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Decomposition in an extreme
cold environment and associated
microbiome—prediction model
implications for the postmortem
interval estimation

Lavinia lancu®, Andrea Bonicelli? and Noemi Procopio?

!Department of Criminal Justice, University of North Dakota, Grand Forks, ND, United States,
2Research Centre for Field Archaeology and Forensic Taphonomy, School of Law and Policing,
Preston, United Kingdom

Introduction: The accurate estimation of postmortem interval (PMI), the
time between death and discovery of the body, is crucial in forensic science
investigations as it impacts legal outcomes. PMI estimation in extremely cold
environments becomes susceptible to errors and misinterpretations, especially
with prolonged PMIls. This study addresses the lack of data on decomposition
in extreme cold by providing the first overview of decomposition in such
settings. Moreover, it proposes the first postmortem microbiome prediction
model for PMI estimation in cold environments, applicable even when the visual
decomposition is halted.

Methods: The experiment was conducted on animal models in the second-
coldest region in the United States, Grand Forks, North Dakota, and covered
23 weeks, including the winter months with temperatures as low as —39°C.
Random Forest analysis models were developed to estimate the PMI based
either uniquely on 16s rRNA gene microbial data derived from nasal swabs or
based on both microbial data and measurable environmental parameters such
as snow depth and outdoor temperatures, on a total of 393 samples.

Results: Among the six developed models, the best performing one was the
complex model based on both internal and external swabs. It achieved a Mean
Absolute Error (MAE) of 1.36 weeks and an R2 value of 0.91. On the other hand,
the worst performing model was the minimal one that relied solely on external
swabs. It had an MAE of 2.89 weeks and an R2 of 0.73. Furthermore, among the
six developed models, the commonly identified predictors across at least five
out of six models included the following genera: Psychrobacter (ASV1925 and
ASV1929), Carnobacterium (ASV2872) and Pseudomonas (ASV1863).

Discussion: The outcome of this research provides the first microbial model
able to predict PMI with an accuracy of 9.52 days over a six-month period of
extreme winter conditions.

KEYWORDS

postmortem interval, microbiome, prediction model, extreme environment,
North Dakota
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Introduction

The postmortem interval (PMI) is the time elapsed between death
and the body discovery, and its estimation is extremely important in the
court of law in cases of homicide and suspicious deaths (Janaway et al.,
2009). The decomposition process of an animal or a human body can
be divided into five stages of decay based on physical and chemical
changes (Smith, 1986). The early postmortem physical changes
commonly documented are temperature changes (algor mortis),
muscular contraction/relaxation (rigor mortis), and the pooling of blood
by gravity after blood circulation stops (livor mortis) (Janaway et al.,
2009). Following the early postmortem changes, the decomposition of a
body progresses through several stages that lead to complete
skeletonization. The first stage is the “fresh;” characterized by the autolytic
self-digestion of cells and the start of the putrefactive processes caused
by the bacterial breakdown of tissues. Following, “bloating” (or
putrefaction) is the stage when the accumulation of gasses produced by
bacteria causes the body to bloat and to discolorate. Then, “active decay”
involves the piercing of the body, which releases the accumulated gasses,
and the breakdown of tissues, organs, and bodily fluids. It is characterized
by a strong and distinctive odor and the liquefaction of tissues. During
active decay, most of the body mass is lost due to the action of larvae
feeding on the remains (Smith, 1986). Subsequently, “advanced decay” is
characterized by the presence of leathery skin, few bones, hair, and other
resistant materials. Finally, “skeletonized” (or dry remains) is the stage
when only skeletal remains and any non-degradable materials such as
dental fillings or artificial joints are available (Teo et al., 2014). The tissues
progress through these stages faster during higher temperatures, while
the lower temperatures can cause a delay or even can halt decomposition,
making the PMI estimation challenging (Carter et al, 2015).
Consequently, the classification of the decomposition stages may not
be relevant in environments with extremely low temperatures.

Among the key players driving decomposition, intrinsic
microorganisms (e.g., those that naturally inhabit various tissues and
organs of the human body) and extrinsic microbial populations (e.g.,
foreign invaders from the environment) were shown to have an
essential role as decomposers, due to their capability to start the decay
process and to make it progress further (Hyde et al., 2013, 2015; Carter
et al., 2015; Metcalf et al., 2016). Moreover, the microbial succession
on cadaveric remains can be successfully linked with PMI, therefore
offering a molecular tool also known as “microbial clock” able to

estimate the time elapsed since death with great accuracy (Metcalf

etal,2013,2017; Javan et al., 2016; Roy et al., 2021). Researchers have
made attempts to study more systematically the decomposition
process and the associated microbial successions in various
circumstances (e.g., different host species, environments, burial
conditions, anatomical locations for samplings, etc.) to finely tune the
microbial clock and to evaluate its applicability to forensic scenarios /
death investigations where PMI is unknown (Pechal et al., 2014, 2018;
Guo et al., 2016; Burcham et al., 2019; Iancu et al., 2023).

While several works have focused on the comparison between
animal and human remains and have successfully demonstrated the
possibility of using animal analogs to study the postmortem microbial
succession, there is very scarce information availability on
decomposition in extreme negative temperatures (Komar, 1998;
Cockle and Bell, 2017; Alfsdotter and Petaros, 2021).

Studies (Carter et al., 2008; Bucheli and Lynne, 2016; Guo et al.,
2016; Metcalf et al., 2016; Tozzo et al., 2020; Roy et al., 2021) so far have
primarily focused on decomposition during elevated temperatures,
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using either outdoor locations or controlled laboratory conditions. It is
well known that the decay rate is influenced by many factors, including
the cause of death, environment, season, vertebrate and invertebrate
scavengers, humidity, oxygen content, precipitation, and temperature
(Janaway et al., 2009). Among all factors, environmental temperature
plays a crucial role for insect activity, microbial composition, and rate of
the decomposition process. Thus, during low temperatures, insects are
no longer present on the body, while extreme low temperatures together
with snow depth can limit the activity and access of vertebrate
scavengers (Catts and Goff, 1992). Microorganisms are consistently
present in wide ranges of temperatures during decomposition, as such,
these could be the only witnesses for the PMI estimation (lancu et al.,
2015; Bucheli and Lynne, 2016; Metcalf et al., 2017). Certain bacteria
species, like the ones belonging to Psychrobacter genus are better
adapted to cold environments, being identified during decomposition
(Tancu et al., 2015).

The main objective of the current research was to answer the
following critical question: can forensic microbiology assist in
predicting the PMI for bodies disposed of in an open field, exposed to
extreme environmental factors (temperature as low as —39°C, and
snow depth as high as 130cm)?

Consequently, the current research aimed to fill in this severe
knowledge gap on decomposition in extreme environments, by
providing for the first-time comprehensive data related to the
decomposition process of pig carcasses along 6 months of extreme
winter temperatures in a North Dakota outdoor location. This work will
analyze the evolution of the stages of decomposition in association with
the climatic conditions and will evaluate the necrobiome structural
patterns during the carcasses’ breakdown. Additionally, this research
will evaluate two different sampling areas for the successful development
of a microbial clock applicable in such extreme environments and will
provide the first microbial model able to predict PMI with an accuracy
of 9.52 days in severe negative temperature environments.

Materials and methods
Experimental design

Three pig carcasses (Sus domesticus Erxleben, 1777) (approx. 50kg
each) were purchased from a local pig farm and used as human
analogs for the decomposition and microbiome investigation. The
Institutional Animal Care and Use Committee (IACUC) protocol was
not required, as the pigs were euthanized at the farm by captive blitz
bolt. Further, the carcasses were transported to the research site in less
than an hour and placed on the Mekinock Field Station research land
(47°57'11.5"N 97°25’42.4"W), University of North Dakota, Grand
Forks, North Dakota, at 20 m from one another, facing south. All three
carcasses were protected from vertebrate scavengers by cages
(12090 x 180 cm).

University of North Dakota Field Station Committee approved the
use of a designated plot for decomposition studies, while the research
project received the approval from the Institutional Biosafety
Committee (IBC) University of North Dakota (IBC-202111-009).

Daily temperatures (minimum and maximum), relative humidity,
and wind speed were recorded from the nearest weather station from
the research site (Grand Forks Air Force Base Weather Station, ND),
at 3km, respectively. The temperature under the snow was recorded
during each sampling time.
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Sample collection

Sample collection was performed weekly, for 23 weeks, starting in
mid-November 2021. Tissue samples were collected in triplicate via
sterile cotton swabs from two regions of the head area, as follows:
exterior region of the nostrils (circular swabbing for 30s); interior
region of both nostrils (circular swabbing 15 s/nostril). The sampling
areas were selected based on accessibility under dense snow cover. To
avoid disturbing the entire carcass, only the front part of the cage was
excavated during sampling, and it was carefully covered again
afterward. A total number of 402 samples were preserved in sterile
tubes (without any buffer) at —20°C until further analysis. Pig number
2 (P2) was not sampled during week 11 due to the ice thickness and
extreme field conditions; and pig number 1 (P1) was not sampled
during week 21 because the head was submerged, as the field was
partially flooded from the melting snow.

The carcasses were most of the time under a thick layer of snow,
monitored and recorded weekly. During each sampling, the head area
was uncovered only for the duration of samples collection, and covered
again with snow, to not influence the local decomposition environment.

Genomic DNA isolation

A modified Qiagen Blood and Tissue protocol was used for
genomic DNA isolation. The protocol used double the quantity of the
lysis buffers, buffer ATL 360 pL/sample, and buffer AL 400 pL/sample.
This modification was chosen because the swabs were not preserved in
any buffer, and there was an increased risk of them absorbing the initial
lysis buffers and drying during the incubation step. NanoDrop One
spectrophotometer (Thermo Scientific, United States) was used to assess
DNA concentration and purity, using the ratio of absorbance at 260 and
280nm. To avoid any contamination and cross contamination of the
samples during collection, sterile gloves, cotton swabs, and collection
tubes were used, while all laboratory work was performed under aseptic
conditions via a purifier filtered PCR (Polymerase Chain Reaction)
enclosure (Labconco, United States). The isolated DNA samples were
stored at —20°C until submission for Illumina MiSeq sequencing.

16S rRNA gene sequencing and processing

Samples were sequenced via Illumina MiSeq PE300 sequencing
platform, using the primer pair 341F/805R for the PCR amplification
of the 16S rRNA gene fragments (V3-V4 variable region) [100K reads
per sample/amplicon], at the McGill Genome Centre, Canada.

Paired-end reads from each sample were sequenced with forward
and reverse reads in separate files and processed by means of the
microbiome bioinformatics platform QIIME2 (Quantitative Insights
Into Microbial Ecology 2), v.0.99.6 (Bolyen et al., 2019). Nine samples
that failed the sequencing were excluded from further processing,
resulting in 393 samples being used for data analysis. Denoising and
quality control, including removal of chimeras, were achieved by means
of the DADA2 plugin v. 1.26.0 (Callahan et al., 2016) and to avoid low
quality sequences reads were truncated to (280bp for forward, 220bp
for reverse reads). The classifier adopted for the taxonomic assignment
was Silva v.138 (99% OTUs full-length sequences) (Quast et al., 2012).
Statistical analyses were performed within the computing environment
R (R Core Team, 2021). All the taxon abundances were calculated and
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graphically plotted with the aid of the “phyloseq” v.1.42.0 package
(McMurdie and Holmes, 2013). Alpha diversity was employed to
evaluate differences within different individuals, locations, and snow
coverage between the samples. Significance was tested via global
Analysis of Variance (ANOVA) and pairwise t-test with o< 0.05. Beta
diversity for differences between the same groups was investigated by
means of Principal Coordinate Analysis (PCoA).

Modeling

PMI was modeled by means of random forest (RF) implemented in
the ‘ranger’ package v0.15.1 (Wright and Ziegler, 2017). The sample was
divided into 70% development (train) and 30% validation (test) set
maintaining balanced class distributions according to the entire PMI
range (23 weeks). Three models were trained on different sample subsets:
total sample (train N=271, test N =114), swabs obtained from internal
nasal cavity (train N=139, test N=58), and swabs obtained from external
nasal cavity (train N=133, test N=55). Model tuning was performed
based on ith hyperparameter combination based on the following grid:

hyper_grid <— expand.grid(.

num.trees = floor(n_features / ¢(10, 20, 30, 40, 50)),
mtry = floor(n_features * ¢(0.05, 0.15, 0.25, 0.333, 0.4)),
min.node.size=c(1, 3, 5, 10),

replace=c(TRUE, FALSE),

sample.fraction=¢(0.5, 0.6, 0.7, 0.8, 1),

rmse = NA.

)

The models were then used to estimate PMI on the validation set.
Root mean square error (RMSE), absolute error (MAE), and
correlation coefficient (R?) were used to compare the different model
performance on both development (out-of-bag) and validation set
results. Variable of importance (VIP) was considered to identify ASV
with estimation power using importance scores based on permutation.
Results were visualized in “ggplot2” v3.4.4 (Wickham, 2016). The same
modeling approach was reproduced adding timepoint temperature
and snow coverage as independent variables to evaluate the difference
in performance when environmental conditions are known.

Results

Environmental conditions and
decomposition

The decomposition site is situated on the Mekinock Field Station
research land, University of North Dakota, Grand Forks, ND, 2km
North of US 2 highway (Supplementary Figure S1). The site is situated
between agricultural fields, with corn, soybeans, and wheat crops, and
it is characterized primarily by tallgrass prairie. For six winter months
the field has been covered with snow varying in depths, up to 130 cm.

Grand Forks environmental conditions are characterized by bitter
cold temperatures, and high winds, being cataloged as the second
coldest location in the US, after Fairbanks, Alaska (https://www.
n.d.). Another
environmental characteristic is represented by the high difference

weather.gov/wrh/Climate?wfo=fgf, important
between the minimum and maximum daily temperature.
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During the current experiment, three pig carcasses were placed in
the field mid-November, being covered with snow shortly after. The
last half of November recorded a maximum temperature of 5°C, while
most of the temperatures recorded in December were negative,
dropping to —33°C. January recorded freezing temperatures, with a
minimum record of —38°C, and February followed with a similar
pattern. March continued with freezing temperatures as low as —26°C,
while the second half of the month registered warmer temperatures.
April recorded a minimum of —16°C and a maximum of 13°C
(Supplementary Figure S2).

The relative humidity was constant within the same month and
between months (Supplementary Figure S3). The most frequent
precipitation rates were recorded for January and February. Snow was
the main form of winter precipitation, sometimes accompanied by
freezing rain, ice, and sleet. During the experimental time frame the
snow depth recorded 130 cm. High winds up to 50 km/h were recorded
in November and February, with a maximum wind speed record of
80km/h (Supplementary Figure S4).

The decomposition process during the winter months has been
characterized by a freezing state. At the end of November, the
outlining of the superficial blood vessels could be observed in the
abdominal area of pig one, with no visible changes for all the winter
weeks that followed, as the carcasses were covered with snow. At the
end of March, the snow melted, followed by another snowstorm in
April. While the current experiment focused on investigating the
months with extreme winter temperatures, the decomposition process
was monitored until skeletal remains stage, recorded mid-June.

Microbial taxonomic diversity and
abundances

The 393 samples gave a total of 18,153,409 raw sequences, with
46191.9 mean reads per sample. After the denoising step, 10,377,810
high-quality sequences remained. Originally 4,285 Amplicon Sequence
Variants (ASV) were identified. Prior to performing formal analyses and
creating the figures, pre-processing steps were applied to the ASV
counts, including pruning to remove samples with all empty values (total
sum of intensities was zero) that results in the additional removal of eight
samples. The abundances were standardized to the median sequencing
depth according to McMurdie and Holmes (2014); ASVs recognized as
mitochondrial, or chloroplast sequences were also excluded. This
filtration step resulted in the final identification of 4,173 ASV.

Bacterial relative abundances at phylum and class level throughout
the decomposition in the total sample (both internal and external
swabs) show that Firmicutes, particularly the classes Clostridia and
Bacilli, dominate as the most prevalent phylum in the initial weeks
(1-7), accounting for an average of 48.8%, followed by Proteobacteria
(mainly Gammaproteobacteria) (average 32.3%), Actinobacteriota
(mainly Actinobacteria) (average 9.9%) and Bacteroidota, with class
Bacteroidia (average 7.3%). Interestingly, after one PMI week,
Bacteroidota levels (third most abundant phylum in week one) drop
from 20.1 to 10.1%, and Actinobacteriota rise from 3.8 to 13.9%
making them the third most abundant phylum in weeks 2-7. At week
8 there is a significant increase in Proteobacteria, which becomes
68.9% of the total population. Proteobacteria remains the dominant
phylum until week 10, with a notable decrease in week 11 (22.9%).
From weeks 12 to 16, Proteobacteria (average 52.0%) and Firmicutes
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(average 37.7%) have similar relative abundances, whereas from week
17 onwards Proteobacteria becomes the most abundant phylum until
the end of the experiment (average 87.8%) (Figure 1A). Remarkably,
there is also an increase in Campylobacterota with the class
Campylobacteria (4.9%) and Bacteroidota (8.8%) in week 23
(Figure 1B). Details for the internal and external samples at phylum
and class level can be found in the Supplementary Figure S5.

Microbial alpha and beta diversity analyses

Alpha diversity measurements to compare the two anatomical
locations used for the samplings revealed a significantly higher
richness (“Observed”) and diversity (“Shannon”) for samples collected
on the exterior part of the nose in comparison with those collected
internally (T-test p-value < 0.0001 and 0.00058, respectively)
(Figure 2A). Despite the increased diversity of the exterior samples,
when plotted on a PCoA all samples were equally spread and did not
create specific clusters associated with the anatomical location of the
sampling (Figure 2B).

When comparing the diversity results for the three pigs used in
the experiment, it is possible to notice that “Pig 2” has a lower richness
(ANOVA p=0.0088) and Shannon diversity (ANOVA p=0.00042) in
comparison with “Pig 1” (Figure 3A). However, also in this case the
overall distribution of the samples collected from the three animals in
the PCoA does not show any clustering associated with the specific
animal, and “Pig 2” samples are spread and mixed between “Pig 1” and
“Pig 3” samples (Figure 3B).

Snow depth was also considered when evaluating alpha diversity
during all 23weeks. The observed richness, as well as the Shannon
diversity, fluctuates with a tendency of higher mean values for very shallow
depths (~5-17cm) and for medium depths (~63-140cm) and lower
means for small depths (~25-50cm) and large depths (~177-130cm)
(ANOVA p-value < 0.0001) (Figure 4A). The PCoA shows consistent
trends according to the snow coverage, suggesting that certain variables
are differentially abundant at different depth conditions (Figure 4B).

Finally, when looking at increasing PMIs, it is possible to observe
a decrease in observed richness as well as in Shannon diversity up to
8 weeks, followed by some fluctuations with increased diversities from
9 to 14weeks, after which both observed richness and Shannon
diversity decrease again (ANOVA p-value < 0.0001) (Figure 5A). The
PCoA shows consistent trends according to the PMI, suggesting that
certain variables are differentially abundant at specific time points
postmortem (Figure 5B).

Postmortem microbiome prediction model

Using Random Forest analysis models were developed to estimate
PMI based either uniquely on the bacterial data (“Minimal RF
Model”) or based on both microbial data and measurable
environmental parameters such as snow depth and external
temperature (“Complex RF Model”). For each of them, models were
developed either using only the internal nose swabs (“Internal”), the
external nose swabs (“External”) or using all the swabs (“Total”)
(Figure 6).

Among the six developed models, the best performing one is the
complex model based on both internal and external swabs
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(MAE=1.36 weeks, R*=0.91), whereas the worst performing one is
the minimal one based on external swabs only (MAE =2.89 weeks,
R*=0.73). The variable importance plots (VIPs) with a score>1
showed the consistent presence of specific predictors across all the
different models developed (ASV1925, ASV1863), across the majority
of the models (ASV2872, ASV1929), and across specific models only
(ASV2167, ASV3752, ASV1946 only in “Total” and “Internal” models,
ASV2134, ASV2373, ASV1898 only in “Internal” models, ASV2362,
ASV2792, ASV2356 only in “Total” and “External” models, ASV2735,
ASV2370, ASV2845, ASV3715 only in “External” models, ASV2950,
ASV509 only in “Total” models) (Figure 7). For the “Complex”
models, temperature and snow depth always represented predictors
with a high importance score.

Among all predictors identified, those commonly identified
between at least five out six models include the genera Psychrobacter
(ASV1925 and ASV1929), Carnobacterium (ASV2872) and
Pseudomonas (ASV1863). Other taxa were defined as good predictors
only in selected models; examples are the genera Aeromonas

(ASV2167), Rothia  (ASV3752), Moraxella  (ASV1946),

Frontiers in Microbiology 0

Clostridium_sensu_stricto_5 (ASV2373), Pseudomonas (ASV1898)
and Shewanella (ASV2134), which are considered identifiers only in
“Internal” or “Internal” and “Total” models. Similarly, the genera
Clostridium_sensu_stricto_1 (ASV2362 and ASV2356, including the
species Clostridium_butyricum, ASV2370), Lactobacillus (ASV2792),
Streptococcus  (ASV2735),  Terrisporobacter (ASV3715)
Turicibacter (ASV2845) are identifiers only for “External” or
“External” and “Total” models. Finally, genus Sporosarcina (ASV2950)
and Bacteroides_stercoris species (ASV509) are identifiers only in
“Total” models.

Considering the most significative taxa for PMI estimation based

and

on their importance scores, it is possible to identify different trends
(Figure 7G); respectively, taxa whose relative abundance increases
over time, and taxa characterized by an initial increase on short PMIs
followed by a decrease in abundance over time. Psychrobacter sp.
increase in abundance consistently starting from 5 weeks PMI and
reach and maintain their highest relative abundance starting from
10weeks PMI. Similarly, Pseudomonas sp. tend to increase in
abundance between 5 and 9 weeks PMI and are high again at 18 weeks.
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On the contrary, Moraxella sp. are abundant from 1 to 5 weeks, after
which their abundance is low. Clostridium_sensu_stricto_1 sp.
abundance is relatively high from 1 to 7 weeks, decreases in weeks
8-10, and increases again in weeks 11-16, after which decreases to low
levels. Rothia sp. finally increased in abundance from 2 to 5 weeks PMI
and constantly decreased until the end of the experiment.

Discussion

The estimation of the time elapsed since death is a highly exploited
topic in the forensic arena, with an increasing body of research being
conducted with the ultimate aim of improving the current
understanding on cadaveric decomposition. One key research area is
the development of models for PMI estimation applicable to various
scenarios (e.g., terrestrial, or aquatic environments, exposed or buried
bodies) and tuned to consider the effect that intrinsic and extrinsic
variables may play on such estimations (Metcalf et al., 2013, 2017;
Burcham et al., 2024). Among all the variables known to affect the
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decomposition rate and consequently the PMI estimation of remains,
temperature is probably one of the most studied ones (Mann et al.,
1990; Carter et al., 2006, 2008; Burcham et al., 2019). Decomposition
is halted by very low temperatures, and macroscopically it can result
in the complete interruption of the successional gross changes
normally observed with increasing PMIs (Damann and Carter, 2013).
As a result, PMI estimation in low or extremely low temperature
environments suffers from high errors and may ultimately result in
justice miscarriages. Moreover, an environment with extreme
temperatures poses certain difficulties when examining a death scene.
Consequently, to provide reference data and microbial prediction
models for the PMI estimation, taphonomy studies in such
environments are more than necessary to have a better understanding
of the role the environmental factors play during decomposition.

It is worth noting that decomposition continues even at
temperatures below 0°C due to the body salt content, as previously
demonstrated (Vass et al., 1992), while the snow can act as an
insulate for low temperatures by trapping residual heat (Coulson
etal., 1995). At or under 4°C the bacterial activity is slowed down
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RF models based on: (A) Microbial data only ("Minimal RF Model") using internal and external swabs (“Total"); (B) Microbial data only (“Minimal RF

Model") using internal swabs only (“Internal’); (C) Microbial data only (“Minimal RF Model") using external swabs only (“External”); (D) Microbial and
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(Micozzi, 1997), resulting in a slower rate of decomposition and
an inversed colonization. Namely, bodies exposed to extreme cold
will decompose from outside in, and not from the inside
(gastrointestinal tract). Our study aimed to characterize the
microbial spatial and temporal shifts through decomposition of
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pig carcasses during North Dakota’s extreme winter. With no
nearby mountains or big water bodies, Grand Forks is subject to
great temperature variation and to the cold Arctic high-pressure
system, with high precipitation rate represented by snow during
the winter months.
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Studies in environments with extreme low temperatures and high
precipitation rates, represented by snow, are scarce (Komar, 1998;
Wescott, 2018; Alfsdotter and Petaros, 2021). A recent study
performed in Sweden (Alfsdotter and Petaros, 2021) aimed to
investigate the taphonomic changes and PMI of human cadavers
exposed to outdoor terrestrial and aquatic environments. This study
used data from autopsies carried out between 2010 and 2020. The
decomposition scoring was performed from photographs and the
total body score (TBS) for terrestrial cases was assessed after Megyesi
etal. (2005) method. In the current experiment, the TBS assessment
was not possible as the carcasses were covered by snow for more than
5 months. The authors (Alfsdotter and Petaros, 2021) used linear
regression the relationship between
decomposition stages and ADD, for cases where the PMI was less
than 2 years. The results showed a high correlation between TBS and
actual logADD, while the longest PMI without skeletonization was
seen in a case exposed during the cold part of the year. Another study
using ADD and death investigation cases was performed in Canada
(Cockle and Bell, 2017), emphasizing the difficulty of PMI estimation
during cold and freezing temperatures (4°C or less). Both Sweden
and Canada studies used Megyesi et al. (2005) method for the ADD

analysis to evaluate
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calculations. However, it is worth noting that all negative
temperatures were given a “zero” value, while Cockle and Bell (2017)
determined that PMI and ADD were not significant dependent
variables for decomposition. The bodies that were exposed outdoors
during the entire winter in Canada, needed more temperature and
time, to progress through the final decomposition stages. When
comparing the current results with these previous studies, there is a
gap in adding the snow factor and extreme low temperatures. As
Cockle and Bell (2017) emphasized, special consideration should
be given to bodies found in freezing or cold environments, when
involving the PMI estimation, as these bodies will need more ADD
to complete decomposition.

If studies on decomposition in cold climates are sparse, studies
involving microbiomes during winter decomposition are even sparser.
Microbiome data can add critical information for the PMI estimation,
as this estimation becomes less accurate with temperature decreasing.
The investigation of the postmortem microbiome can be performed
via autopsy cases (Pechal et al., 2018; Iancu et al., 2023), outdoor
research facilities (Hyde et al., 2013; Bucheli and Lynne, 2016), and
field experiments using pig carcasses as human analogs (lancu et al.,
2015; Matuszewski et al., 2020).
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Microbial taxonomic successions observed over time are
consistent with the results reported in other works conducted in
non-extreme environments (Pechal et al., 2014; Metcalf et al., 2016;
Burcham et al., 2024), showing an increase of Gammaproteobacteria
with prolonged PMIs and a decrease of Firmicutes (Clostridia class)
toward the latest time points analyzed, up to 23 weeks. Firmicutes are
normally highly abundant at advanced and skeletonised stages (Pechal
etal., 2014; Speruda et al., 2022), however they were more abundant
during the earlier PMIs and decreased in abundance consistently to
reach notably lower relative abundances after 18 weeks PMI. A
decrease in Firmicutes abundances on the head skin from the rupture
of mice bodies (active decay) was also observed by Metcalf et al.
(2013), in association with an increase of Gammaproteobacteria,
similarly to the current study. They also found an increase of
Alphaproteobacteria during the latest time points analyzed (from 34
to 48 days PMI); similar findings were found in our study specifically
after 13 weeks PMI only for the internal samples and not for those
collected on the outside of the nose. Similarly, to this previous study
(Metcalfetal,, 2013), where Actinobacteria present at time 0 and after
3days on the skin of belly and head decreased consistently in
abundance from 9days onwards, we noticed a reduction in
Actinobacteria over the course of the experiment, particularly from
8weeks PMI onwards. Overall, these results suggest that the microbial
succession identified in extreme cold environments follows similar
patterns of the non-extreme environment experiments, but on slower
rates due to the environmental conditions altering the
decomposition process.

When comparing internal versus external samples in the current
experiment, Proteobacteria was prevalent in the internal samples,
while Firmicutes dominated the external ones, being also
characterized by a higher taxonomic diversity. The presence of
Firmicutes on the skin of decomposing remains, together with
Bacteroidetes and Fusobacteria, was already reported by Dickson et al.
(2011) in submerged remains. Psychrobacter and Pseudomonas could
be considered microbial markers when investigating bodies found in
similar environments, while Clostridium_sensu_stricto_1 could
be considered when investigating external skin samples. Psychrobacter,
Pseudomonas and Carnobacterium could be considered candidates for
“winter microbial markers” in the same way that Streptococcus and
Staphylococcus were observed to be biomarkers for shorter periods of
time, in normal environmental conditions (Pechal et al., 2018; lancu
etal., 2023). Psychrobacter has been previously described as a putative
winter biomarker for above the ground (lancu et al., 2015) and grave
soil (Carter et al., 2015) decomposition environments, and was found
specifically in winter studies on submerged pig heads also by Dickson
etal. (2011). In the same study, Carnobacterium was also found as an
indicator of autumn season, differently from the terrestrial study
mentioned above and from the current work.

As previous studies (Johnson et al., 2016; Burcham et al., 2024)
mentioned, machine learning microbiome-based models (e.g.,
random forest regression models) can be used to predict the PMI
from different climates and environments. In the current case,
among all RF models investigated, the best model was based on
both sample types (internal and external), while snow coverage and
temperature at the time of the sample collection were among the
most important predictors.

This is the first study to characterize microbial diversity and
dynamics in the second coldest location in the United States, providing
the first microbial model able to predict PMI with an accuracy of
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9.52days in severe negative temperature environments, along 6
months of winter. The limitation of the current study could
be represented by the lack of Body Total Score (TBS) data. Since the
pig carcasses were covered by snow for almost the entire duration of
the experiment, no TBS assessment was possible. In order to provide
more information regarding the decomposition process and RF
models based on microbial succession, successive and comparative
studies across different geographical regions should be performed, to
be used as reference data in medicolegal death investigations.
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