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Towards Anomaly Detection in Embedded Systems
Application Using LLVM Passes

Sirine Ilahi
University of Passau
Passau, Germany
sirine.ilahi @uni-passau.de

Abstract—Software security exploits, such as Return-Oriented
Programming (ROP) attacks, have persisted for more than a
decade. ROP attacks inject malicious behaviors into programs,
posing serious risks to computing devices, and they can be par-
ticularly challenging to detect in systems with limited resources.
In this paper, we introduce an approach that exploits Low-Level
Virtual Machine (LLVM) passes, programmatic transformations
applied during compilation, to detect ROP attacks in ARM-based
embedded systems. By customizing LLVM passes, developers
can integrate tailored security checks and optimizations into
embedded systems requirements. Qur approach is motivated by
the use of Hardware Performance Counters (HPCs) for certain
mitigations, which are not commonly available on all embedded
systems. The experimental evaluation of our approach for de-
tecting ROP attacks in real-world applications shows that it is
feasible and can be extended to detect new attacks independently
of an Operating System (OS). The storage overhead induced by
our approach is approximately 55%.

Index Terms—Embedded systems, LLVM passes, Instrumen-
tation, Return oriented programming, Security.

I. INTRODUCTION

Embedded systems typically lack the robust security mech-
anisms provided by an Operating System (OS). Traditional se-
curity techniques, such as address space layout randomization
(ASLR) or data execution prevention (DEP), are frequently
absent or difficult to implement [1].

In addition, Hardware Performance Counters (HPCs) based
approaches that count certain hardware events to distinguish
vulnerable and benign applications have been well investi-
gated [2]-[6]. These statistically based approaches have been
reported to be computationally cost-effective, however, HPC
registers are not available on all embedded devices [7]-[9].

In this paper, we investigate a software-based counter ap-
proach derived from Low Level Virtual Machine (LLVM), a
popular compiler infrastructure that offers a range of tools
and technologies for code optimization, analysis, and trans-
formation. At the core of this infrastructure is a language-
independent Intermediate Representation (IR), similar to a
portable, high-level assembly language. This IR can be op-
timized through multiple passes which makes LLVM highly
versatile. One of the key components of LLVM is the LLVM
pass, which is responsible for performing the specific transfor-
mations on the IR code. In the context of security, LLVM pass
transformation can overcome these challenges by examining
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the code at the IR level, enabling the detection of vulnerabil-
ities that might be missed by other tools or techniques.

The contributions of this paper are:

« Investigation of the applicability and effectiveness of
an LLVM pass to identify vulnerabilities in embedded
systems applications.

« Development of a novel technique to detect ROP attacks.

o Performance evaluation of the purposed technique on
real-world applications.

II. BACKGROUND

In this section, we briefly introduce the key concepts re-
lated to this paper’s scope of work and contributions. More
particularly, we describe the memory corruption exploitation
technique known as Return-Oriented Programming and detail
some ARM features which are used later in the paper.

A. Return Oriented Programming on ARM

Return-oriented programming (ROP) was proposed by
Shacham in 2007 for the x86 architecture, and then subse-
quently extended to the ARM, SPARC, and other proces-
sors [10]. ROP attacks are increasingly used in practice, in
particular, the recent ROP-based attacks on well-established
products such as Adobe Reader, Adobe Flashplayer, or Quick-
time Player [11]. The main idea of ROP is to exploit memory
vulnerabilities in a program without injecting new code into
the program’s address space. In a ROP attack, short code snip-
pets in the target program to be executed, so-called gadgets,
will be chained together in an order designed by the attacker
to perform a malicious functionality. Typically each gadget
ends with an indirect jump (e.g., ret *rcx or jmp *rcx) will
be chosen to form the ROP code. The attacker chains gadgets
together by controlling the target of a gadget’s indirect jump
to point to the beginning of the next gadget in the sequence.

In Fig. 1, we give an example of ROP exploit that presents a
buffer overflow caused by an unchecked strcpy that allows the
user to smash the contents of the stack and start the execution
of the ROP chain at return time.

B. Defences Against Return-Oriented Programming

Despite extensive research in computer security, vulnerabil-
ities caused by memory corruption in low-level programming



Instructions
overflow

Stack

Call strcpy
local data ret
return address gadget 1
gadget_1 pop eax
return address ret
gadget_2
gadget 2
return address
gadget_3 xor €ecX, ecx
local data ret
“/bin/sh”
gadget 3
return address b
system() pop ebx
ret
system_call
syscall

Fig. 1. General principle of ROP attacks.

languages remain to pose a major attack vector. The research
community has proposed various approaches to improve mem-
ory protection.

1) Data Execution Prevention: Data Execution Prevention
(DEP) is is one of the major countermeasures against code
injection widely used in modern OS. Its main function is to
enforce the restriction that a memory region cannot simul-
taneously be both writable and executable, and thus prevent
the execution of unauthorized code [12]. In the absence of
such mitigation techniques, the program could potentially
write CPU instructions into a memory segment designated for
data and subsequently execute those instructions. While this
technique effectively mitigates against code injection attacks,
it remains susceptible to return-into-libc attacks that leverage
existing code rather than injecting their own [13].

2) Address Space Layout Randomization: Address Space
Layout Randomization (ASLR) is another relevant and widely
deployed technique aimed at enhancing security against vari-
ous types of buffer overflows and to render their exploitation
more difficult by randomizing the locations of the most im-
portant program components in (virtual) memory. Once ASLR
is implemented, it is hard to determine the location of the
program data. However, despite its effectiveness, ASLR also
has its limitations. Research by Schacham [14] highlights a
significant weakness in ASLR for both 32-bit and 64-bits
architectures: the finite number of bits available for address
randomization. This limitation means that only a portion of the
address space can be randomized, leaving some bits suscepti-
ble to brute-force attacks [15]. Furthermore, another critical
ASLR weakness is its susceptibility to memory disclosure
attacks, where the adversary gains knowledge of a single
runtime address and then uses that information to re-enable
code reuse [16].

3) Control Flow Integrity: Control Flow Integrity (CFI) is
also another defence technique that restrict the set of possible
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Fig. 2. Principle design of a three-phase compiler.

control-flow transfers to those that are required for correct
program execution from being transferred to unintended and
malicious addresses [17], making it significantly harder to
perform such attacks. By ensuring that program execution
follow a valid path through the static Control-Flow Graph
(CFG), CFI ensures that the program follows its expected
behaviour and prevents deviations [17], which are considered
as CFI violation that terminates the application. The goal of
CFG is to restrict the set of possible control-flow transfers to
those that are strictly required for correct program execution.
This prevents code-reuse attacks such as ROP, because they
would cause the program to execute control-flow transfers,
which are illegal under CFI technique. However, implementing
CFI can include an optimization between security and per-
formance. For example, some implementations may sacrifice
certain checkpoints by not instrumenting function calls and
paying attention only to return instructions.

Nevertheless, this approach can leave vulnerabilities in
the protected program, as attackers may exploit remaining
widgets. As shown in Coudray et al. [18], many CFI imple-
mentations have been tested and found to be quite permissive,
so an attacker can still carry out ROP attacks despite the
security measures in place.

As far as we know, the ROP mitigation techniques we have
discussed can be bypassed by knowledgeable adversaries using
generic methods.

III. DESIGN AND IMPLEMENTATION

A compiler is an essential part of software development. It
converts source code instructions into object code instructions.
Conceptually, its software design consists of three phases:
Front-end, Optimizer, and Back-end [19]. Fig. 2 shows the
main components of a three-phase compiler design.

In embedded systems where memory resources are often
constrained, and energy efficiency is a priority, the ARM
processor stands out in a unique way to optimize program size
and memory usage [20]. It has become one of the most widely
used processors in the world. However, the widespread use of
ARM-based devices has led to a significant increase of attacks
on these devices. One such attack that has gained popularity
is ROP. Based on its requirements, a ROP payload has the two
low-level properties:

« a sufficiently long chain of gadgets with few instructions
in each gadget.

« a mispredicted return for each gadget’s terminal indirect
jump instruction.

These properties are intrinsic to each ROP payload and are
independent of the program being monitored. To effectively
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Fig. 3. LLVM inftrastructure overview.

target ARM processors under attacks, a comprehensive un-
derstanding of assembly language programming is crucial.
Indeed, it is not enough to write attacks in a "simple" scripting
language; a deeper understanding of ARM binary flow analy-
sis, customized ARM shellcode creation, and ARM program
debugging is essential.

A. Design

Code instrumentation is a common technique used to track
application behaviour by inserting specific code, called instru-
mentation code, into the source files under analysis. These
files are subsequently compiled and executed. Therefore, the
execution output includes this instrumentation code can be be
used for further analysis. The most popular usages for code
instrumentation are software debugging, monitoring, perfor-
mance analysis, and aspect oriented programming.

1) IR: An Intermediate Representation (IR) is a data struc-
ture that is designed as an internal form that the compiler or
the virtual machine uses to represent the source code [21].
Typically, compilers generate the IR as a bridge between the
source code and the compiled binaries to generate a generic
assembly code. Therefore, a universal assembler can be used
to to perform the final conversion from assembly to machine-
independent intermediate code. Otherwise, a complete native
compiler for different languages and machine architectures
would be required.

2) LLVM: The Low Level Virtual Machine is a compiler
infrastructure designed to create an interface to the compilation
process so that further optimizations can be applied to the
binary itself, rather than using Just-In-Time (JIT) compilers for
runtime optimizations [22]. Otherwise, the target program can
be operated through a chain of analyses and transformations.
Each of these steps is called a pass, as illustrated in Fig. 3.
A pass performs the transformations and optimizations that
form the core of the compiler. The results of these analyses
serve as a basis for further transformations [23]. Listing 1 is
an example of the Address Sanitizer LLVM pass. This pass
only instruments the IR only if it represents a store instruction.
With a simple check, the modified Address Sanitizer LLVM
pass in Listing 2 will only instrument the store instruction if
the IR is annotated with store, meaning that it is generated
from the guest binary.

if (StoreInst »LI = dyn_cast<StorelInst>(this))
{

//instrument analysis code

}
Listing 1. Address Sanitizer LLVM pass

if (StorelInst xLI = dyn_cast<StorelInst>(this))
if (LI->getMetadata("store") && LI->isVolatile())

//instrument analysis code

Listing 2. LLVM Instrumentation

B. Implementation

In our instrumentation approach, applications are tracked at
runtime by by inserting hooks into the source code to record
events such as the number of entries and exits of each basic
block, a sequence of sequential instructions without branches,
along with its execution count. These hooks call the monitor
for each such event, a process known as instrumentation as
shown in Fig. 4. Fig. 4 (a), showcases an unedited version
of a simple code example. This example includes a simple
recursive function func() that calls itself with a decreasing
argument i until this argument is less than or equal to 0,
after which main() function calls func() with values from 0
to 9. While Fig. 4 (b) illustrates the instrumented source code
with added calls to monitor the number of entries and exits
for each basic block and the total number of basic blocks
executed. Whenever an application calls a function, it calls
the ENTER hook and passes control flow to the monitor. The
monitor stores the relevant information, such as the number of
basic block entries, before returning control to the application
for continued execution. Similarly, the monitor manages the
EXIT of each basic block at the function’s end.

C. ROP exploit creation on ARM

In this section, we describe the leveraged ROP attacks
against vulnerable real-world applications on the ARM plat-
form. To test the effectiveness of our approach, we have
implemented various ROP attacks which are publicly available
on Github taken from Welearegai et al. [24]. The total size of
the implemented ROP applications is 139.88MB. During the
ROP attack, the gadget addresses are loaded into the Program
Counter (PC) register using pop instructions. The contents of
the function argument registers (i.e. r0-r4) must be reserved
before the control flow is redirected to the desired function to
provide the function arguments. For example, to open a system
shell, the 10O register must point to /bin/sh before the control
flow is redirected to the address of the system function.

IV. EVALUATION AND DISCUSSION

In this section, we delve into the research questions that
arouse our interest, the evaluation methodology employed, the
experimental setup, and the results of assessing the LLVM



int main(){

int i;
for (i=0; i<10; i++)

func (i);

int BASIC_BLOCKS ;
int main(){
ENTER (“main”);
int i;
for (i=0; i<10; i++)
{

func(i);

BASIC_BLOCKS++;

} }

EXIT (“main”);
return 0; return 0;

}

void func (int i)

{

void func (int i)

ENTER (“func”);

if (i>0) if (i>0)

{
func (i-1);
BASIC_BLOCKS++ ;

func (i-1);

EXIT(“func”);
} }

@ (®)

Fig. 4. (a) Original source code. (b) Annotated source code.

pass. The research questions we address are outlined as
follows:

RQ1: Can LLVM pass software-based metrics be used for
distinguishing ROP attack behavior?

RQ2: How significant is the resource usage of the proposed
approach?

A. Evaluation Approach

To answer the first research question, obtaining an accurate
record of the software performance counter metrics is crucial.
To achieve this goal, we performed experiments involving
instrumented code, where supplementary code segments were
inserted at the entry and exit points of each basic block. This
process was facilitated by the implementation of an LLVM
pass as described in Algorithm 1. Within this implementation,
three global variables BasicBlockCounter, EntryCounter, and
ExitCounter were created. These variables respectively track
the number of basic blocks, the number of entries, and the
number of exits. For each basic block, an instrumented code
was added to count its entries and exits, and the counter
BasicBlockCounter was incremented by 1. Discrepancies in
the values of these three counters indicate illegal control
flow violations. The pass includes 55 lines of C++ code
designed to track these three counters. Discrepancies in entry
and exit counts indicate the occurrence of ROP attack. Our
instrumentation process was implemented into the LLVM
11.0.1 compiler and the evaluation hardware setup consists
of a Raspberry Pi 4 Model B running kernel version 5.4. The
approach to the second research question involves measuring
the efficiency of the proposed method using metrics such as
storage and runtime overhead.

Algorithm 1: Algorithm to instrument LLVM IR and
count basic blocks, entries, and exits
Input : LLVM IR
Output: Instrumented IR with number of basic blocks,
entries, and exits
# initialize variables;
BasicBlockCounter = 0;
EntryCounter = 0;
ExitCounter = 0;
for each Function F in Module M do
for each BasicBlock B in Function F do
BasicBlockCounter++;
InsertEntryCounterCode(B);
EntryCounter++ ;
InsertExitCounterCode(B);
ExitCounter++;
end

end

for each BasicBlock B in Function F do
return (BasicBlockCounter, EntryCounter,

ExitCounter);

end

B. Discussion

This section presents our findings based on the two research
questions.

RQ1: Can LLVM pass software-based metrics be used for
distinguishing ROP attack behavior?
From the analysis of our test applications, we identified a key
mismatch between ROP attacks and non-ROP implementa-
tions, specifically in the differences between the number of
entries and exits of basic block counters, as shown in Table 1.
For instance, in the application Crashmail, during normal exe-
cution, the number of entry and exit basic blocks is 15, because
in normal execution each basic block has its entry and exit.
However, when illegal code execution occurs in Crashmail due
to ROP attack, the number of exits (11) and entries (12) do
not match. This discrepancy can be explained by the program’s
behavior when it jumps to unknown memory locations so that
the subsequent exit cannot be counted. The results in Table I
show that our approach can correctly distinguish between ROP
and non-ROP behaviors in real applications albeit the attacks
are only detected after the application terminates.

RQ2: How significant is the resource usage of the proposed
approach?
Table II presents the overhead of our proposed approach
in terms of runtime and storage overhead. The size of the
instrumented binary files increases by an average of 55%
compared to the original files due to the additional integrated
instrumentation code. In terms of runtime, our approach re-
quires an additional initialization overhead of 20ms on average
compared to the original code. The increase in execution time
ranges from 3.0% to 15.5% depending on the characteristics
of the target program and the number of basic blocks on each



TABLE 1
COMPARISON BETWEEN ROP AND NON-ROP

Applications ' ROP executipn ' ' Non-ROP execption '
#Basic blocks | #Entries | #Exits | #Basic blocks | #Entries | #Exits
Crashmail 12 12 11 15 15 15
Dnstracer 5 5 4 5 5 5
Mecrypt 13 13 12 13 13 13
Nethack 15 15 14 15 15 15
PHP 9 9 8 11 11 11
Wifirx 15 15 14 18 18 18
TABLE 1T
BINARY SIZE AND RUNTIME OVERHEAD
Applications ] Binary si;e (bytes) ] Runtime (ms)
Before instr | After instr | Increment(%) Before instr | After instr | Increment(%)
Crashmail 8464 13128 55.2 257 293 14.0
Dnstracer 6020 7544 25.3 328 338 3.0
Mecrypt 6904 10580 533 251 262 4.4
Nethack 8336 13004 56.0 237 259 9.3
PHP 8652 13424 66.7 601 694 15.5
Wifirx 8572 13240 54.6 593 612 32
TABLE III
COMPARATIVE ANALYSIS OF OUR APPROACH AND ALTERNATIVES
Characteristics Our approach Honeygadget Safe LLVM RIO
OS requirement No No No No
ROP attack detec- | Detects ROP attack | Prevents ROP at- | Prevents ROP at- | Prevents ROP at-
tion by differencing the | tacks by enforc- | tacks by minimiz- | tacks by encrypting

number of entries
and exits of basic

ing return address
checks at runtime

ing the number of
gadgets present in

all return instruc-
tions

blocks binaries using llvm
Average  storage | 55% - - 30%
overhead
Average runtime | 8.22% 6.8% 0.2% 8.79%
overhead

function of the program. The resource consumption of our
method is comparable to that of similar existing works, thus
validating its practicability in detecting anomalies in embedded
systems applications.

V. RELATED WORK

This section discusses some of the closely related ap-
proaches to ours and Table III presents the comparison of our
technique to some of the existing LLVM works for detecting
ROP attacks. Honeygadget [25] consists of inserting honey
gadgets into the application as decoys to confuse adversaries
with traps based on the LLVM pass. However, the enrichment
of the type and location of the inserted gadgets is limited as
some types of gadgets are rare but necessary for a certain
kind of code reuse attacks which consequently limits the
types of these honey gadgets and increases the possibility
of leaking the traps. In contrast, our approach takes a more
general stance as it is not bound to specific gadget types,
which makes it adaptable to a wider range of scenarios.
Furthermore, Safellvm [26] is a technique that focuses on
minimizing the number of gadgets in x86-64 binaries compiled
with the LLVM infrastructure. It is able to reduce the number
of gadgets in a binary and in most cases prevents the automatic
generation of ROP chains. However, this approach has some

limitations, as it targets only x86_64 binaries. Moreover, the
Return Instruction Obfuscation (RIO) technique [27] encrypts
all return instructions and instruments the necessary modules
to decrypt and execute the encrypted return instructions using
LLVM pass. However, this technique also requires a high
storage overhead which is about 30%, to prevent attackers
from collecting gadgets. Eberius et al. [28] approach is similar
to ours in terms of using software-based performance counters,
although it targeted exposing low-level open MPI performance
information. Their approach basically introduces a simple low-
level approach that instruments the Open MPI code at key
locations to provide fine-grained MPI performance metrics.
Unlike in our paper, their approach did not focus on attack de-
tection but only on how to use software performance metrics to
determine bottlenecks in user code and MPI implementation.

VI. CONCLUSION

Memory corruption attacks arising from stack buffer over-
flow have been a major security problem for decades and have
been extensively studied in the academic community. Because
these attacks are persistent, this paper investigates innovative
software performance counters-based statistical methods using
LLVM pass to detect ROP in embedded systems. Although our
current approach is limited in that it cannot perform runtime



prevention, our experimental result shows that it can distin-
guish ROP from non-ROP executions in real-life applications.
Hence, our follow-up research will address two objectives:
investigating additional LLVM instrumentation counters that
can help with runtime prevention of ROP attacks and reducing
storage overhead.
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