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I\ MARINE SURVEYING

Wi
to

Detect: An intelligent platform
nerform airborne wildlife census

automatically In the marine ecosystem

A new non-parametric approach, WILDetect, has been built using an ensemble of supervised Machine
Learning (ML) and Reinforcement Learning (RL) techniques. Readers may recall that the first part of the
paper was published in May' 24 issue of Coordinates magazine. We present here the concluding part
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5. Implementation of the methodology in splitting and
counting (A.4) using the recursive RL technique

Objects can appear in different regions of the image and in different scales. In order
to solve this problem, the sliding window method (Fig. 3) is used (Forsyth & Ponce,
2012). It consists of a detection window that slides over an image extracting regions
and classifying them. A Gaussian pyramid (Witkin, 1984) (Fig. 3) is also applied to
the image to perform a scale search to detect similar objects in different sizes.

A multi-threaded approach was established to speed up the calculations and reduce

the processing time. In this multi-threaded approach, jobs are distributed among the
resources in the same network, partic- ularly among the multi-core processors, with one
job for each core. The user can choose one of the two processing options, either multi-
threaded where powerful computing resources can be deployed to perform many tasks
at once, or sequentially where operations are performed in order and results can be
followed by the user per image. The multi-threaded option reduces the processing
time significantly based on the power of the resources used. Some of the resources
in use can be stopped to be used for other purposes, and vice versa, new resources
can be incorporated into the system while the splitting or counting process is
ongoing, using a novel flexible cloud computing approach built in this study.

It is worth noting that datasets are imbalanced -i.e., not uniform within surveys
most of the time as mentioned earlier regarding the larger number of negative
images (negative class) compared to a smaller number of positive images
(positive class). This imbalance is mitigated using an ensemble of ML and RL
techniques within the research in two phases of automated data analysis. The
selection of the best detectors in the splitting phase is based on the features
of the background to discard most of the negative images while aiming to
place all the positive images in the positive folder whereas it is based on the
features of the targeted objects in the counting phase to count all the objects
in the images placed in the positive folder while aiming to discard all the
remaining negative images placed in the positive folder during the splitting
phase. Four values are measured to assess the obtained results, namely,

Sensitivity=Se=TruePositiveRate(TPR)=TP /(TP +FN),

Specificity = Sp = TrueNegativeRate(TNR) = TN /(TN + FP),
Accuracy = Acc = (TP + TN)/(P + N) = (TP + TN)/(TP 9]

+ TN + FP + FN), Precision=Pr=TP /(TP +FP)
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The first three values — Se, Sp, and Acc — are explained in
Section 6 in detail based on the data analysis of the particular
approaches. Pr is mainly employed to identify the class
imbalance problem and assess how imbalanced data in favour of
“negative images”’ that may lead to large FPs is influencing the
results. More specifically, this assessment helps to understand
(i) if the high values of Se, Sp and Acc are biased and most
importantly (ii) if the two phases of using an ensemble of
learning techniques help alleviate the bias regarding the
improvement in Pr through obtaining the final counting results.
The low values of Se, e.g., < 0.80, require the implementation of
cost-sensitive analy- sis (CSA), as we conducted in our previous
research in Kuru et al. (2013) to get more reliable improved
results. In CSA, classes have different costs associated with
them using weights with respect to the number of instances;

the classes with fewer instances, i.e., under- represented

classes (positive cases in this research) are assigned higher
costs (i.e., adding cost-sensitivity, e.g., P:N = 10:1) to reduce
the number of false predictions, particularly in favour of the
class with less number of instances, and consequently increase
the reliability of the results related to that class by assigning
different penalties to misclassification of samples (Kuru et

al., 2013) in which there is a trade-off between Se and Pr.

5.1. Implementation of the platform in splitting

Most of the time, more than 95% of images in a survey
contain no targeted objects, and therefore this phase of the
implementation aims to separate out the images with no
targeted objects in a reduced overall processing time. Strictly
speaking, the main objective of this phase is to perform the
best splitting between negative and positive images based on
the parameters specified in Section 4.2.3. The negative images
are placed in the negative folder and the positive images are

5-10 negative sample
images are selected from
ﬂ the survey by the user

User

placed in the positive folder. Then, the images in the positive
directory are analysed in detail to locate all targeted objects,
which is explained in Section 5.2. The methodology selects a

set of detectors for each feature extraction technique to deploy
during the splitting process based on the particular characteristics
and specific patterns of the images in surveys. This step is
explained in Section 5.1.1. Then, how the splitting is performed
is explored using these selected detectors in Section 5.1.2.

5.1.1. Pattern recognition and specification of the best
feature extraction detectors for splitting using RL (A.4.1)

The methodology chooses the best detectors regarding
separating negative images from positive images
successfully based on the texture patterns and characteristics
of the images in the surveys using the user- model-

data interaction as illustrated in Fig. 3, A.4.1. The
components of the recursive RL algorithm employed in

this phase are demonstrated in a broader perspective in

Fig. 11 and the main steps are explained as follows.

First, a very small subset of the negative images (i.c., 5-10)
representing the whole of the negative images (i.e. background)
in the survey is selected by the user. The characteristics of

this very small set play an important role in determining the
best convenient detectors. Therefore, the user is expected to
choose blank images that have diverse background textures

in the survey. For instance, at least a blank image taken from
each camera mounted on the aeroplane and blank images taken
from different time intervals should be placed in this set in order
to represent the background characteristics of the whole survey.
Alternatively, processing of the images from different cameras or
in different time intervals — subsets of surveys — can be conducted
separately, which can increase the efficacy of the platform further.

2-5 positive sample

images are selected
from the survey and the
& total number of objects
is specified by the user

L 4
Input the final
detectors (XML)
(Haar, LBP, HOG)

1" input (Haar)
050-0995-North.xml
050-0995-East.xml
050-0995-South.xml
050-0995-West.xml

1" input (LBP
050-0995-North.xml
050-0995-East.xml
050-0995-South.xml
050-0995-West.xml

/

Apply the detectors on negative
images using the matching
technique (Viola-Jones)

Is any object
detected?

Stop processing further

detectors and place these
detectors for splitting

Is any object
detected?

050-0995-East.xml
050-0995-South.xml
050-0995-West.xml

Selected detectors Are all detectors
XML) (Haar, LBP, HOG elected?

Fig. 11. Use of Reinforcement Learning (RL) for selecting the best
detectors for splitting.

Next input ]»—
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L 4
Input the final
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035-0985-West.xml|

User

/

Apply the detectors on positive
images using the matching
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XML) (Haar, LBP, HOG elected?
Fig. 12. Use of Reinforcement Learning (RL) for selecting best detectors
for counting.
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Second, the blank images selected by the user are processed by
the approach to determine the best detectors for each technique
based on the observed Sp (i.e., TN/(TN+FP)) values. In this
process, a screening test is performed with preferably higher
Sp values to increase the chance of placing images with no
targeted object in the negative folder. In other words, the FP
cases are reduced to a minimum resulting in very high Sp
values with an ability to correctly place the negative images in
the negative folder and this means that if an image is tagged

as negative, it is a high probability that there is no object in
that image. The RL algorithm makes the detectors run on the
sample negative images fed by the user using the Viola—Jones
matching technique to single out the successful detectors for
splitting based on the characteristics of the background texture.
This process starts from the detectors with the highest threshold
values (i.e., 050—-0995 in Table 2) that may result in many

FPs reducing Sp whereas the background has a complicated
texture. However, no FP may be obtained if the background
has a clear texture. This iterative process using predetermined
nominated detectors (Fig. 9) proceeds (Fig. 11) until no FP is
obtained per detector where Sp is 1. In other words, the process
stops per detector where Sp is 1 and the detector is selected

at this stage in which a satisfactory pattern is observed and
learned by the system. Otherwise, the last detectors with the
smallest threshold values are processed where the Sp may be
slightly smaller than 1 and they are selected for splitting.

Finally, the methodology determines the most suitable
detectors for each technique (i.e., Haar, LBP, HOG) through
the detector sets trained previously as depicted in Table 2
that are above the green line in Fig. 9. The results of the

RL process for the 13 surveys regarding the selection of

the detectors for splitting are explained in Section 6.1.

5.1.2. Object recognition and splitting (A.4.2.Phase1)

The detectors determined by the RL approach at the start of the
splitting process as explained in Section 5.1.1 are utilised in

Fig. 13. Two magnified gannet objects detected by several detectors
(left) and counted only once (right).

this phase. The methodology makes these detectors run on all
the images using the Viola—Jones matching technique and the
images are placed in the negative directory if they are specified
as negative; in other words, these are the images in which

no object is detected by any of these detectors. The images

are readily placed into the positive directory when an object

is detected by any detector without screening the image for
other objects using the remaining detectors. The main aim is

to increase Sp by reducing FPs with respect to each technique,
but to increase Se using 3 techniques at the same time by
reducing FNs regarding the number of positive images (see Fig.
10). The higher the number of objects in an image, the more
likely that the image will be put into the positive directory.

The splitting phase was evaluated on several surveys (Fig.
411I) and the results (Table 3) are explained in Section 6.1.

5.2. Implementation of the platform in counting objects

In the splitting phase, the application places any image into

the positive directory when an object is detected without
screening the image for other objects using the remaining
detectors. In this way, the processing time of the splitting is
reduced significantly. On the other hand, the aim of the counting
phase is to detect every targeted object in images placed in the

Fig. 14. Gannets detected by the convenient detectors: Multiple gannet
objects detected by several detectors (top) and counted only once
(bottom).
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Table 3 Accuracy rates of the snag dataset based on the trained files of 4 different parameters for splitting images into positive and negative
categories: all snags are recognised successfully by the training parameters, FAR = 0.50 and TPR = 0.995 with the combination of 3 techniques.

Selected parameters for three techniques

Haar LBP HOG

Surveys  Negativelmages Positivelmages ~ GannetsTot  # P ™ Se Sp FAR TPR FAR TPR FAR TPR
Survey 1 100 31 31 30 99 0968 0990 0350 0985 0.400 0995 0350 0985
Survey 2 100 7 7 7 93 1.000 0930 0350 0985 0350 0.985 0.350 0.985
Survey 3 100 3 3 3 97 1.000 0970 0350 0.985 0.400 0.995 0.400 0.985
Survey 4 100 2 2 2 92 1.000 0920 0350 0985 0350 0.985 0350 0.985
Survey 5 100 1 1 1 99 1.000 0990 0.500 0.995 0.500 0.995 0.500 0.995
Survey 6 100 2 2 2 99 1.000 0990 0350 0.985 0.400 0.995 0.400 0.985
Survey 7 100 10 10 9 99 0900 0990 0350 0985 0400 0995 0400 0985
Survey 8 100 3 3 3 100 1.000 1.000 0400 0995 0400 0995 0.500 0.985
Survey 9 100 1 1 1 99 1.000 0990 0.500 0.995 0.500 0.995 0.500 0.995
Survey 10 100 1 1 1 97 1.000 0970 0.400 0995 0400 0995 0350 0.985
Survey 1" 100 10 10 10 98 1.000 0980 0350 0985 0.400 0995 0450 0995
Survey 12 100 3 3 3 99 1.000 0990 0.400 0995 0.500 0995 0.400 0.995
Survey 13 500 202 256 196 484 0970 0968 0350 0985 0350 0985 0400 0.995
Split Avg 0.988 0.975

Surveys

Fig. 15. Visualisation of Se and Sp results of the surveys in Table 3 for
splitting images into positive and negative categories.

(a) Example 1: the object with very difficult background texture; Bottom centre.

positive directory. New detectors are selected to complete
this task using a similar recursive RL approach explored
above, but differently as explained in Section 5.2.1 in order
not to miss any targeted object in the positive images.

5.2.1. Pattern recognition and specification of the best
feature extraction detectors for counting using RL (A.4.1)

The methodology chooses the best detectors
regarding counting ob- jects in the images placed in
the positive folder based on the particular patterns
and characteristics of the objects in those images as
illustrated in Fig. 3, A.4.1. The main objective of this

phase is to detect and count all the targeted objects

SuCCeSSquy The Components Of the recursive RL (b) Example 2: the object during diving in exactly different shape; at the middle left.
algorithm employed in this phase are demonstrated in Fig. 16. Examples of gannet objects in whole images not detected by
Fig. 12 and the main steps are explained as follows. the trained classifiers.
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First, a very small subset of the positive images (i.e., 2-5) in the
survey are selected and all the objects in these images are outlined
with a bounding box along with the targeted object counts per
image by the user upon the interface provided in the application
during the selection of a subset of the negative samples at the

start of the survey analysis as mentioned in Section 5.1. In other
words, the detectors for both splitting and counting are designated
by the recursive RL approach before the survey analysis

starts. In this way, the methodology carries out the counting
process automatically after the splitting phase is completed.

Second, these selected positive images are processed with respect
to the user-specified objects by the RL approach to determine
the best de- tectors for each technique based on the observed

Se (i.e., TP/(TP+FN)) values. In this step, an object recognition
test is performed with preferably higher Se values to increase
the chance of detecting a targeted object in the positive folder.
In other words, the FN cases are reduced substantially with
respect to the targeted objects, preferably to zero, resulting in
very high Se values with an ability to correctly detect the objects
in the images. The RL algorithm makes the detectors run on

the sample positive images using the Viola—Jones matching
technique to single out the successful detectors for counting by
referencing the users’ object inputs from the selected positive
images. This time, different from the splitting phase, the process
starts from the detectors with the lowest threshold values (i.e.,
035-0985 in Fig. 9) that may result in many FNs which may
reduce Se. This iterative process proceeds until no FN is obtained
per detector where Se is 1. In other words, the process stops

per detector where Se is 1 and the detector is selected at this
stage in which a satisfactory pattern is observed and learned

by the system. Otherwise, the last detectors with the highest
threshold values are processed where the Se may be slightly
smaller than 1 and they are selected for counting. Additionally,
the last detector with the highest threshold values may result in
several FP where the images have complex backgrounds, which
may reduce Sp of the system at this stage. But, the objective

is to detect all targeted objects successfully with a high Se,
preferably 1, as specified earlier even though compromising Sp
slightly. The use of multiple designated detectors at a time in

a collective way aims to ensure a high Se — one of the other
two detectors can detect an object if it is missed by a detector.

Changes from splitting phase to counting phase

1
.9
.8
.7
.6
.5
Se Se Sp Sp Pr Se Se

Acc  Acc Pr
images objects
Assessment Parameters based on

Se/Sp/Acc/Pr Rates
o o o o o

Fig. 17. Performance of the counting phase with respect to splitting
regarding Survey 13 presented in Table 3.

Finally, the methodology places the most convenient detectors
for each technique (i.e., Haar, LBP, HOG) through the detector
sets trained previously as depicted in Table 2 that are above
the green line in Fig. 9. The results of the RL process for the
last survey (Table 3) regarding the selection of the detectors
for counting are explained in Section 6.2 (Fig. 411I).

5.2.2. Object recognition and counting of
objects in surveys (A.4.2.Phase2)

In this phase, the aim is to detect all targeted objects in the
positive images with an increased Se by giving several FPs

if necessary, in order not to miss any targeted objects. Every
image in the positive directory is processed by the Viola—
Jones technique using each designated detector and objects

are tagged wherever they are detected and coordinates for

one or more rectangular ROI (coloured bounding box around
the recognised object (e.g., Fig. 13)) are returned. These
coordinates are mainly utilised for both counting each detected
object once using the non-maximum suppression technique
(Fig. 3), as explained in the following paragraph, and cropping
the tagged objects automatically for further analysis.

Due to the fact that detection windows overlap each other, the same
object can be counted more than once. The main reason for this is
that 12 detectors are applied for detecting objects in any direction,
which may detect and specify an object several times. For instance,
a gannet object is detected by 3 detectors and consequently
counted 3 times and likewise, another gannet object is detected

by 5 detectors and counted 5 times in Fig. 13(left). The non-
maximum suppression technique, in which windows with a local
maximum classifier response suppress nearby windows (Forsyth &
Ponce, 2012), is employed to count the same object only once as
shown in Fig. 13(right). Two gannets are located by the detectors
several times and they are counted as 2 objects in a whole image

in Fig. 14 using the non-maximum suppression technique.

6. Results for splitting and counting
6.1. Results for phase 1: splitting

The methodology was evaluated on each of the 13
surveys (Fig. 4111) in which gannet objects exist
to observe the success rates of splitting.

The number of gannets and the negative images along with the
success rates are presented in Table 3 and Fig. 15 with respect

to the surveys. The detectors selected by the system for each
feature extraction tech- nique are shown in the column titled
“selected parameters for three techniques’ of Table 3 regarding
cach survey. For instance, the values FAR = 0.350 and TPR =
0.985 for survey 1 correspond to the four detectors, namely,
0.35-0.985-North.xml, 0.35-0.985-East.xml, 0.35— 0.985-South.
xml, and 0.35-0.985-West.xml determined for the Haar technique.
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The large images with gannets that were not detected as posi-
tive are presented in our technical report — MarineObjects
Gannet_Supplement 4.pdf in the supplementary materials.
Additionally, the blank images with no gannets that were
detected as positive are pre- sented in our technical report
— MarineObjects_Gannet_Supplement  5.pdf as well. The
average Se of the system concerning the Se results of 13
surveys based on the number of images (i.e., the column
titled Se in Table 3) is 0.988. The average Sp of the system
concerning the Sp results of 13 surveys based on the number
of images (i.e., the column titled Sp in Table 3) is 0.975.

Se — correctly-detected-positive-images/all-positive-images —
shows the power of the techniques used in the paper in giving
assurance that if an image is tagged as a positive image, with at
least one bird, that image most probably comprises at least one
bird with a belief, an average confidence level of 0.988. In other
words, we can conclude that there is a chance that this image does
not comprise a bird with an average confidence level of 0.012,
which is significantly low in a sense of showing high confidence
when a decision is given about an image that is determined as
“positive”’. How the splitting process is implemented successfully
can be noticed in Table 3 in the column “TP”’ compared to the
column “Positive Images”. Almost all positive images with

birds are placed in the positive folder for further processing

(e.g., counting). This success is clearer in Survey 13 with many
negative images and positive images with multiple targeted
objects. On the other hand, Sp — correctly-detected-negative-
images/all-negative-images — shows the power of the techniques
in giving assurance that if an image is tagged as a negative

image, that image most probably comprises no bird with a belief,
an average confidence level of 0.975. In other words, we can
conclude that there is a chance that this image is not a bird-

free image with an average confidence level of 0.025, which is
significantly low in a sense of showing high confidence when a
decision is given about an image that is determined as “negative”.

6.2. Results for phase 2: counting

The last survey — Survey 13 — in Table 3 was used to evaluate the
viability of the object recognition and counting phase (Fig. 411I).
The reason for selecting this survey is that it is the largest survey
and has multiple gannets in some of the images, which can help
quantify the obtained results more realistically with less bias.

The detectors with the parameters of 0.40—0.995, 0.45-0.995,
and 0.40-0.985 were selected respectively for Haar, LBP, and
HOG techniques by the recursive RL technique. These parameters
are bigger than the parameters selected by the RL algorithm in
phase 1 (i.e., splitting with 0.35-0.985, 0.35— 0.985, and 0.40—
0.995) as explained in Section 5.2.1. This shows that different
detectors may be chosen for different purposes (i.e., splitting and
counting) by the same recursive RL technique using two different
approaches to realise the two different objectives, higher Sp with
a high level of splitting and higher Se with a high level of object
detection respectively. 248 objects out of 256 objects in 202
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images were tagged as positive successfully resulting in a Se value
0f 0.968 which is 0.976 during the splitting phase regarding the
number of objects. 6 objects are missed during the splitting phase
within 6 different positive images (Table 3) and 2 objects within
2 different images are missed here during the counting phase.

The two objects not detected by the application are shown in Fig.
16. The difference in Se, i.e., 0.08 (0.976—0.968), is not found

to be significant (p > 0.01 using the statistical paired t-test). Se —
correctly-detected-positive-objects/all-positive-objects — shows
the power of the techniques used in the paper in giving assurance
that if an object is tagged as a positive gannet, that object most
probably is a gannet with a belief, a confidence level of 0.968.

In other words, we can conclude that there is a chance that this
object is not a gannet with a confidence level of 0.032, which is
significantly low in a sense of showing high confidence when a
decision is given about an object that is determined as “positive”.

On the other hand, it could be highly informative to compare the
results between the splitting and counting phases based on the
number of images rather than the number of objects for assessing
how the counting phase is performing in further splitting,
particularly, in handling the imbalanced data. 194 images out

of 202 images were tagged as positive successfully resulting in

a Se value of 0.960 which is 0.970 during the splitting phase. 6
positive images are missed during the splitting phase (Table 3)
and 2 positive images are missed here during the counting phase.
The difference in Se, is not found to be significant (p > 0.01, i.e.,
0.1578). There were 4 FPs where waves were shaped similarly to
the shape of gannets in the snags included in the training process.
496 out of 500 negative images are detected correctly as TN

after the counting process whereas it is 484 during the splitting
phase for survey 13 (Table 3). This results in a Sp value of 0.992
whereas it is 0.968 during the splitting phase based on the number
of images. The difference, 0.024 (0.992-0.968), was found to be
statistically significant (p < 0.01, i.e., 0.0005015) considering the
number of negative images, i.e., 500, using the statistical paired
t-test. The reduction of FP regarding the increased Sp is highly
important, particularly for the surveys that are comprised of a
great majority of bird-free negative images (e.g., >%95) leading
to imbalanced data distribution and bias on the obtained results

as elaborated above in Section 5. Moreover, Pr is increased
slightly from the splitting Pr, 0.925 (TP / (TP + FP) =196 / (196
+16) = 0.925), to the counting Pr, 0.980 (196 / (196 + 4)) based
on the number of images, which is statistically significant (p <
0.01). Finally, overall Acc rises from 0.969 ((196 + 484) / (202 +
500)) to 0.985 ((196 +496) / (202 + 500)) based on the number
of images, which is statistically significant (p < 0.01) as well.

The results are presented in Fig. 17 for better visualisation. To
summarise, the techniques used during the counting phase provide
(i) a successful way of object detection leading to counting objects
correctly, and (ii) further successful splitting leading to discarding
the FP images substantially as well. The high value of Pr indicates
that there is still a large room to perform CSA by which Se can

be increased while compromising Pr slightly if Se, resulting

from the minority positive class, is not deemed as satisfactory



(<%395 for our research) due to the imbalanced data class
distribution that may cause unreliable results. These outcomes
demonstrate that the two phases of using ensemble techniques
proposed in this study can work successfully in performing the
offshore bird censuses even without needing to perform CSA
(Section 5) and most importantly, the proposed approaches can
be generalised to the automated counting of broader species.

A comprehensive field test with a completely new survey has
not yet been completed. The system was validated by two field
experts from APEM using a completely new evaluation dataset
with a decent number of example species (i.e., 20 positive images
with 21 gannets and 500 negative images (Fig. 41V) taken from
other recent surveys at the end of the project at the UCLan
Intelligent Systems Laboratory before a comprehensive field
survey is conducted using the established system in this study.
There was a single juvenile gannet in this dataset and this was
not detected as positive where all other gannets (i.e., 21) were
detected correctly without missing a single one and without
producing any FP by excluding other types of flying birds such
as terns (i.e., 2 terns) and shearwaters (i.e., 11 shearwaters) as
TN. The reason for not detecting this juvenile gannet is that the
features of the juvenile gannets seem significantly different from
their mature ones, e.g., first-year juvenile gannets are almost
black, and subsequent sub-adult plumages show increasing
amounts of white (SeabirdCentre, 2017). It is noteworthy to
mention that there were no juvenile gannets either in our training
nugget dataset or in our surveys. We suggest the construction

of new classifiers specific to juvenile gannets to increase the
chance of their detection. The correct labelling of the other
images with other types of species (e.g., terns and shearwaters)
as TN indicates that the classifiers established for gannets
perform perfectly for detecting gannets as anticipated, and
particular classifiers need to be established for the other species
as mentioned in Sections 4.2.1-4.2.3 to identify them. This
outcome confirms that the designed techniques in this research
enable the automated classification of multispecies and counting
them since every targeted species has its particular classifiers.

7. Discussion

Prevention of regional and global extinction of species during
industrial developments and environmental changes (e.g.,

climate change, habitat loss with rapid urbanisation and coastal
disturbance, toxic pesticide use) is a social responsibility from

a conservationist point of view. In this sense, a species whose
population is in decline needs to be identified urgently and should
be protected with higher priority before it is too late. Data science
is considered by Gibert et al. (2018) as the multidisciplinary field
that combines data analysis with data processing methods and
domain expertise, transforming data into understandable and
actionable knowledge relevant to informed decision-making.
Interdisciplinary efforts will help precipitate the shift towards
increased use of computer-automated aerial photographic

species census techniques (Chabot & Francis, 2016). Within
this context, this study by bringing domain expertise and data
scientists together in a fruitful collaborative team aims to
develop a novel environmental platform for monitoring the
marine ecosystem and performing bio censuses in an automated
manner at regular intervals to track changes in a particular
species population. Birds are sensitive indicators of biological
richness, environmental health, ecosystem integrity, and
environmental trends and fulfil many key ecological functions;
they contribute to our understanding of natural processes
(Bibby et al., 1998; Burger & Gochfeld, 2004; Morelli, 2015).
Extinction of the passenger pigeon (Ectopistes migratorius),
once likely the most numerous bird on the planet, provides a
poignant reminder that even abundant species can go extinct
rapidly (Rosenberg et al., 2019). Continuously, automated
monitoring of species is of paramount importance which
requires the use of advanced tools equipped with effective
intelligent surveillance techniques. In this sense, a new non-
parametric platform composed of an ensemble of supervised
ML and RL techniques, WILDetect, is built to segment, split
and count maritime species, in particular, birds for performing
automated censuses in a highly dynamic maritime environment.
Typically, parameter selection to mitigate the variations in
datasets and obtain the best possible outcome in an intelligent
autonomous system are carried out by users based on several
predictions and trials and the success rates of the systems are
highly associated with the wisdom of this assumption and
implementation of trials correctly, which is a non-trivial task,
specifically for ordinary users. Furthermore, there is no single
best approach that suits every type of problem space based on
the changing characteristics of datasets (e.g., quantity, quality,
attributes) and many other environmental dynamics (e.g.,
different seasons and time zones, different weather conditions,
different settings and types of image-capturing technologies). It
can be concluded based on the preliminary tests, as elaborated
in Section 4.1, and the current research attempts in the literature
to count species and classify multispecies, as elaborated in
Sections Section 2, that (i) there is no computer-automated
study that analyses datasets of small species acquired from

the photogrammetry settings using small aeroplanes to survey
very large areas in shorter times compared to the other on-
ground, ships or UAS platforms, (i1) The most popular learning
technique, the so-called DNN, yield the precision values ranging
from 60% to 97.66% for bird detection using the aforementioned
platforms, (iii) Large data samples with distinctive features (e.g.,
species that contrast distinctively from image backgrounds)
may result in high accuracy rates in using DNN, (iv) The inner
states of the DNN approaches are accepted as black boxes

by the research community and these approaches do not let

the researchers intervene in their inner states which may help
increase their efficacy if they do not produce desired outcomes,
(v) The misclassification of multispecies is high using DNN
and clustering techniques if data instances in different groups
resemble each other too closely as seen in bird species. In the
proposed intelligent platform — within a dynamic approach
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that adjust its parameters according to
the features of targeted objects, their
background and the targeted accuracy rate
— the best possible parameters, resulting
in the best outcome, are chosen by the
platform itself through the automated
selection of pre-trained models, in which
the parameters are instilled, using the
user-model-data interaction solution that
is implemented within a new recursive
RL technique for mitigating the highly
dynamic characteristics of the maritime
ecosystem as well as the concerns
mentioned with the aforementioned
approaches. Additionally, the use of
multiple trained models at a time, focusing
on different features, ensures a high
accuracy rate where one of the other two
detectors/models can detect an object if
it is missed by the other detector/model
in use as elaborated in Section 4.2.2.

The validation of the platform, as
summarised in Fig. 4, has been performed
on several aerial maritime domains
resulting in successful empirical evidence
for the viability of the model. During the
splitting phase, a positive image is most
likely to be placed in a positive folder if
there are several targeted objects in that
image. Strictly speaking, there is a very
high probability that one of the objects in
an image will be detected by at least one
of the three techniques using 12 detectors
regarding the orientation of the objects
during the splitting phase. Therefore, the
more targeted objects in images, the higher
the success rate of splitting. We would like
to emphasise that the success rates are very
high even though there is mostly only one
gannet object in images in the surveys in
this study (Table 3 and Fig. 15). The main
reason for not detecting 2 of the gannet
objects depicted in Fig. 16 in the second
phase (i.e., recognition and counting)

is that one of them does not look like

the shape of a gannet in the training set,
because, it is in the diving position, while
the other one was not detected because

of the very complex background texture
behind the gannet. The training snag set
should have more similar object types to
be able to represent the real-world better
and in this way, these types of objects

are not missed by the trained detectors.
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The trained files established for the
gannets do not detect other types of birds
as TP, such as common gulls, shearwaters,
or terns. Therefore, if the objective is to
count other types of birds as well, all bird
types should be trained independently

as explained in Section 4.2.2 to increase
the accuracy of the system. In this way,
the classification of other bird species
becomes possible using the specific
classifiers trained for these types of
species. The methodology developed

for the detection, splitting, and counting
of birds, particularly gannets, in large-
scale aerial images may be used for the
UK marine gannet census since the most
important nesting ground for northern
gannets is in the UK with about half of
the world’s population (55.6%) (JNCC,
2015). Furthermore, multiple types of
species of interest can be classified and
counted at once using the methodology
(as concluded in Section 6.2) with the
multiple classifiers that can be obtained
as explained in Section 4. It is worth
mentioning that the methodology can be
expandable with more feature extraction
techniques in addition to the feature
extraction techniques (i.e., Haar, LBP,
and HOG) that we employ in this study.

Given the current pace of global
environmental change, quantifying change
in species abundances is essential to
assess ecosystem impacts. Evaluating the
magnitude of declines requires effective
long-term monitoring of population

sizes and trends, data that are rarely
available for most species (Rosenberg

et al., 2019). Models perform better as
they are attributed to the results of more
realistic/recent-data analysis on particular
domains. With the proposed platform,
current labour-intensive and costly
censuses of species conducted in longer
time intervals can be replaced with cost-
effective and more robustly automated
computerised systems and can be repeated
in an automated manner at regular
intervals. Hence, cycles of the census can
be conducted more frequently in shorter
intervals over time, and incorporation

of near-real-time results along with the
prior results (e.g., population fluctuations)
attributed to shorter intervals into these

models paves the way for developing

more effective ecological environmental
models with realistic data trends and future
projections. This, in turn, can boost the
decision-making and prediction abilities
of these data-driven simulation models,
particularly, about the ecological footprint
of human activities on the environment,
specifically, on areas/offshores that are
being turned into industrial zones, for both
assessing the likely impact of the industrial
developments on nature (e.g., habitat
associations) and constraining/alleviating
their potential damaging effects.

8. Conclusions and future work

Advanced tools, enabling effective
monitoring of species, are needed to
observe and predict the likely effects

of environmental changes on species,
mostly caused by indispensable industrial
developments to take urgent proper
actions, e.g., rebuilding natural habitats
to maintain/increase species counts.
Birds have been demonstrated to serve
as good indicators of biodiversity and
environmental change and as such can
be used to make strategic conservation
planning decisions for the wider
environment (Bibby et al., 1998). Based
on the literature reviewed in Chabot

and Francis (2016), a major shift to
computer- automated aerial photographic
bird censusing is not yet underway and
investigators are encouraged to study for
potential approaches to automate animal
detection and enumeration in aerial
images. In this study, a novel supervised
ML platform supported by a new recursive
RL approach using several off-the-

shelf feature extraction techniques and

a matching algorithm were developed

to conduct marine bird censuses in an
automated manner. In the proposed
approach, the uncertainties within a
highly dynamic maritime environment
and inconsistencies/variations in the
characteristics of datasets attributed

to the diverse sets of image-capturing
technologies used in the maritime
ecosystem have been mitigated using the
recursive RL technique with the user-
model-data interaction. In this technique,



the most available parameters based

on the characteristics of the dataset

to be analysed are selected within the
platform by the direction of the user at
the start of the analysis to result in the
best possible outcome. In this way, the
developed approach adapts itself to the
characteristics of the dataset concerning
targeted objects and background and

the environmental dynamics, which
leads to resulting a desired solution to
the current problem space in hand. The
methodology has been evaluated and
validated by field experts using several
surveys and datasets that are independent
of the dataset used in the training phase
as outlined in Fig. 4. Experimental results
on many aerial surveys demonstrate
that the proposed methodology is
effective and efficient in the detection
and segmentation of targeted objects in
the maritime ecosystem. The efficacy of
the proposed approach can be increased
as the techniques are trained with

larger datasets for particular species.

The outcome of the study is expected

to benefit the entire environmental
modelling community. In particular, the
proposed techniques can shed light on
similar object detection implementations
in finding the best possible parameters
for analysis in an automated manner

by employing the user-model-data
interaction solution. Moreover, the
platform can be employed to detect all
types of birds after these species are
pre-processed and trained, as mentioned
in Sections 4.2.1-4.2.3. The outcomes
elaborated in Section 6 demonstrate

that the proposed approaches can be
generalised to the automated counting of
a broader number of species in a given
area and these automated approaches
can help track population changes of
particular species at different specific
locations on a regular basis with a true
picture. Strictly speaking, it can be
primarily deployed by environmentalists,
researchers, authorities, and policymakers
to monitor the marine ecosystem for
fulfilling their goals effectively.

Within a holistic view, we aim to study
other bird species and other marine

species (e.g., turtles) as well as man-
made maritime objects (Kuru et al.,
2022) to be able to observe the bio
marine ecosystem with the possible
environmental footprint in the short, mid,
and long-term. Moreover, the automatic
classification of maritime ecosystems
based on a variety of species will be in
our future plans to support all types of
environmental models with near-real-
time information with multiple species.

9. Limitations of the study

The established environmental platform
can work for other bird species, but
using the specific detectors that can be
trained for each species as explained

in Sections 4.2.1 and 4.2.2. The higher
the quality of the datasets representing
the real environment, the higher the
accuracy rates. We aim to share our
results with other papers about our
ongoing research on multispecies census
of other species such as shearwaters,
terns, gulls, scooters, fulmars.
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