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ABSTRACT

This study evaluates the rainfall erosivity (RE) and erosivity density (ED) over the Kelani River basin, Sri Lanka for a period of 31 years (1990
2020). The river basin is well known for its annual floods during the southwestern monsoon season and severe erosion including landslides
can be observed. The catchment was analyzed for its RE using the Wischmeier and Smith algorithm and for its ED using Kinnel's algorithm.
The monthly rainfall data spreading over the river basin were used to analyze the monthly, seasonal, and annual RE and ED. Interestingly, the
annual RE showed a linear increasing trend line over 31 years, and a maximum value of 2,831.41MJ mm ha=" h~" yr~7 was able to be
observed in the year 2016. The RE peaks in May which is in the southwestern monsoon season. This reveals that the risk of soil erosion
in the basin is high in the southwestern monsoon season. In addition, land use and land cover changes over the years have adversely
impacted the erosion rates. Therefore, it is highly recommended to investigate soil erosion in-depth and then implement relevant regulations
to conserve the soil layers upstream of the river basin.

Key words: erosivity density, Kinnell’s algorithm, rainfall erosivity, Wischmeier and Smith algorithm

HIGHLIGHTS

® Fvaluates the rainfall erosivity and erosivity density over the Kelani River basin, Sri Lanka
® The annual rainfall erosivity showed a linear increasing trend line over 31 years

® peaks can be observed during the southwest monsoon time.

® Highlights the importance of regulating policy decisions to conserve the soil layers.

1. INTRODUCTION

Soil erosion is a process of nature causing the displacement and conveyance of the uppermost layer of soil to low-lying regions
(Karunaratne et al. 2022; Chen et al. 2023). This is a complicated phenomenon that is influenced by many kinds of inter-
related factors. Rainfall and land use changes are two key factors of them because they represent a critical pathway for
sediment mixing with rainwater and subsequent deposition processes (Xiao ef al. 2015; John et al. 2021). The rainfall erosivity
(RE) is one of the most crucial elements that describes the erosive processes and suggests conservation strategies when utiliz-
ing soil erosion simulations (Panagos et al. 2017a). The factor, referred to as RE, is incorporated into indicating the capability
of rainfall to induce soil erosion (Zhu ef al. 2021; de Sousa Teixeira ef al. 2022). That is one significant reason to select RE in
this study.

Studying RE is essential for understanding and predicting the impact of rainfall on soil erosion. By studying RE, it is able to
develop models and equations that help estimate soil loss, identify erosion risks, and formulate effective soil conservation
measures (Mamedov et al. 2011). Addressing erosion processes occurring at the bed surfaces and banks of natural rivers,
as well as engineered waterways, is crucial for effective water resources management (Pandey ef al. 2021). This knowledge
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is crucial in various fields such as agriculture, land management, and environmental planning (Lee & Heo 2011). For farmers
and land managers, understanding RE allows them to make informed decisions about how to manage their land in order to
mitigate erosion risks (Panagos et al. 2017a; Nabi et al. 2020). Furthermore, studying RE is important for addressing the larger
issue of sediment delivery in river catchments. As land clearance, intensification of land use, and population growth increase,
sediment delivery in river catchments becomes a significant problem (Li & Ye 2018). Understanding the erosive force of rain-
fall is necessary to develop effective strategies for sediment control and watershed management (Nazuhan ef al. 2018).
Furthermore, this analysis can offer insights into the implications of climate change and variability. By examining patterns
and trends in RE, experts can gain a deeper understanding of how alterations in precipitation intensity and distribution
might influence soil erosion rates across diverse regions. This understanding is essential for devising adaptation strategies
and implementing effective soil conservation measures to mitigate the adverse effects of erosion amid a changing climate.
Future climate projections project potential threats of soil erosion and its consequences, including land degradation, dimin-
ished agricultural yields, and the depletion of soil carbon. Moreover, soil erosion compromises the soil’s capacity to mitigate
global warming by sequestering carbon (Borrelli ef al. 2020; Panagos ef al. 2022). The deposits of sediment load in reservoirs
downstream have identified significant challenges with the management of water resources and hydraulic structures. That is
the importance of studying RE of a particular region. Therefore, this particular research broadly studies one of Sri Lanka’s
major river basins to showcase this problem.

Various assessment methods are employed to measure RE and its potential impact on soil erosion. One common approach
involves using indices such as the R factor in the Universal Soil Loss Equation (USLE) or the RUSLE model. These indices
consider factors like rainfall amount, intensity, and distribution to estimate erosive power. Rainfall simulators represent
another assessment type, utilizing artificial rainfall systems to study erosive effects under controlled conditions. Additionally,
remote sensing techniques analyze rainfall patterns and characteristics over an area to assess RE. These assessment methods
are vital for understanding and managing the influence of rainfall on soil erosion.

Other assessment types of RE include the following: (1) The use of RE maps derived from long-term rainfall data to ident-
ify areas with high erosivity potential (Xiao et al. 2015; Zhao et al. 2023). (2) Development of regression models or
equations that predict RE based on easily obtainable rainfall data, such as average annual precipitation or monthly rainfall
patterns (Panagos ef al. 2017b; Fenta ef al. 2024). (3) Analysis of historical rainfall data and its correlation with erosion
measurements to determine the erosive power of different rainfall events (Brychta & Janecek 2017; Di Lena ef al. 2021).
(4) Several hydrological models, such as the Soil and Water Assessment Tool (SWAT) or the Soil Conservation Service
Curve Number (SCS-CN) method, integrate RE assessments into their soil erosion predictions (Gupta et al. 2023,
Jadhao et al. 2023).

In the context of Italy, one of the most effective ways to determine a rainstorm’s potential for erosive impact is to use the
comprehensive rainfall-runoff erosivity factor R, which is included in the USLE and Revised Universal Soil Loss Equation
(RUSLE) soil erosion prediction models. USLE-based models are commonly used to estimate soil loss rates at various
scales across Europe. Accurate calculation of the R-factor requires continuous, high-temporal-resolution rainfall data, but
due to limitations in available data, it is often computed at 15- to 30-min intervals with the use of conversion factors to com-
pensate for underestimations. However, the lack of pluviographic records and the time-consuming nature of R-factor
calculation have limited its application in some studies, especially at regional and large-scale levels. Some studies have
employed geostatistical methods that incorporate secondary information (elevation and environmental variables) to predict
RE spatially, achieving good results in regions like the Algarve in Portugal, the Ebro catchment in Spain, Switzerland, and
Greece (Borrelli ef al. 2016). A study has focused on assessing RE in Sdo Paulo State, Brazil which employs hierarchical clus-
tering analysis to define homogeneous regions based on RE. This categorization highlights distinct patterns of erosivity across
the state. Regionalized regression models are created to estimate RE within each of the defined homogeneous regions, pro-
viding accurate tools for predicting RE (Teixeira ef al. 2022). There are two main approaches to estimate RE, this method
takes into account the kinetic energy of rainfall. It recognizes that higher rainfall kinetic energy corresponds to a greater
potential for causing erosion. It considers the energy associated with the falling raindrops. The second approach is simpler
and directly uses daily, monthly, or annual rainfall data to estimate RE. It does not factor in the kinetic energy of rainfall but
focuses on quantifying erosivity based on the volume or amount of rainfall received over a specific period. This approach is
more straightforward and does not involve the specific energy component of the rainfall (Wang et al. 2024). The USLE pre-
diction equation involves RE, or the R-factor, as one of its input parameters. These mean monthly R-factor values are used to
predict global monthly erosivity datasets at a 1-km resolution using ensemble machine learning. The resulting monthly raster
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data in GeoTIFF format has applications in soil erosion prediction modeling, sediment distribution analysis, climate change
assessments, and flood and disaster evaluations, and can serve as valuable inputs for Land and Earth Systems modeling
(Panagos et al. 2023). Globally, soil erosion is predicted to occur at mean rates of 12-15 Mg ha ! yr ! (Marondedze &
Schiitt 2020). According to the baseline scenario, at a continental level, South America shows the highest prediction of aver-
age soil erosion rate (3.53 Mg ha~! yr™!) in 2001, followed by Africa (3.51 Mg ha ! yr ') and Asia (3.47 Mg ha ' yr )
(Borrelli et al. 2017). In order to identify the regional variability of soil erosion in farming systems, the study used a time-
series analysis of several factors, including rainfall, land use land cover (LULC), and crop diversification. Regression analysis,
in conjunction with rain-use efficiency (RUE) and residual trend analysis (RESTREND), was used to separate soil erosion
resulting from both human and climate-induced land degradation (Senanayake et al. 2022).

Determining and mapping the Samanalawewa watershed’s rate of soil erosion is, thus, the main goal of this project. Using
remote sensing and the geographic information system, the Integrated Valuation of Ecosystem Services and Tradeoffs
(InVEST) Sediment Delivery Ratio model was used. The study’s findings showed that the watershed’s current rate of
human-induced soil erosion ranges from 0 to 320 t/ha/year, with an average of 12.51 t/ha/year. Due to irresponsible
forest removal, the bulk of the area has experienced land degradation at a rate that exceeds the natural rate of soil erosion
(Kumarasiri et al. 2023). The close connection between the Sustainable Development Goals (SDGs) and soil-related activi-
ties, emphasizing the crucial role of healthy soil ecosystems in sustaining life on Earth has been studied in another study
which has focused on the Central Highlands of Sri Lanka. This is s region vulnerable to climate threats and susceptible to
soil erosion. The research employs a RUSLE (Piyathilake ef al. 2021; Somasiri ef al. 2022) to track and predict soil erosion
in response to rainfall variations. It aims to reduce soil erosion in agricultural systems and contribute to the achievement of
the SDGs. The study analyzed rainfall trends and erosivity to understand soil erosion dynamics. Using various machine learn-
ing techniques like artificial neural networks (ANNSs), support vector machines (SVMs), and adaptive network-based fuzzy
inference system (ANFIS), (Avand et al. 2022) the research predicts that soil erosion rates will increase (Sahour et al.
2021). Specifically, it highlights a positive trend in RE and extreme rainfall indices. The highest monthly erosion rates are
expected in October, and the erosion rates could range from 4 to 22% by 2040 based on 2020 rates. Under different climate
scenarios (RCP 2.6 and 8.5), the study predicts an increase in soil erosion rates. The findings underscore the growing vulner-
ability of the Central Highlands and the threat this poses to achieving the SDGs. In response, the research offers strategies for
monitoring and anticipating soil erosion to safeguard the soil ecosystem and support the SDGs. The methodology developed
in this study can potentially be applied to reduce soil erosion in agricultural systems in other regions as well.

The country’s forests and vegetation have reduced, whereas the amount of land utilized for agriculture in Sri Lanka has
expanded over the past three decades (Palliyaguru et al. 2022). It has been shown verification that the Kelani River basin
experiences greater rates of soil erosion. Approximately 70% of the river basin area exhibited low to moderate erosion severity
(less than 12 tons per hectare per year), highlighting the urgent need for erosion control measures (Fayas ef al. 2019). There-
fore, it is now essential that soil be conserved in this basin (Kottagoda & Abeysingha 2017). Thus, to obtain an in-depth
comprehension of the soil parameters and the circumstances of the riverbed, this study completes the knowledge of the
soil erosion pattern of the Kalani River Basin over a period of 31 years.

Therefore, this research aimed to provide evidence of how important sediment deposition in downstream reservoirs is for
the long-term management of water resources and hydraulic systems in the Kelani River basin, Sri Lanka. In order to achieve
this aim, the specific objective is to estimate the quantitative variations in RE and erosivity density (ED) on a monthly, annual,
and seasonal basis. Soil erosivity is unlikely to be significant on a daily basis, which is why the assessment was conducted
across these three scenarios.

To fulfill this goal, authors employed two main equations, one internationally recognized, and one locally adapted. After a
careful comparison, it was evident that the international Wischmeier and Smith equation provided the most accurate results.
Overall, this combination provides a comprehensive framework to find RE and DE, versatility, grounded in an empirical
basis, accessible to wide range, and especially longstanding use are made both of these equations special in this study.
Not only that the Premalal’s equation plays a crucial role in soil erosivity studies in Sri Lanka by providing a locally cali-
brated model for estimating soil erosion rates (Piyathilake et al. 2021). Its importance lies in its ability to offer more
accurate predictions, inform policy and planning decisions, support research and monitoring efforts, and contribute to
capacity building in soil erosion management. Therefore, by utilizing this equation, the study successfully achieved the par-
ticular aim.
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2. MATERIALS AND METHODS

2.1. Study area

The Kelani River basin (Figure 1) is the second largest basin in Sri Lanka with an area of 2,336.12 km?. The Kelani River runs
for 145 km from Adams Peak and ends at Colombo. The river is one of the main sources of drinking water for the people of
Colombo, also it is being used for transportation purposes and agricultural works in the basin (Kottagoda & Abeysingha 2017,
Diodato ef al. 2021a). The basin extends between the latitudes 6.75-7.23 and the longitude 79.85-80.78. The Elevation of the
Kelani River basin varies from 0 to 2,335 m above mean sea level. The basin includes the following districts: Colombo, Gam-
paha, Kalutara, Kandy, Kegalle, Nuwara Eliya, and Rathnapura. The basin extends over the Western, Sabaragamuwa, and
Central provinces. 46.83% of the area of the basin is in the Sabaragamuwa Province, 34.77% of the area of the basin is in
the Western Province and 18.40% of the area of the basin is in the Central Province. The basin receives an average rainfall
of 3,522 mm during the 31 years (1990-2020). The basin lies within the Southwest Monsoon season. The seasonal rainfall
during the period 1990-2020, in the Southwest monsoon season (Liyanage et al. 2021; Diodato ef al. 2021b) from May to
September is 1,689.3 mm (48%), Second Inter Monsoon Season (October-November) is 848.76 mm (24%), First Inter Mon-
soon Season (March-April) is 481.13 mm (14%) and Northeast Monsoon Season (December-February) is 502.22 mm (14%)
(Nandalal 2017; Talbot et al. 2018; Alahacoon & Edirisinghe 2021).

2.2. Rainfall data

The data used are monthly rainfall data. The data were collected from 10 stations for a period of 31 years (1990-2020)
(Renard et al. 1991). The rainfall stations are Angoda, Awissawella, Chesterford, Colombo, Labugama, Maliboda, Norton,
Champion, Castlereigh, and Deraniyagala. The locations and elevation of the rainfall stations are given in Table 1. The
monthly rainfall data collected were summarized as monthly, annual, and seasonal rainfall data for the assessment of the
RE (Cecilio ef al. 2013; Parisouj et al. 2020). For the weighted average rainfall, RE, and ED of basin, the Thiessen polygon
method was used (Zekai 1998; Munenrujesuh et al. 2021).
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Figure 1 | The Kelani River basin with the rainfall stations.
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Table 1 | Rainfall station characteristics

Name of the rainfall station Longitude Latitude Elevation, m (above mean sea level)
Angoda 6.93 79.92 8
Awissawella 6.95 80.22 18
Chesterford 7.07 80.18 198
Colombo 6.90 79.87 6
Labugama 6.83 80.18 131
Maliboda 6.88 80.43 542
Norton bridge PO 6.92 80.52 1,029
Campion estate 6.78 80.70 1,471
Castlereigh 6.87 80.56 1,181
Deraniyagala (Dabar) 6.92 80.34 94

2.3. Methods and equations
2.3.1. RE factor (R-factor)

By using these formulas, one can determine the amount of soil erosion by multiplying the RE (R-factor) by five input factors:
soil erodibility (K-factor), slope length (L-factor), slope steepness (S-factor), cover management (C-factor), and support prac-
tices (P-factor) (Lee ef al. 2022). The impact of raindrops and the separation of soil particles by surface runoff are the main
causes of soil erosion, hence the R-factor is generally the most significant indicator when assessing the quantity of soil erosion
(Wischmeier & Smith 1978). In calculating the R-factor there are two equations used as mentioned in the following. Equation
(1) was developed for Sri Lanka by Premalal in 1986 (Co-investigator 2013).

(972.75 + 9.95 x F)

RE = 100

1)

where RE is the Rfactor (M] mm ha~! h™! yr!) and F is the Average annual rainfall (mm). Equation (2) was predicted by
Wischmeier and Smith and later altered by Arnoldus (Belasri & Lakhouili 2016) from which we can calculate the annual RE.

P2
12 (l.Slog (—’) —0.8188)
RE = Y 1.735 x 10 p @)

i=1

The RE is the annual rainfall erosivity (MJ mm ha~* h~! yr'), P, is the monthly rainfall (January to December) (mm) and P
is the annual rainfall (mm). For the monthly RE simplification of Equation (2), we can use the following equation (refer to
Equation (3)).

P2
<145 log (—’) —0,8188>
RE; = 1.735 x 10 p 3)

where RE; is the monthly rainfall erosivity (MJ mm ha—* h~! yr!), P; is the monthly rainfall (January to December) (mm) and
P is the annual rainfall (mm) (Cardoso et al. 2022).

2.3.2. Erosivity density

The ED, which represents the erosivity content per unit of rainfall as determined by Equation (4), is given as the ratio of
monthly RE to monthly rainfall. The ratio of the mean annual RE to the mean annual rainfall was used to estimate the
mean annual ED. To evaluate the ED the following equation has used, Kinnell’s algorithm (Kinnell 2010).

ED; = — “)
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where ED; is the erosivity density (MJ ha~* h™!), RE; is the monthly erosivity, and P;, is the monthly rainfall. For the annual
ED calculation, Equation (4) can be used as Equation (5) as mentioned in the following.

where ED is the annual erosivity density (MJ ha~! h™'), RE; is the monthly erosivity, and P; is the monthly rainfall.

3. RESULTS AND DISCUSSION
3.1. RE results

RE results were estimated using two equations as above mentioned(1) Premalal Equation (2). Wisehmeier and Smith
equation. The results obtained using both equations separately were compared to obtain the most accurate results
(Tesfahunegn et al. 2014; Karunaratne et al. 2022).

3.1.1. Premalal’s equation

Premalal’s equation needs average annual rainfall data. The annual RE varies between 289.83 and 446.59 MJ mm ha ' h™*
yr 1. The highest RE was found in 2008 and the lowest RE was predicted in 2001. The annual RE results obtained for the
basin are shown in Figure 2(a).

3.1.2. Wisehmeier and Smith equation

The equation developed by Arnoldus (Singh & Singh 2020) requires monthly rainfall data and annual rainfall data in order to
calculate the RE. Furthermore, the monthly RE and annual RE can be obtained using this equation. The annual RE varies
between 592.84 and 2,831.41 MJ mm ha~! h™! yr!. The highest RE was in 2016 and the lowest RE was in 2001. The
annual RE results obtained for the basin are shown in Figure 2(b).

3.1.3. Comparison of two equations

Because the input data are different, there is a significant difference between the two equations. Premalal’s equation uses
annual average rainfall data, while the Wischmeier and Smith equation uses monthly and annual rainfall data. The Wisch-
meier and Smith equation yields more accurate answers since it initially determines the monthly RE before calculating the
annual RE, whereas Premalal’s equation directly calculates the annual RE simultaneously (Cherif et al. 2020; Chen et al.
2023). Table 2 illustrates the corresponding results. When referring to the RE listed in Table 2, the value has dropped in
2016 in Premalal’s equation but in Wischmeier and Smith equation, the value has increased by a large amount. Meanwhile
considering the reason for this, the annual rainfall of 2016 was 3,012.54 mm and the rainfall in the month of May 2016 was
1,145 mm. As Premalal’s equation calculation is based on annual rainfall data, monthly rainfall does not affect the calculation
but in Wischmeier and Smith’s algorithm the annual RE is calculated by summation of monthly RE, as we can see it depends
on monthly rainfall, the annual RE differs concerning monthly rainfall.

As mentioned above in 2016, the RE spiked according to the Wischmeier and Smith algorithm. If we consider the rainfall
data of May 2016 it has increased in large value due to Tropical Storm Roanua occurring on 15 May 2016 and causing severe
damage to the lives of people as well as properties. Due to the severe landslides and floods, 104 deaths, and 99 missing were
recorded and more than 300,000 people were affected. Therefore, we can come to the conclusion the results obtained using
Wischmeier and Smith’s algorithm are more accurate than Premalal’s equation.

3.2. Variation in RE

3.2.1. Monthly variation

Equation (3) is used to calculate the RE which was developed by (Singh & Singh 2020). A summary of the average monthly
RE of the Kelani River basin for the period of 1990-2020 is listed in Table 3. Figure 3 gives a clear illustration of the variation
of the monthly RE simultaneously. The average monthly RE of the basin for the selected period of 31 years, varies between
13.60 to 211.77 MJ mm ha ' h~! yr!. The lowest monthly RE was observable in the month of February and the highest was
recorded in the month of May. The monthly RE of each rainfall station varies from 0 to 4,762.51 M mm ha ' h~! yr~'. The
highest value for monthly erosivity was recorded in the month of May 2016 in the Deraniyagala (Dabar) rainfall station.
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Figure 2 | (a) Rainfall erosivity (Premalal’s Equation) and (b) rainfall erosivity (Wischmeier and Smith Equation).

Table 2 | Annual rainfall erosivity (2015-2017) calculated using Premalal’s equation and Wischmeier and Smith algorithm

Rainfall erosivity (MJ mmha "h "'yr ")

Premalal’s equation

wischmeier and Smith algorithm

Year

2015 377.70 944.86
2016 309.48 2,831.40
2017 389.13 1,227.70
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Table 3 | Average monthly rainfall erosivity (1990-2020)

Jan Feb Mar Apr May Jun Jul Aug sep oct Nov Dec

Rainfall erosivity ~ 28.74 13.6 14.45 82.53 211.77 103.31 64.65 64.36 114.26 190.21 112.71 31.24
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Figure 3 | Variation of monthly rainfall erosivity during 1990-2020.

Additionally, the highest monthly RE of each rainfall station occurred in the month of May 2016. This is due to tropical Storm
Roanua occurred on 15 May 2016. This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental conclusions that can be drawn.

3.2.2. Annual variation
For the estimation of annual rainfall, Equation (2) was used, and the results obtained for the particular period of the study are
shown in Figure 4(a). Table 4 presents the average value of RE of each rainfall station, for the 31 years. The RE of the basin
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Figure 4 | (a) Annual rainfall erosivity and (b) 1990-2020 average annual variation.
Table 4 | Average annual rainfall erosivity of rainfall stations
Rainfall station Rainfall erosivity
Angoda 679.16
Awissawella 947.43
Chesterford 1,094.74
Colombo 671.81
Labugama 1,020.52
Maliboda 1,452.25
Norton 1,540.96
Champion 499.73
Castlereigh 1,011.19
Deraniyagala (Dabar) 1,208.25
Basin 1,031.81

varies from 592.84 to 2,831.41 MJ mm ha~* h~! yr!. This lowest value was recorded in the year of 2001 and the highest value
was recorded in the year of 2016. The annual RE of rainfall stations varies from 226.34 to 5,132.01 MJ mm ha ' h~! yr*. The
lowest annual RE is in the Champion rainfall station in the year of 1998 and the highest annual RE is in the Deraniyagala
(Dabar) rainfall station in the year of 2016. The RE map (Figure 4(b)) was obtained using IDW interpolation in ARC-GIS
software.

3.2.3. Seasonal variation

The seasonal RE was filtered from the monthly RE results obtained according to the seasonal division of months. The results
obtained for the seasonal RE for each rainfall station are shown in Figure 5(a) and the seasonal RE variation with the year is
shown in Figure 5(b). The seasonal average RE of the 31 years varies from 73.57 to 558.34 MJ mm ha~! h~! yr—!. Figure 5(c)
provides a better illustration. The highest RE was recorded in the Southwest - monsoon season and the lowest RE was
recorded in the Northeast - monsoon season. If we consider the basin, it extends over the Western, Sabaragamuwa, and Cen-
tral provinces. 46.83% — Sabaragamuwa Province, 34.77% - Western Province, and 18.40% — Central Province. As we can
observe the basin lies in the Western part of the country. As the rainfall is high in the Southwestern part of the country in
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Figure 5 | (a) Seasonal variation of rainfall erosivity; (b) seasonal variation of rainfall erosivity with the years; and (c) seasonal variation of
rainfall erosivity.

the Southwest — monsoon season the RE in the season is comparatively higher than the other seasons. The RE in the South-
west monsoon peaked at a value of 2,646.26 MJ mm ha~' h~! yr! in the year 2016. The reason for the peak if we consider is
the tropical storm which occurred in the month of May 2016.

3.3. Variation in erosivity density
3.3.1. Monthly variation

Monthly ED was calculated using the Kinnell’s algorithm (Equation (4)). The average monthly ED of the basin for the
selected period of 31 years (1990-2020) (Table 5) varies between 0.04 and 0.32 MJ ha ! h™!. Figure 6 illustrates the variation
clearly. The lowest monthly ED was recorded in the month of February and the highest was recorded in the month of Octo-
ber. The monthly ED of each rainfall station varies from 0 to 2.96 MJ ha~* h~*. The highest monthly ED was recorded in the
month of May 2016 in the Chesterfold rainfall station.

3.3.2. Annual variation

From the collected monthly rainfall data and calculated monthly RE, the monthly ED was calculated, summation of the
monthly ED was obtained as annual ED (Equation (5)). The calculated values of ED from 1990 to 2020. The average

Table 5 | Average monthly rainfall erosivity (31 years)

Jan Feb Mar Apr May Jun Jul Aug sep oct Nov Dec

Rainfall Erosivity =~ 28.74 13.6 14.45 82.53 211.77 103.31 64.65 64.36 114.26 190.21 112.71 31.24
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Figure 6 | Variation of monthly erosivity density during 1990-2020.

value of ED for the period of 31 years of each rainfall station is given in Table 6. Also, Figure 7(a) shows the annual ED graph
version and Figure 7(b) presents the average annual variation of the same data. To calculate the annual ED of the basin, Thies-
sen polygon method was used. The average ED of the basin varies from 1.55 to 2.89 MJ ha ' h™'. The lowest value was
recorded in the year of 2003 and the highest value was recorded in the year of 2016. The annual ED of rainfall stations
varies from 1.13 to 3.64 MJ ha ! h™!. The lowest annual RE was in the Champion rainfall station in the year 2000 and
the highest annual RE is in the Deraniyagala (Dabar) rainfall station in the year 2016.

3.3.3. Seasonal variation

For the four seasons, ED results were obtained for the selected 31-years period. The seasonal average ED of the 31 years
varies between 0.18 and 0.94 MJ ha ! h™'. The highest ED was recorded in the Southwest - monsoon season and the
lowest ED was recorded in the Northeast - monsoon season. Figure 8(a) illustrates the seasonal variation of RE the
Figure 8(b) illustrates the seasonal variation of RE with years. Also, Figure 8(c) shows the seasonal variation of ED as
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Table 6 | Average annual erosivity density of rainfall stations

Rainfall station Average annual erosivity density
Angoda 1.66
Awissawella 1.84
Chesterfold 1.94
Colombo 1.66
Labugama 1.88
Maliboda 2.12
Norton 221
Champion 1.48
Castlereigh 1.89
Deraniyagala (Dabar) 1.96
Basin 1.88
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Figure 7 | (a) Annual erosivity density and (b) 1990-2020 average annual variation.

below mentioned. As discussed above, as the basin lies in the Western part of the country, the rainfall is high in the South-
western part of the country in the Southwest monsoon season the ED in the season is comparatively higher than the other
seasons (Senanayake ef al. 2020; Singh & Singh 2020). The ED in the Southwest monsoon peaked at a value of 2.34 MJ ha™!
h~!in the year 2016. The reason for the peak if we consider is the tropical storm that occurred in the month of May 2016 (Sri
Lanka 2017).

As it is discussed, the Kelani River basin in Sri Lanka is one of the most important river basins to the economy of the
country. This includes various water resources management processes and direct and indirect relationships to the water
resources. Therefore, understanding soil erosion in this tricky catchment is highly essential which was pointed out in the
introduction. The sustainability of food production is one of the most important and challenging aspects and is given a
higher priority even in the SDGs. Zero hunger is considered the second sustainable development goal and soil erosion
can adversely influence agricultural production. Therefore, continuous research has been carried out to understand soil ero-
sion and its correlations to the water sector, agriculture and food sector, energy sector, etc. throughout the world. Being one
of the most important catchments in Sri Lanka, the presented research in this paper has a greater potential to look at the
required responsible strategies to mitigate any adverse impacts.
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Figure 8 | (a) Seasonal variation of rainfall erosivity; (b) seasonal variation of rainfall erosivity with the years; and (c) seasonal variation of
erosivity density.

As it was stated, continuous research is being undertaken to assess the RE of river basins throughout the world. (de Sousa
Teixeira ef al. 2023) have modeled the RE over Brazil from 5,166 rain gauge data. This was a comprehensive study carried out
to bring up national-scale policies identifying the importance of soil erosion due to precipitation. Understanding the impor-
tance of climate change for future scenarios, (Wang et al. 2023) have showcased the projected RE in mainland China. They
have used gridded precipitation data with an acceptable bias correction. They have found that the RE is projected to increase
due to intensified precipitation scenarios. However, (Feng et al. 2023) looked at the RE trends in Three Gorges Reservoir,
China. This is important in order to understand the temporal behavior of RE and then to plan the other activities. Related
studies in mountainous catchments are highly important. (Baniya et al. 2023) analyzed the RE for the Himalaya catchment
during the Melamchi flood in Nepal. Analyzing sediment dynamics is essential in river basins due to various issues including
understanding impacts on hydropower development and turbine blade damage in countries such as Nepal.

Nevertheless, analyzing RE on highly important catchments in Sri Lanka is limited. Data limitation is one of the major
reasons for the lack of studies. In a recent study, (de Silva et al. 2022) investigated the spatial variability of soil erosion in
the Nalanda Oya catchment in Sri Lanka. The authors concluded the possible use of their findings in the management of
soil erosion due to changing climates. The central highlands of Sri Lanka were chosen by (Senanayake et al. 2024) to inves-
tigate the RE and then to understand the possible remedy measures for achieving SDGs. However, a comprehensive study of
the Kelani River basin is missing in the literature. Therefore, the presented research herein fulfills the research gap in under-
standing RE in one of the most rainfall-rich catchments in Sri Lanka. Various policy decisions including sustainable urban
drainage systems (Srishantha & Rathnayake 2017) have to be implemented in conserving the Kelani River basin from
increased RE. These conserving strategies are highly important under climate change.
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4. CONCLUSIONS

In this study, we carried out an assessment of RE in the Kelani River basin spanning a 31-year period, from 1990 to 2020. We
utilized two distinct equations for this assessment: The Wischmeier and Smith algorithm and Premalal’s equation. Using both
equations, we calculated the annual RE and subsequently compared the outcomes. Upon a comprehensive evaluation, it
became evident that the Wischmeier and Smith algorithm yielded the most accurate results for determining RE in the
Kelani River basin. Furthermore, we employed the Wischmeier and Smith algorithm to determine annual, monthly, and sea-
sonal RE, while we applied Kinnell’s algorithm to assess ED. In both the estimations of monthly RE and ED, we noted that
the month of May 2016 stood out as a peak period by proving the extreme rainfall event that we had on May 2016. The high-
est monthly RE recorded was 4,762.51 M] mm ha~! h™! yr !, while the maximum monthly ED reached 2.96 MJ ha~* h™™.
Likewise, the highest annual RE was observed in 2016, totaling 5,132 MJ mm ha ! h~! yr!, coinciding with the period of
May. During the same year, the highest ED was 3.64 MJ ha ! h™'. When examining the seasonal variations, we found
that the highest RE occurred in 2016, reaching 558.34 MJ mm ha~! h~! yr~!. This peak was observed during the southwest
monsoon period. The ED was also at its highest during the same period, at 0.94 MJ ha~* h™! in 2016’s southwest monsoon
period. Both the annual RE and ED reached their highest levels in the year 2016. Monthly values also peaked in May 2016.
These findings indicate a significant soil erosion event occurred in that year. Being evidence of these results, on May 15, 2016,
a tropical storm collided with Sri Lanka, leading to severe landslides and floods. This catastrophic event resulted in 104 fatal-
ities, and 99 missing individuals, and affected over 300,000 people. This study proves that assessing the RE of a basin is crucial
in calculating soil loss using the USLE method. Based on the observed trends in RE, we can conclude that soil erosion in the
basin due to rainfall is likely to remain high in the future. Therefore, it is imperative to take necessary measures to mitigate the
damage. In summary, the study’s results affirm that the methodology employed was consistently and successfully applied to
obtain reliable findings by the end of the study. The Kelani River basin, renowned for its provision of various benefits such as
potable water, hydropower, agricultural support, and urban utilities, underscores the need for investments in erosion control.
This study serves as a valuable tool for crafting ecosystem-centered benefit distribution and financing strategies. By leveraging
potential ecosystem benefits identified through such analyses, these investments can be recouped. Moreover, this approach
fosters collaboration among diverse stakeholders and socio-economic sectors. The authors are recommending the following
in order to enhance understanding in future studies because there exists a notable research gap concerning these scenarios
within this specific study area. It is recommended to model soil erosion in this river basin using GIS as well as in sub catch-
ment basis, also to prepare a soil hazard map for whole catchment and to assess soil retention in the Kelani River basin.
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