loads, and a unilateral 831 

law, used to simulate potential damage due to opening/sliding (contact-friction) between 832 

the masonry stones. Due to the nonlinearity of the models, the Newton–Raphson 833 

incremental–iterative process was used to solve the numerical problem. Python scripts 834 

within Matlab were also used to extract the results from the models. A total of 1862 835 

dataset points for circular and 550 dataset points for parabolic arch shapes were used to 836 

train the neural networks. The training, validation and testing of the network neural 837 

networks were within acceptable tolerance. 838 

The investigation shows that the proposed data-driven structural analysis of masonry 839 

arches can be used to provide accurate representation of the ultimate, failure response. 840 

The developed metamodel, can be used to predict the response of random masonry 841 

arches. The methodology can be extended to more complex three-dimensional 842 

geometries. 843 

The article also proposes a numerical scheme to generate numerical datasets using Matlab 844 

and Python scripts as well as commercial finite element software. A complete set of 845 

relevant codes accompanies the article. Relevant descriptions can be found in the 846 

Appendix of the article. 847 

 848 

The following conclusions can also be drawn:  849 

• Machine learning can be a useful structural tool, in solving highly complex 850 

structural problems within a few seconds.  851 
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• The deformed geometries of the arches, which are predicted from the proposed 852 

process, are comparable with literature as well as with results obtained from finite 853 

element analysis. 854 

• The developed structural tool can be used to investigate the structural behaviour 855 

of masonry arches without the need for extensive computational cost. Once the 856 

metamodel is built, predictions of the structural response can be provided in few 857 

seconds. Little or no structural knowledge is required since inputs of the 858 

metamodels are the span and the ring thickness of the structure. Thus, the 859 

proposed methodology can be extended and used for a first, fast and accurate 860 

representation of the ultimate response of similar structural systems.  861 

Future work may involve the incorporation of image identification algorithms to the 862 

developed neural networks. With an image identification algorithm added, a photograph 863 

of a masonry arch can simply be supplied, read the geometry of the structure and feed it 864 

to the developed machine learning tool to predict the structural response. This would 865 

make the proposed methodology useful in structural health monitoring and site 866 

assessment for masonry arches. A system that quickly evaluates the remaining strength 867 

using these concepts could be helpful for the maintenance of these structures or during 868 

emergency situations after earthquakes or other disasters. 869 

 870 

9. Appendices 871 

 872 

In this section are provided descriptions of the source codes which have been developed 873 

to generate the dataset points for circular arch shapes. The interested reader can use, as 874 

well as extend the codes, for instance to generate more sophisticated (e.g. three-875 

dimensional) geometries. All the source Matlab and Python files that have been used to 876 

create the parametric finite element simulations, as well as the datasets which have been 877 

used to train the artificial neural networks, accompany this article. 878 

 879 

9.1 Central Matlab script 880 

 881 

The central code in Matlab, which is used to create the parametric investigation of several 882 

geometries of masonry arches, is included in the Matlab script: Appendix-1.m.  883 

Within this script, the commercial finite element software (Abaqus) is called, using a 884 

Python script (Appendix-2.py), to run a non-linear finite element simulation, for each arch 885 

geometry. The coordinates of the four vertices of each masonry block of each arch, are 886 

generated in Appendix-1.m script and saved in .txt files. 887 

 888 

9.2 Python script implementing non-linear finite element analysis 889 

 890 

The Python code, which is used to implement the non-linear finite element analysis of 891 

each parametric masonry arch geometry, is provided in the Python script: Appendix-2.py. 892 

Each parametric geometry, defined in Appendix-1.m script, is imported in Appendix-2.py 893 

script. In this script, all the steps of a finite element model can also be identified, 894 

including the material properties, the mesh, the loading and boundary conditions, as well 895 

as the unilateral contact-friction interfaces between the masonry blocks. 896 

 897 
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9.3 Matlab script generating results 898 

 899 

The Matlab code which is used to generate results, is provided in the Matlab script: 900 

Appendix-3.m. Within this script, the commercial finite element software (Abaqus) is 901 

called via a Python script (Appendix-4.py), to provide the solution of the finite element 902 

analysis. Appendix-3.m script also runs a built-in code which reads the ultimate load 903 

obtained from the output files of the finite element simulations, generated in the previous 904 

steps. 905 

 906 

9.4 Python script generating results 907 

 908 

The Python code, which is used to extract the results from the finite element simulations, 909 

is included in the Python script: Appendix-4.py. The extracted results are the 910 

displacements at the four vertices of each masonry block. 911 

 912 

9.5 Matlab script generating the deformed geometry of each masonry arch 913 

 914 

The Matlab code, which is used to generate and visualize the deformed geometry of each 915 

masonry arch, is included in the Matlab script: Appendix-5.m. Inputs to generate one 916 

geometry, are the initial coordinates of the four vertices of each masonry block, as well as 917 

the displacements of the vertices of the masonry blocks at the end of each finite element 918 

simulation. 919 

 920 

9.6 Datasets 921 

 922 

The generated datasets, which have been used to train the artificial neural networks are 923 

also attached to this article in the form of an Excel spreadsheet. In particular, the datasets 924 

corresponding to circular arch shapes are included in DataSet.xlsx spreadsheet, while 925 

those corresponding to parabolic arch shapes are given in DataSetParabolic.xlsx. Within 926 

the datasets, stable and unstable geometries are identified. 927 

At each column of the Excel spreadsheets, the following dataset points, derived from 928 

each parametric simulation, are provided: span of the masonry arch, thickness, ultimate 929 

load, thickness/span ratio, deformed geometry of the arch due to self-weight, deformed of 930 

the arch due to point load (for the stable geometries). 931 

 932 
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