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Effects of a 10-week footstrike transition programme on tibial stress fracture
probability; a randomized controlled intervention using finite element and
probabilistic modelling.

Abstract

Introduction: The aim of this study was to undertake a randomized control trial examining the effects of a
10-week footstrike transition program on tibial stress fracture risk compared to control. Material and
methods: Twenty habitual rearfoot strike runners were randomly assigned to either footstrike or control
groups. The footstrike group undertook a graduated 10-week program which allowed them to convert
their habitual rearfoot strike pattern, whereas the control group maintained their normal training regime
without any alterations to their strike pattern. Running biomechanics were collected using an eight-
camera motion capture system, and ground reaction forces using a force plate. Tibial strains were
quantified using finite element modelling and stress fracture probability calculated via probabilistic
modelling over 100 days of running. The primary outcome: tibial stress fracture probability, and secondary
outcomes: running biomechanics, muscle forces, joint contact forces, and tibial strain indices were
measured at baseline and after 10 weeks. Results: Intention-to-treat analyses revealed no significant
alterations in the primary outcome (Footstrike: baseline = 12.82% & 10-weeks = 10.82%, Control: baseline
=15.43% & 10-weeks = 13.39%) between arms. However, alterations in the strike index (Footstrike:
baseline = 21.79% & 10-weeks = 65.74%, Control: baseline = 13.61% & 10-weeks = 12.41%) and the
loading rate (Footstrike: baseline = 165.85BW/s & 10-weeks = 100.01 BW/s, Control: baseline = 170.13
BW/s & 10-weeks = 197.87 BW/s) were significantly greater in the footstrike group compared to the
control one. Conclusion: This trial concludes that the footstrike intervention adopted in this study was not
effective in mediating improvements in tibial stress fracture risk, although future intervention trials could
examine the efficacy of footstrike modification on other musculoskeletal injuries in runners.
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Abstract: Introduction: The aim of this study was to undertake a randomized control trial examining
the effects of a 10-week footstrike transition program on tibial stress fracture risk compared to con-
trol. Material and methods: Twenty habitual rearfoot strike runners were randomly assigned to ei-
ther footstrike or control groups. The footstrike group undertook a graduated 10-week program
which allowed them to convert their habitual rearfoot strike pattern, whereas the control group
maintained their normal training regime without any alterations to their strike pattern. Running
biomechanics were collected using an eight-camera motion capture system, and ground reaction
forces using a force plate. Tibial strains were quantified using finite element modelling and stress
fracture probability calculated via probabilistic modelling over 100 days of running. The primary
outcome: tibial stress fracture probability, and secondary outcomes: running biomechanics, muscle
forces, joint contact forces, and tibial strain indices were measured at baseline and after 10 weeks.
Results: Intention-to-treat analyses revealed no significant alterations in the primary outcome (Foot-
strike: baseline = 12.82% & 10-weeks = 10.82%, Control: baseline = 15.43% & 10-weeks = 13.39%)
between arms. However, alterations in the strike index (Footstrike: baseline = 21.79% & 10-weeks =
65.74%, Control: baseline = 13.61% & 10-weeks = 12.41%) and the loading rate (Footstrike: baseline
=165.85BW/s & 10-weeks = 100.01 BW/s, Control: baseline = 170.13 BW/s & 10-weeks = 197.87 BW/s)
were significantly greater in the footstrike group compared to the control one. Conclusion: This trial
concludes that the footstrike intervention adopted in this study was not effective in mediating im-
provements in tibial stress fracture risk, although future intervention trials could examine the effi-
cacy of footstrike modification on other musculoskeletal injuries in runners.

Keywords: biomechanics, finite element analysis, musculoskeletal simulation, probabilistic
modelling, footstrike.

1. Introduction

Running, a widely accessible form of exercise, is linked to numerous physiological
[1] and psychological [2] advantages. Nonetheless, it is also correlated with a significant
prevalence of chronic injuries [3], affecting as many as 20-80% of runners annually [4].
Among these, bone stress fractures stand out as a prevalent chronic injury, constituting
up to 30% of all musculoskeletal injuries related to running [5]. The tibia is consistently
identified as the most susceptible site to stress fractures [6, 7], with around 74% of such
incidents occurring there [8]. These fractures typically manifest in the anterior diaphyseal
region of the tibia [5] and pose significant challenges due to their extended recovery pe-
riod and heightened risk of recurrence [9].

www.balticsportscience.com
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Running, being a repetitive activity, subjects the skeletal system to continual loads,
capable of initiating bone fatigue [10]. Strain is considered the main indicator of actual
structural bone damage [11]. Since in-vivo strains during running are notably lower than
bone's ultimate strength, stress fracture occurrences are viewed as manifestations of me-
chanical fatigue [12], often depicted through an inverse power law relationship [13]. Stress
fractures develop due to the accumulation of microscopic damage within the bone matrix
[14]. Allowing adequate rest between running sessions permits bone remodelling, poten-
tially reinforcing bone integrity [15]. However, if damage accrual surpasses bone remod-
elling and adaptation rates, microcracks may emerge and evolve into stress fractures [16].
Notably, when the tibia experiences low strain levels, damage accumulation diminishes,
affording the tissue more time to repair microcracks. Conversely, high strains surpass the
repair and adaptation capacity [17]. Hence, identifying tibial loading patterns that reduce
strain during running may assist in preventing stress fracture occurrences.

The concept of footstrike patterns in runners has received considerable attention in
biomechanics literature [18]. Runners are categorized into one of three footstrike classifi-
cations on the basis of the position of their centre of mass relative to the foot at the instant
of initial ground contact [19]: rearfoot strikers (in which initial contact with the ground
occurs at the heel or posterior part of the foot), midfoot strikers (whereby the posterior
and anterior portions of the foot simultaneously contact the ground), and forefoot strikers
(where the anterior region of the foot strikes the ground first). It is well documented
within the biomechanical literature that the majority of runners utilize a rearfoot strike
pattern, with as many as 95% adopting this footstrike modality [20].

Tibial accelerations and the loading rate of the vertical ground reaction force (GRF)
are frequently utilized as proxy indicators for tibial loading, and have long been proposed
as potential contributors to the development of tibial stress fractures [21]. Substantial re-
search interest has been directed towards exploring the effects of different footstrike pat-
terns on tibial accelerations and the vertical loading rates during running. It has been ob-
served that both habitual and converted non-rearfoot strike patterns are characterized by
the absence of an impact peak in the vertical GRF [22-27] as well as reductions in vertical
loading rates [23, 24, 27-34] and tibial accelerations [35,36] in comparison to a rearfoot
strike, leading to the supposition that modifying the footstrike pattern away from a rear-
foot strike may be an effective strategy to effectively reduce the risk for tibial stress frac-
tures during running.

However, recent evidence has shown that surrogate measures, such as tibial acceler-
ation and loading rates of the vertical GRF, are not representative of tibial bone loading in
running [21]. Finite element modelling has been shown to provide more realistic estimates
of in vivo tibial bone strains [37], directly linked to the aetiology of stress fractures [11],
indicating that this technique can be utilized to make informed predictions of the damage
potential. Significant advances in finite element analyses made in recent years now allow
computational probabilistic modelling of the tibia to be undertaken [37] in order to quan-
tify the probability of tibial stress fractures in runners utilizing different strike patterns.
Indeed, Chen et al. [30] examined the immediate effects of transitioning the footstrike pat-
tern away from a rearfoot contact position on tibial strains and stress fracture probability.
Their observations showed no significant difference in tibial strains or risk of tibial stress
fracture with different landing patterns. However, as this investigation explored the im-
mediate effects of footstrike transition and did not feature a control group, there has yet
to be a randomized intervention exploring the efficacy of a more prolonged and gradual
footstrike transition, utilizing the aforementioned approaches.

Aim: The aim of this study is to undertake a randomized control trial examining the
effects of a 10-week footstrike transition program compared to a control group, using
a collective finite element analysis and computational probabilistic modelling-based ap-
proach. The primary objective of this trial is to examine the influence of the footstrike
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transition program on tibial stress fracture probability relative to control, and its second-
ary objectives are to examine running biomechanics, muscle forces, joint contact forces,
and tibial strains.

Hypotheses: This investigation hypothesizes that transitioning from a rearfoot strike
pattern will reduce tibial stress fracture probability in relation to the control group.

2. Material and Methods

2.1. Study design and setting

This examination comprises a parallel, randomized controlled trial spanning 10-
weeks. The intervention period of 10 weeks adhered to the previously established guide-
lines [27], and the protocol was formulated based on the revised recommendations for
reporting parallel group randomized controlled trials [38]. The University of Central Lan-
cashire conducted the current investigation at their main campus located in Preston
within the county of Lancashire, the United Kingdom. Following the eligibility screening
and enrolment process, participants underwent individual randomization through a com-
puter program (Random Allocation Software) into either control or footstrike groups. Pri-
mary and secondary outcome variables, as described in detail below, were assessed at
baseline and after 10 weeks. The primary outcome measure was the between-group
change in tibial stress fracture probability. The secondary outcome measures were be-
tween-group differences in running biomechanics, muscle forces, joint contact forces, and
tibial strains.

Inclusion criteria: For inclusion in either the control or the footstrike groups, it was
necessary for runners to be free of a running-related injury for at least three months, and
to have no prior history of tibial stress fractures or tibial pain. In addition, all runners
initially exhibited a rearfoot strike pattern which was verified by the presence of an impact
peak in their vertical GRF curve [22] and also through individual examination of partici-
pant's sagittal plane ankle positions at foot strike [19]. Both groups were composed of
participants of either sex, commonly running at least 10 km per week, and aged between
18 and 45 years.

Exclusion criteria: Runners with a current running or indeed any other type of lower
extremity injury were ineligible for participation, as were any who did not exhibit a rear-
foot strike running pattern.

Sample Size: Calculations for the sample size were not possible for the primary out-
come as there has yet to be a randomized controlled trial examining the effects of foot-
strike transition tibial stress fracture probability nor is there an established minimum clin-
ically important difference for tibial stress fractures. Therefore, a pragmatic sample size
calculation, based on the findings of Chan et al. [34] for the between group difference in
the loading rate of the vertical GRF following gait retraining was undertaken using G*Power
3.1 (Universitdt Kiel, Germany). This analysis yielded a d = 1.34 and indicated that a total
sample size of 20 was needed to achieve a significance level of 5% and 80% power.

2.2. Ethical approval and registration

Approval for the study was granted by an institutional ethical review board (STEMH
381), and all participants submitted written informed consent before participating, adher-
ing to the principles stated in the Declaration of Helsinki. The trial was preregistered on
clinicaltrials.gov (NCT05786079).

2.3. Participants and recruitment

Recruiting materials were placed in running clubs and gymnasiums located in the
Preston area of Lancashire using public bulletin boards. Individuals expressing interest in
participation were provided with a chance to reach out to the research team for additional
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details about the study and to address any questions related to participation. Written in-
formed consent was acquired, and all participants were instructed to continue their regu-
lar medication regimen. Participants in both groups were asked to maintain their current
training volume until the completion of their final data collection session.

2.4. Intervention

Control: The control group (age = 35.60 + 10.68 years, mass = 76.89 + 10.68 kg, stature
=173.72 £ 9.58 cm, BMI = 25.15 + 3.95 kg/m?) were requested maintain their habitual run-
ning training regime and volume without any alterations to their running strike pattern.

Footstrike: Following initial data collection, each the footstrike group (age = 25.30 +
2.98 years, mass = 69.55 + 10.40 kg, stature = 170.55 + 4.49 cm, BMI = 23.79 + 2.13 kg/m?)
were given a structured programme of running with the aim of transitioning from their
habitual rearfoot strike pattern, and exercises designed to reduce the likelihood of injury
(Table 1). Instructions for changes in the running technique were provided taking into
account and adapting where appropriate previous observations from biomechanics liter-
ature. Specifically, participants were instructed to 1) increase their cadence and decrease
their stride length [39, 40], 2) run with light footfalls, landing on the ball of the foot [40,
41], and 3) keep the head up and run as tall as possible [39, 40]. The program allowed
runners to continue their normal training load but increased the proportion of total mile-
age in which a non-rearfoot strike pattern was used by 10% each week, thus exposure to
non-rearfoot strike running was gradually increased [40, 42]. Four strengthening exercises
and four stretching exercises were provided to participants in order to prevent injury dur-
ing the transition [40]; these were also introduced in a graduated manner.

Table 1. 10-week footstrike transition program details.

R.unnmg Exercises Stretches
distance
% of Bilateral Single
©0 Balance | Single leg limb Wall calf Stair calf Plantar
total heel - . : Calf roll
Week ° . diagonals | calf raise | balance stretch stretch fascia roll
running raises (60's)
mileage . - .
Sets/ repetitions per day Hold duration (s)/ reps Duration (s)
1 10 2/10 2/10 1/10 1/1 8s/2 8s/2 60 60
2 20 2/10 2/10 1/10 1/1 8s/2 8s/2 60 60
3 30 2/10 2/10 1/10 1/1 8s/3 8s/3 60 60
4 40 3/10 3/10 2/12 1/2 8s/4 8s/4 120 120
5 50 3/10 3/12 2/12 1/2 10s /4 10s /4 120 120
6 60 3/12 3/12 3/12 1/2 15s /4 15s /4 120 120
7 70 3/15 3/15 3/12 2/2 15s /4 15s /4 120 120
8 80 3/15 3/15 3/15 2/2 15s/4 15s/4 120 120
9 90 4/15 4/15 4/15 2/3 15s/5 15s/5 180 180
10 100 5/15 4/15 4/15 2/3 15s/5 15s/5 180 180

2.5. Data collection

Volunteers ran at a self-selected velocity through a 22-meter biomechanics labora-
tory, contacting an embedded piezoelectric force platform (Kistler Instruments Ltd., Win-
terthur, Switzerland) that recorded data at a frequency of 1000 Hz, with their right limb,
(which was dominant in all participants). The stance phase of running was defined as the
period during which the vertical GRF exceeded 20 N [43]. Each participant successfully
completed five trials for each type of footwear, meeting the criteria of maintaining
the specified velocity range, achieving complete foot contact with the force platform, and
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displaying no visible alterations in their gait due to the experimental conditions. Further-
more, to ensure that a consistent running velocity was obtained, the difference in the brak-
ing and propulsive acceleration portions of the anterior-posterior GRF were examined us-
ing a custom Matlab program (MATLAB, MathWorks, Natick, USA), and trials were re-
jected when this difference was more than 10% of the total rectified braking-propulsive
GREF [44]. The order in which participants ran with each type of footwear was counterbal-
anced. Simultaneous kinematic and GRF data were collected, with kinematic data rec-
orded at a rate of 250 Hz using an eight-camera motion analysis system (Qualisys Medical
AB, Goteburg, Sweden). Prior to each data collection session, a dynamic calibration pro-
cess for the motion capture system was performed.

The body segments were modelled with six degrees of freedom using the calibrated
anatomical systems technique, as detailed by Cappozzo et al. [45]. To establish the ana-
tomical frames for the thorax, pelvis, thighs, shanks, and feet, retroreflective markers were
positioned at key bony landmarks, which included C7, T12, xiphoid process, iliac crest,
anterior superior iliac spine (ASIS), posterior superior iliac spine (PSIS), medial and lateral
malleoli, medial and lateral femoral epicondyles, greater trochanter, calcaneus, first met-
atarsal, and fifth metatarsal (Figure 1).

Figure 1. Experimental retroreflective marker positions (a) and (R = right & L = left, TR = trunk,
P = pelvis, T = thigh, S = shank & F = foot, X = sagittal plane, Y = coronal plane & Z = trans-verse
plane).
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Tracking clusters, constructed from carbon fibre and equipped with four non-linear
retroreflective markers, were securely attached to the thigh and shank segments using
rigid sports tape. The foot segments were tracked using markers on the calcaneus, first
metatarsal, and fifth metatarsal, the pelvic segment was tracked with the PSIS and ASIS
markers, and the thorax segment was tracked using markers positioned at T12, C7, and
the xiphoid process.

To establish references for anatomical markers in relation to tracking markers/clus-
ters, static calibration trials were conducted. The centres of the ankle and knee joints were
determined as the midpoints between the malleoli and femoral epicondyle markers [46,
47], whereas the centre of the hip joint was calculated using a regression equation based
on the positions of the ASIS markers [48]. Each segment's Z (transverse) axis was oriented
vertically from the distal segment end to the proximal segment end. The Y (coronal) axis
was oriented within the segment from posterior to anterior. Finally, the X (sagittal) axis
orientation was determined using the right-hand rule and directed from medial to lateral
(Figure 1).

2.6. Data processing

Dynamic trials were digitized using Qualisys Track Manager (Qualisys Medical AB,
Goteburg, Sweden) to identify anatomical and tracking markers, then exported as C3D
files to Visual 3D (C-Motion, Germantown, MD, USA). All data were linearly normalized
to 100% of the stance phase. GRF data and marker trajectories were smoothed with cut-
off frequencies of 50 Hz at 12 Hz respectively, using a low-pass Butterworth 4th order zero
lag filter.

Running biomechanics

In accordance with the methods described by Addison and Lieberman [49], an im-
pulse-momentum modelling technique was utilized to calculate the effective mass (%BW),
i.e., the proportion of the bodyweight that comes to a full stop during the impact phase.
This parameter was evaluated using the following formula:

Effective mass = Integral of the vertical GRF /
(A foot vertical velocity + gravity x A time)

The impact peak was delineated in conventional running shoes as the first discernible
peak in the vertical GRF. However, in the case of minimal footwear, where a consistent
impact peak is not always apparent, we adhered to the criteria set forth by Lieberman et
al. [39] and Sinclair et al. [50]. Accordingly, we positioned the impact peak in minimal
footwear at the same relative location as observed in conventional running shoes. The
time it took to reach the impact peak (referred to as A time) was measured as the duration
from footstrike to the occurrence of the period impact peak. The integral of the vertical
GRF was calculated during the impact peak period using a trapezoidal function. Addi-
tionally, the change in foot vertical velocity (A foot vertical velocity) was determined as
the difference in vertical foot velocity between the moments of footstrike and the impact
peak, following the methodology of Chi and Schmitt [51]. Foot velocity was assessed by
quantifying the vertical velocity of the foot segment's centre of mass within Visual 3D [50].

Loading rate (BW/s) was also extracted by obtaining the peak increase in vertical GRF
between adjacent data points using the first derivative function within Visual 3D [43]. The
strike index, which serves as an indicator of the foot strike pattern, was calculated by con-
sidering the position of the centre of pressure at footstrike in relation to the entire length
of the foot. This calculation followed the procedures delineated by Squadrone et al. [19].
A strike index (%) falling within the range of 0-34% indicated a rearfoot strike pattern,
>34-67% signified a midfoot strike pattern, and >67-100% represented a forefoot strike
pattern. Furthermore, the step length (m) was determined as the horizontal position of the
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foot’s centre of mass between the right and left limbs at footstrike, in accordance with the
methodology provided by Sinclair et al. [52]. Running velocity (m/s) was also quantified
within Visual 3D, using the linear velocity of the model centre of mass in the anterior
direction [52].

Musculoskeletal simulation

Data associated with the stance phase were exported from Visual 3D to OpenSim 3.3
software (Simtk.org, Stanford, CA). To cater to the unique anthropometric characteristics
of each participant, a validated musculoskeletal model was used, which underwent scal-
ing to accommodate the individual anthropometric characteristics of each participant. It
featured 12 segments, 19 degrees of freedom, and a total of 92 musculotendon actuators
[53]. This model was employed to estimate muscle and joint contact forces in the lower
extremities. Initially, a residual reduction algorithm, as detailed by Delp et al. [54], was
applied to address any dynamic inconsistencies between the kinematics derived from the
measured GRF and the model. Subsequently, muscle kinetics were determined through
static optimization procedures, following the methods described by Steele et al. [55].

As muscle forces represent the primary factor influencing joint contact forces [56],
subsequent to the static optimization procedure, three-dimensional ankle joint contact
forces, presented in the tibial reference frame, were computed through the joint reaction
analysis function within OpenSim. This process utilized the muscle forces derived from
the static optimization procedure as input. The resulting ankle joint contact force was de-
termined using three-dimensional Pythagorean theorem, and normalized ankle joint con-
tact forces (BW) were extracted for each anatomical axis (anterior-posterior, axial, and me-
dio-lateral) at the moment of the peak resultant load.

From the aforementioned static optimization procedures, the normalized muscle
forces (BW) with tibial attachment (including biceps femoris long head, biceps femoris
short head, extensor digitorum longus, extensor hallucis longus, flexor digitorum longus,
flexor hallucis longus, gracilis, rectus femoris, sartorius, ssmimembranosus, semitendi-
nosus, soleus, tensor fasciae latae, tibialis anterior, tibialis posterior, vastus intermedius,
vastus lateralis, and vastus medialis) were extracted at the moment of the peak resultant
ankle joint contact force. Furthermore, muscle forces from other muscles crossing the an-
kle joint, namely medial gastrocnemius, lateral gastrocnemius, peroneus brevis, peroneus
longus, and peroneus tertius, were also obtained at the same relative time point.

Finally, the attachment points of each of the aforementioned muscles (with tibial at-
tachment) were extracted using the OpenSim plugin developed by van Arkel et al. [57]
(https://simtk.org/projects/force_direction). Using the same plug-in, anatomically di-
rected muscle forces onto the tibia at their attachment points, for each muscle were calcu-
lated at the instance of the peak resultant ankle joint contact force in all three anatomical
directions. Positive values represent anterior, upwards and laterally directed forces onto
the tibia.

Finite element analyses

FEBio software (developed by Musculoskeletal Research Laboratories, Salt Lake City,
Utah) was utilized to conduct the finite element analysis necessary for calculating tibial
strains. The construction of the tibial surface and trabecular model involved employing
the statistical shape modelling source code developed by Keast et al. [58] (accessible at
https://simtk.org/projects/ssm_tibia). The resulting model comprised 33,004 quadratic tetra-
hedral elements (Figure 2). Material properties were designated based on those previously
adopted by Edwards et al. [37], with an elastic modulus of 17.0 GPa for cortical bone and
1.0 GPa for trabecular bone. Both components were attributed a Poisson’s ratio of 0.3 [37].

Each model had boundary conditions imposed, involving complete constraints ap-
plied at the tibial plateau [59, 60] (Figure 2a). Net three-dimensional ankle joint contact
forces, derived from the musculoskeletal simulation analyses, were then applied to the
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distal aspect of the tibia [59, 60] (Figure 2b). Additionally, anatomically directed net mus-
cle forces were applied at every muscle attachment point on the tibia, utilizing the forces
obtained from static optimization (Figure 2c). Given that certain bi-articulating muscles,
such as the gastrocnemius, generate substantial forces during running without direct in-
sertion points onto the tibia itself [59, 60], their contribution to tibial strain was accounted
for by calculating a residual ankle joint moment following the approach outlined by
Haider et al. [59]. This residual moment was applied to the distal tibia (Figure 2d). The
90th percentile von Mises strain (u€) was then extracted for subsequent analysis [61].

a. b. C. d.

Figure 2. Depiction of finite element model mesh with loading and boundary conditions. The tibial
plateau was fully constrained (a.). Ankle joint contact forces were applied to the distal tibia (b.),
muscle forces (not all shown here) were applied as concentrated forces at their insertion point onto
the tibia (c.) and residual moments were applied at the distal tibia (d.).

Probabilistic stress fracture model

We determined the probability of stress fracture for each participant in each footwear
condition firstly by accounting for the daily running distance which was included into the
model as runners completed 5.0 km/day for 100 consecutive days [30, 37, 60, 62]. The num-
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ber of loading cycles/footfalls per day in each footwear condition was quantified by di-
viding the modelled daily running distance i.e. 5.0 km by the stride length in each foot-
wear outlined above [62].

The probability of tibial stress fracture was assessed through a probabilistic model
considering bone damage, repair, and adaptation, aligning with methodologies from prior
analyses [30, 37, 60, 62]. The fatigue life of the tibial bone was modelled based on the
standard fatigue equation [63]:

FLT = CAen

In the above equation, FLT represents the number of loading cycles to failure and Ae
denotes the strain range obtained from finite element analysis. Since strain magnitude is
zero for certain modelled tibial elements, the maximum strain magnitude from the finite
element analysis was utilized to denote the strain Ae. The variable 'n' signifies the slope of
the stressed-life curve of bone, and 'C' is a constant. Carter & Caler [63] found a slope of n
= 6.6 for fatigue damage of bone at strain magnitudes corresponding to human locomotion
[30, 37, 60, 62].

As bone adaptation is mediated as a function of applied loading, there is a con-cur-
rent increase in bone cross-sectional area, leading to a gradual attenuation of tibial strains
over time. Considering a maximum deposition of lamellar bone accumulation at 4 um/day
on the periosteum membrane [64], an adaptation function was quantified using beam the-
ory-based equations [30, 37, 60, 62]. This adaptation function was calculated as the ratio
of strain following bone accumulation to strain with the initially modelled bone geometry.
The product of this adaptation function and Ae was employed to determine alterations in
tibial strains due to bone adaptation. An equivalent strain (Ae¢AD) for each element,
accounting for adaptation, was then computed, where tT represents the total modelled
duration over which bone adaptation occurred (i.e., 100 days) [65]:

Agap = (I/tT [T Agndt)vn

Given the significant variation in the fatigue life of bone, a widely employed tech-
nique in fatigue mechanics to assess the probability of bone failure with adaptation (PfA)
is the Weibull approach [66]. Hence, a modified Weibull function was employed, taking
into account stressed volume [66]:

PfA =1- exp [— (Vs/ Vso) (t/tf)w]

The variables for the above equation were derived from literature on experimental
fatigue testing. This enables the calculation of PfA for a specimen with the stressed volume
Vs (obtained from finite element meshes) over the time interval from zero to t. Here, Vso
represents the reference stressed volume, tf is the reference time until failure at the applied
strain range and number of loading cycles per day, and w signifies the degree of scatter
in the material.

As AsAD varies across the entire tibial body, PfA exhibits differences from one ele-
ment to another. Through the finite element analysis, unique PfA indices could be deter-
mined for each element. If there are k total elements, the PfA for the entire tibial body
represents the probability of failure for any single element [67]:

Pfa=1-(1-P1)(@1-P2)(1-Ps)...(1-Px.

Elements with comparable strain magnitudes were clustered together, following the
approach of Taylor & Kuiper [67], who established that eight element groups could be
employed without substantial error. The stressed volume (Vs) for each of the eight groups
was computed by adding up the element volumes within each group. Subsequently, using
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the strain values from each group, the aforementioned formulae were applied to calculate
a singular PfA for the entirety of the tibia.

Similarly to the variability observed in the fatigue life of bone, there is significant
diversity in the duration required for the repair of bone microcracks. As estimated by
Taylor et al. [65], this repair time is approximately 18.5 + 12.5 days. Consequently, the
cumulative probability of bone repair (PR) was determined by employing a second
Weibull function [65]:

Pr=1-exp [- (t/t)"]

where t: is the reference time for repair and m articulates the degree of scatter in re-
pair time.

Lastly, by calculating the probability that bone will not undergo repair (1-PR) and
multiplying it by the instantaneous probability of PfA, integration over time resulted in
the cumulative probability of tibial bone failure expressed as a percentage (%) with repair
and adaptation (PfRA).

2.7. Statistical analyses

Descriptive statistics, including means and standard deviations, were provided for
each continuous outcome measure. Furthermore, in order to contrast the magnitude of
the changes in primary and secondary outcomes at both 10-weeks, linear mixed effects
models were employed, with group modelled as a fixed factor and random intercepts by
participants adopted [68]. For linear mixed models, the adjusted mean difference (b), t-
value, and 95% confidence intervals of the difference are reported. These analyses were
conducted on an intention-to-treat basis, employing the restricted maximum-likelihood
method [68]. Effect sizes were calculated for the changes from baseline to 10-weeks be-
tween the two groups, using Cohen'’s d, in accordance with McGough & Faraone [69].
Cohen’s d values were interpreted as 0.2 = small, 0.5 = medium, and 0.8 = large [70]. In
addition, a two-way Pearson’s chi-squared (X2) test of independence with probability val-
ues calculated by Monte Carlo simulation was used to assess differences between control
and footstrike groups, in whether the footstrike pattern (classified using the strike index)
changed from baseline to 10-weeks. All statistical analyses for significance were per-
formed using SPSS v28 (IBM, SPSS). A significance level of P <0.05 was considered for all
analyses. For conciseness and clarity, only variables demonstrating statistical significance
attributable to the intervention are presented in the Results section.

3. Results

Loss to Follow-Up and Adverse Events
There were no adverse events in either group and all runners who were enrolled at
baseline completed the study.

Running biomechanics

Reductions in effective mass and the loading rate were significantly greater in the
footstrike group compared to the control one (Table 2; Figure 3). In addition, increases in
the strike index were significantly greater in the footstrike group compared to the control
one (Table 2). In the control group none of the 10 runners altered their strike classification,
yet in the footstrike group 9 runners changed their strike classification. The chi-squared
test was significant (X2 a) = 16.36, P < 0.001), indicating that significantly more runners
altered their strike classification in the footstrike group.
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Table 2. Running biomechanics (mean + standard deviations).

Control Footstrike
Baseline 10-weeks Baseline 10-weeks b % P-value d
Mean SD Mean SD Mean SD Mean SD Lower Higher

Effective mass (%) 11.34 1.71 11.32 2.06 9.34 1.97 7.78 1.93 -1.54 -2.82 -0.26 0.021 -1.13
Strike index (%) 13.61 3.64 12.41 3.48 21.79 7.40 65.74 | 21.17 45.15 30.52 59.78 <.001 2.90

Step length (m) 1.26 0.18 1.25 0.17 1.28 0.02 1.27 0.04 0.00 -0.09 0.10 0.950 0.03

Running velocity (m/s) 4.11 0.89 4.07 0.82 3.67 0.29 3.63 0.35 0.00 -0.21 0.22 0.974 0.02
Loading rate (BW/s) 170.13 | 48.92 | 197.87 | 79.70 | 165.85 | 55.65 | 100.01 | 13.14 -93.58 -145.98 | -41.17 0.001 -1.678

Bold text = significant difference in the changes from baseline to 10-weeks days between the two groups (negative values denote that reductions in the footstrike group exceeded those
in control), b = mean difference between groups in change from baseline to 10-weeks, 95% CI = confidence intervals of the mean difference and d = Cohen’s d
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Figure 3. Vertical GRF pre and post transition (a. = tibial acceleration, b. = vertical GRF).
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Musculoskeletal simulation

Ankle joint contact forces
No statistically significant differences (P > 0.05) in joint contact forces were found (Table 3).

Muscle forces
Increases in semimembranosus, vastus intermedius, vastus lateralis and vastus medialis were significantly greater in the footstrike group compared to control (Table 3).

Table 3. Joint contact and muscle forces (mean + standard deviations)

Control Footstrike
Baseline 10-weeks Baseline 10-weeks b % P-value d
Mean SD Mean SD Mean SD Mean SD Lower Higher
Posterior tibial load (BW) 2.55 0.53 2.43 0.41 2.79 0.51 2.77 0.21 0.11 -0.29 0.50 0.582 0.25
Axial tibial load (BW) 9.50 1.84 9.58 1.70 | 10.32 0.77 11.70 1.91 1.31 -0.43 3.05 0.131 0.71
Medial tibial load (BW) 1.27 0.68 1.17 0.49 0.94 0.36 1.07 0.47 0.23 -0.07 0.54 0.126 0.72
Biceps femoris long head (BW) 0.27 0.27 0.18 0.15 0.21 0.18 0.28 0.16 0.17 -0.01 0.34 0.065 0.88
Biceps femoris short head (BW) 0.02 0.05 0.01 0.02 0.13 0.27 0.14 0.26 0.01 -0.02 0.05 0.342 0.44
Extensor digitorum longus (BW) 0.16 0.17 0.10 0.09 0.12 0.13 0.08 0.11 0.03 -0.07 0.13 0.574 0.26
Extensor hallucis longus (BW) 0.05 0.05 0.02 0.03 0.05 0.04 0.03 0.04 0.00 -0.03 0.04 0.863 0.08
Flexor digitorum longus (BW) 0.02 0.02 0.01 0.02 0.12 0.17 0.15 0.18 0.03 -0.09 0.15 0.559 0.27
Flexor hallucis longus (BW) 0.05 0.06 0.02 0.03 0.12 0.15 0.18 0.20 0.09 -0.04 0.22 0.182 0.62
Gracilis (BW) 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 -0.01 0.01 0.930 -0.04
Rectus femoris (BW) 1.80 0.33 2.11 0.52 1.79 0.61 1.67 0.71 -0.42 -1.00 0.15 0.139 -0.69
Sartorius (BW) 0.09 0.12 0.06 0.09 0.06 0.09 0.07 0.11 0.04 -0.04 0.11 0.312 0.47
Semimembranosus (BW) 0.40 0.40 0.22 0.21 0.35 0.18 0.47 0.25 0.30 0.03 0.57 0.031 1.05
Semitendinosus (BW) 0.02 0.05 0.04 0.07 0.11 0.09 0.14 0.11 0.01 -0.04 0.06 0.619 0.23
Soleus (BW) 4.31 1.16 4.55 1.13 4.52 0.84 4.62 0.60 -0.14 -1.09 0.81 0.758 -0.14
Tensor fasciae latae (BW) 0.34 0.25 0.37 0.18 0.48 0.05 0.48 0.04 -0.03 -0.16 0.09 0.589 -0.25
Tibialis anterior (BW) 0.03 0.05 0.02 0.03 0.21 0.30 0.11 0.19 -0.10 -0.21 0.01 0.080 -0.83
Tibialis posterior (BW) 0.93 0.65 1.11 0.64 1.36 0.43 1.55 0.38 0.01 -0.63 0.65 0.972 0.02
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Control Footstrike
Baseline 10-weeks Baseline 10-weeks b % P-value d
Mean SD Mean SD Mean SD Mean SD Lower Higher

Vastus intermedius (BW) 1.35 0.52 134 | 045 1.07 0.34 1.43 0.30 0.37 0.11 0.63 0.008 1.33
Vastus lateralis (BW) 1.84 0.76 1.86 | 0.61 1.48 0.46 1.94 0.39 0.45 0.11 0.79 0.012 1.25
Vastus medialis (BW) 1.28 0.50 1.26 | 0.43 1.01 0.32 1.35 0.29 0.37 0.11 0.63 0.009 1.32
Lateral gastrocnemius (BW) 1.03 0.28 0.95 0.19 1.00 0.12 1.00 0.24 0.08 -0.19 0.36 0.535 0.28
Medial gastrocnemius (BW) 2.22 0.34 230 | 031 2.07 0.26 2.17 0.39 0.03 -0.39 0.44 0.897 0.06
Peroneus brevis (BW) 0.14 0.16 0.14 | 0.17 0.18 0.12 0.22 0.13 0.04 -0.12 0.21 0.576 0.26
Peroneus longus (BW) 1.05 0.35 0.97 0.45 1.17 0.48 1.26 0.49 0.17 -0.07 0.41 0.150 0.67
Peroneus tertius (BW) 0.04 0.06 0.01 0.01 0.05 0.05 0.02 0.03 0.01 -0.04 0.06 0.751 0.14

Bold text = significant difference in the changes from baseline to 10-weeks days between the two groups (negative values denote that reductions in the footstrike group exceeded those
in control), b = mean difference between groups in change from baseline to 10-weeks, 95% CI = confidence intervals of the mean difference and d = Cohen’s d
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Finite element analysis
No statistically significant differences (P > 0.05) in tibial strains were found (Table 4; Figure 4).
Table 4. Finite element analysis outcomes (mean + standard deviations).
Control Footstrike
95% Cl
Baseline 10-weeks Baseline 10-weeks b P-value d
Mean SD Mean SD Mean SD Mean SD Lower Higher
90th percentile Von Mises strain
(ue) 4273.29 996.53 | 4079.80 | 859.27 | 3679.07 | 601.00 | 3787.48 | 464.07 | 301.90 | -106.35 710.16 0.138 0.70
pe

b =mean difference between groups in change from baseline to 10-weeks, 95% CI = confidence intervals of the mean difference and d=Cohen’s d
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Figure 4. Representative tibial strain distribution on the tibia.
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Stress fracture probability

No statistically significant difference (P > 0.05) in stress fracture probability was found (Table 5; Figure 5).

Table 5. Probabilities of failure (mean + standard deviations).

Control Footstrike
95% ClI
Baseline 10-weeks Baseline 10-weeks b P-value d
Mean SD Mean SD Mean SD Mean SD Lower Higher
Failure probability (%) 15.43 11.83 13.39 12.21 12.82 13.97 10.82 10.77 0.04 -7.23 7.31 0.991 0.01

b =mean difference between groups in change from baseline to 10-weeks, 95% CI = confidence intervals of the mean difference and d=Cohen’s d
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Figure 5. Average probabilities of failure (PFRA) in each group across 100 days of running.
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4. Discussion

The primary aim of the current study was to investigate the effects of a 10-week foot-
strike transition program on tibial stress fracture probability compared to a control group.
To date, this represents the first investigation to explore the effects of a footstrike transi-
tion intervention using a randomized controlled trial on tibial stress fracture probability
in runners. The primary objective was to assess the impact of footstrike transition on tibial
stress fracture probability, whilst the secondary goals were to investigate running biome-
chanics, muscle forces, joint contact forces, and tibial strains.

Regarding the primary outcome, the results from the present study do not align with
our hypothesis, as there were no significant reductions in tibial stress fracture probability
in the footstrike group compared to the control one. This observation concurs with the
acute non-randomized observations of Chen et al. [30], who also showed no differences
in stress fracture probability with a modified footstrike pattern. Stress fractures are repre-
sentative of a mechanical fatigue phenomenon, whereby bone strains initiate microscopic
damage in the bony matrix [16]. Therefore, as the analysis of secondary study outcomes
revealed no differences in tibial strains or stride length characteristics that would alter the
number of daily loading cycles between control and footstrike groups, it is to be expected
that stress fracture probability was not significantly altered. This investigation im-
portantly indicates that altering the footstrike does not appear to influence tibial stress
fracture probability, and thus at the current time this approach cannot be advocated for
runners seeking to reduce their risk from tibial stress fractures.

However, this trial did notably show that the foot contact location was moved signif-
icantly more anteriorly in the footstrike group in relation to the control group. When con-
textualized via the strike index, the chi-squared analyses as well as observation of the
vertical GRF curve (showing that the impact which was evident at baseline is no longer
present at 10-weeks) support this, as a rearfoot strike was maintained in the control group,
whereas a midfoot pattern was revealed in the footstrike group following the 10-week
intervention period. This importantly shows that footstrike can be successfully modified
using the intervention that was described within this trial. This protocol may therefore be
used in future studies seeking to allow habitual rearfoot strike runners to successfully
modify their foot contact pattern.

A further important finding from the current study is that reductions in the loading
rate were significantly greater in the footstrike group compared to control. It is proposed
that this finding relates to the corresponding statistical reductions in effective mass that
were also revealed in the footstrike group. This observation was expected considering the
aforementioned alterations in foot contact position and also the observations of Sinclair et
al. [50] demonstrating significant positive associations between effective mass and the
loading rate. Transient loading is governed by the rate at which the momentum of the foot
changes, so consideration of the impulse-momentum model indicates that when a rearfoot
strike pattern is adopted, the majority of the vertical momentum is absorbed by the colli-
sion as a greater proportion of body mass is decelerated during the impact phase [39].
When a runner exhibits a non-rearfoot contact position, the vertical momentum is con-
verted into rotational momentum, thus the total mass being decelerated is reduced, lead-
ing to a reduction in the magnitude of impact loading experienced by the body [49, 50].
Reductions in the loading rate in the footstrike group may have clinical relevance as alt-
hough tibial stress fracture risk was not significantly reduced and the vertical rate of load-
ing has been shown to be unrepresentative of tibial loading [21], it has been linked to the
aetiology of plantar fasciitis [71] and to prospectively differentiate between injured run-
ners from those who had never been injured [72]. As such, although further investigation
is certainly required, subsequent intervention trials could consider the efficacy of foot-
strike modification on other musculoskeletal injuries in runners, beyond those investi-
gated in the current study.
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Overall, the current study demonstrated a high retention rate in the intervention
group, without evidence of any adverse effects. This suggests that footstrike modification
interventions appear to be safe and tolerable modalities in runners. Although, this trial
demonstrated no significant effects of the footstrike intervention on the primary outcome
as well as secondary indices in relation to tibial strains, the trial does notably show that
footstrike can be successfully modified using the intervention that was implemented. A
cost-effectiveness analysis was beyond the scope of this investigation; however, it appears
that footstrike can be successfully modified over a 10-week period at a relatively low cost.
Therefore, whilst the footstrike intervention that was adopted within this trial was not
successful in reducing the risk and indeed risk factors for tibial stress fractures, future
randomized interventions may be able to utilize the footstrike modification intervention
adopted in the current study to modify the risk for other musculoskeletal pathologies in
runners.

As with all experimental research, this trial is not without limitations. Firstly, the fact
that compliance to the footstrike intervention programme and exercises was not quanti-
fied may serve as a potential drawback. Furthermore, running training volume across
both trial arms was not measured, so it may also represent a limitation to the current in-
vestigation. Although the foot contact position was significantly influenced in the foot-
strike group, increased or indeed reduced compliance and the extent of total running vol-
ume could have influenced the magnitude of the responses to the intervention. In relation
to the fracture probabilities, it is important to acknowledge that our values [37, 62] and
the acceleration of risk over the first 40-days [73] is consistent with the epidemiological
literature for runners experiencing tibial stress fractures. However, as our finite element
model was scaled to individual participant dimensions, person-specific bone geomor-
phologies and material properties were not considered. As both geometry and density can
influence the magnitude of the experienced bone strains [74, 75], the model utilized within
this study may not have quantified tibial strains with complete accuracy. Therefore, de-
spite the inherent challenges, future analyses should seek to utilize participant specific
finite element properties as inputs into the probabilistic tibial stress fracture model.

5. Conclusions

The current study aimed to investigate, using a randomized controlled trial, the ef-
fects of a 10-week footstrike transition program compared to control, using a collective
finite element analysis and computational probabilistic modelling-based approach. This
trial notably showed no significant improvements in tibial stress fracture probability in
the footstrike group compared to the control one, suggesting that the footstrike interven-
tion adopted in the current investigation is not effective in mediating improvements tibial
stress fracture risk. However, this study did, importantly, show that footstrike could be
successfully modified using the intervention that was implemented, as well as it could
mediate significant reductions in both effective mass and the loading rate. Therefore, since
the loading rate has been proposed as being linked to the aetiology of a range of chronic
running injuries, future intervention trials should consider examining the efficacy of foot-
strike modification on other musculoskeletal injuries in runners, beyond those investi-
gated in the current study.
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